| Index: webrtc/modules/audio_coding/codecs/opus/opus/src/celt/bands.c
|
| diff --git a/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/bands.c b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/bands.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..25f229e26734011fe91de03a446f6b883c5e1fa4
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/bands.c
|
| @@ -0,0 +1,1529 @@
|
| +/* Copyright (c) 2007-2008 CSIRO
|
| + Copyright (c) 2007-2009 Xiph.Org Foundation
|
| + Copyright (c) 2008-2009 Gregory Maxwell
|
| + Written by Jean-Marc Valin and Gregory Maxwell */
|
| +/*
|
| + Redistribution and use in source and binary forms, with or without
|
| + modification, are permitted provided that the following conditions
|
| + are met:
|
| +
|
| + - Redistributions of source code must retain the above copyright
|
| + notice, this list of conditions and the following disclaimer.
|
| +
|
| + - Redistributions in binary form must reproduce the above copyright
|
| + notice, this list of conditions and the following disclaimer in the
|
| + documentation and/or other materials provided with the distribution.
|
| +
|
| + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
| + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
| + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
| + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
| + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
| + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
| + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
| + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +*/
|
| +
|
| +#ifdef HAVE_CONFIG_H
|
| +#include "config.h"
|
| +#endif
|
| +
|
| +#include <math.h>
|
| +#include "bands.h"
|
| +#include "modes.h"
|
| +#include "vq.h"
|
| +#include "cwrs.h"
|
| +#include "stack_alloc.h"
|
| +#include "os_support.h"
|
| +#include "mathops.h"
|
| +#include "rate.h"
|
| +#include "quant_bands.h"
|
| +#include "pitch.h"
|
| +
|
| +int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev)
|
| +{
|
| + int i;
|
| + for (i=0;i<N;i++)
|
| + {
|
| + if (val < thresholds[i])
|
| + break;
|
| + }
|
| + if (i>prev && val < thresholds[prev]+hysteresis[prev])
|
| + i=prev;
|
| + if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1])
|
| + i=prev;
|
| + return i;
|
| +}
|
| +
|
| +opus_uint32 celt_lcg_rand(opus_uint32 seed)
|
| +{
|
| + return 1664525 * seed + 1013904223;
|
| +}
|
| +
|
| +/* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness
|
| + with this approximation is important because it has an impact on the bit allocation */
|
| +static opus_int16 bitexact_cos(opus_int16 x)
|
| +{
|
| + opus_int32 tmp;
|
| + opus_int16 x2;
|
| + tmp = (4096+((opus_int32)(x)*(x)))>>13;
|
| + celt_assert(tmp<=32767);
|
| + x2 = tmp;
|
| + x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2)))));
|
| + celt_assert(x2<=32766);
|
| + return 1+x2;
|
| +}
|
| +
|
| +static int bitexact_log2tan(int isin,int icos)
|
| +{
|
| + int lc;
|
| + int ls;
|
| + lc=EC_ILOG(icos);
|
| + ls=EC_ILOG(isin);
|
| + icos<<=15-lc;
|
| + isin<<=15-ls;
|
| + return (ls-lc)*(1<<11)
|
| + +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932)
|
| + -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932);
|
| +}
|
| +
|
| +#ifdef FIXED_POINT
|
| +/* Compute the amplitude (sqrt energy) in each of the bands */
|
| +void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM)
|
| +{
|
| + int i, c, N;
|
| + const opus_int16 *eBands = m->eBands;
|
| + N = m->shortMdctSize<<LM;
|
| + c=0; do {
|
| + for (i=0;i<end;i++)
|
| + {
|
| + int j;
|
| + opus_val32 maxval=0;
|
| + opus_val32 sum = 0;
|
| +
|
| + maxval = celt_maxabs32(&X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM);
|
| + if (maxval > 0)
|
| + {
|
| + int shift = celt_ilog2(maxval) - 14 + (((m->logN[i]>>BITRES)+LM+1)>>1);
|
| + j=eBands[i]<<LM;
|
| + if (shift>0)
|
| + {
|
| + do {
|
| + sum = MAC16_16(sum, EXTRACT16(SHR32(X[j+c*N],shift)),
|
| + EXTRACT16(SHR32(X[j+c*N],shift)));
|
| + } while (++j<eBands[i+1]<<LM);
|
| + } else {
|
| + do {
|
| + sum = MAC16_16(sum, EXTRACT16(SHL32(X[j+c*N],-shift)),
|
| + EXTRACT16(SHL32(X[j+c*N],-shift)));
|
| + } while (++j<eBands[i+1]<<LM);
|
| + }
|
| + /* We're adding one here to ensure the normalized band isn't larger than unity norm */
|
| + bandE[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift);
|
| + } else {
|
| + bandE[i+c*m->nbEBands] = EPSILON;
|
| + }
|
| + /*printf ("%f ", bandE[i+c*m->nbEBands]);*/
|
| + }
|
| + } while (++c<C);
|
| + /*printf ("\n");*/
|
| +}
|
| +
|
| +/* Normalise each band such that the energy is one. */
|
| +void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M)
|
| +{
|
| + int i, c, N;
|
| + const opus_int16 *eBands = m->eBands;
|
| + N = M*m->shortMdctSize;
|
| + c=0; do {
|
| + i=0; do {
|
| + opus_val16 g;
|
| + int j,shift;
|
| + opus_val16 E;
|
| + shift = celt_zlog2(bandE[i+c*m->nbEBands])-13;
|
| + E = VSHR32(bandE[i+c*m->nbEBands], shift);
|
| + g = EXTRACT16(celt_rcp(SHL32(E,3)));
|
| + j=M*eBands[i]; do {
|
| + X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g);
|
| + } while (++j<M*eBands[i+1]);
|
| + } while (++i<end);
|
| + } while (++c<C);
|
| +}
|
| +
|
| +#else /* FIXED_POINT */
|
| +/* Compute the amplitude (sqrt energy) in each of the bands */
|
| +void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM)
|
| +{
|
| + int i, c, N;
|
| + const opus_int16 *eBands = m->eBands;
|
| + N = m->shortMdctSize<<LM;
|
| + c=0; do {
|
| + for (i=0;i<end;i++)
|
| + {
|
| + opus_val32 sum;
|
| + sum = 1e-27f + celt_inner_prod_c(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM);
|
| + bandE[i+c*m->nbEBands] = celt_sqrt(sum);
|
| + /*printf ("%f ", bandE[i+c*m->nbEBands]);*/
|
| + }
|
| + } while (++c<C);
|
| + /*printf ("\n");*/
|
| +}
|
| +
|
| +/* Normalise each band such that the energy is one. */
|
| +void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M)
|
| +{
|
| + int i, c, N;
|
| + const opus_int16 *eBands = m->eBands;
|
| + N = M*m->shortMdctSize;
|
| + c=0; do {
|
| + for (i=0;i<end;i++)
|
| + {
|
| + int j;
|
| + opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]);
|
| + for (j=M*eBands[i];j<M*eBands[i+1];j++)
|
| + X[j+c*N] = freq[j+c*N]*g;
|
| + }
|
| + } while (++c<C);
|
| +}
|
| +
|
| +#endif /* FIXED_POINT */
|
| +
|
| +/* De-normalise the energy to produce the synthesis from the unit-energy bands */
|
| +void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X,
|
| + celt_sig * OPUS_RESTRICT freq, const opus_val16 *bandLogE, int start,
|
| + int end, int M, int downsample, int silence)
|
| +{
|
| + int i, N;
|
| + int bound;
|
| + celt_sig * OPUS_RESTRICT f;
|
| + const celt_norm * OPUS_RESTRICT x;
|
| + const opus_int16 *eBands = m->eBands;
|
| + N = M*m->shortMdctSize;
|
| + bound = M*eBands[end];
|
| + if (downsample!=1)
|
| + bound = IMIN(bound, N/downsample);
|
| + if (silence)
|
| + {
|
| + bound = 0;
|
| + start = end = 0;
|
| + }
|
| + f = freq;
|
| + x = X+M*eBands[start];
|
| + for (i=0;i<M*eBands[start];i++)
|
| + *f++ = 0;
|
| + for (i=start;i<end;i++)
|
| + {
|
| + int j, band_end;
|
| + opus_val16 g;
|
| + opus_val16 lg;
|
| +#ifdef FIXED_POINT
|
| + int shift;
|
| +#endif
|
| + j=M*eBands[i];
|
| + band_end = M*eBands[i+1];
|
| + lg = ADD16(bandLogE[i], SHL16((opus_val16)eMeans[i],6));
|
| +#ifndef FIXED_POINT
|
| + g = celt_exp2(lg);
|
| +#else
|
| + /* Handle the integer part of the log energy */
|
| + shift = 16-(lg>>DB_SHIFT);
|
| + if (shift>31)
|
| + {
|
| + shift=0;
|
| + g=0;
|
| + } else {
|
| + /* Handle the fractional part. */
|
| + g = celt_exp2_frac(lg&((1<<DB_SHIFT)-1));
|
| + }
|
| + /* Handle extreme gains with negative shift. */
|
| + if (shift<0)
|
| + {
|
| + /* For shift < -2 we'd be likely to overflow, so we're capping
|
| + the gain here. This shouldn't happen unless the bitstream is
|
| + already corrupted. */
|
| + if (shift < -2)
|
| + {
|
| + g = 32767;
|
| + shift = -2;
|
| + }
|
| + do {
|
| + *f++ = SHL32(MULT16_16(*x++, g), -shift);
|
| + } while (++j<band_end);
|
| + } else
|
| +#endif
|
| + /* Be careful of the fixed-point "else" just above when changing this code */
|
| + do {
|
| + *f++ = SHR32(MULT16_16(*x++, g), shift);
|
| + } while (++j<band_end);
|
| + }
|
| + celt_assert(start <= end);
|
| + OPUS_CLEAR(&freq[bound], N-bound);
|
| +}
|
| +
|
| +/* This prevents energy collapse for transients with multiple short MDCTs */
|
| +void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size,
|
| + int start, int end, const opus_val16 *logE, const opus_val16 *prev1logE,
|
| + const opus_val16 *prev2logE, const int *pulses, opus_uint32 seed, int arch)
|
| +{
|
| + int c, i, j, k;
|
| + for (i=start;i<end;i++)
|
| + {
|
| + int N0;
|
| + opus_val16 thresh, sqrt_1;
|
| + int depth;
|
| +#ifdef FIXED_POINT
|
| + int shift;
|
| + opus_val32 thresh32;
|
| +#endif
|
| +
|
| + N0 = m->eBands[i+1]-m->eBands[i];
|
| + /* depth in 1/8 bits */
|
| + celt_assert(pulses[i]>=0);
|
| + depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM;
|
| +
|
| +#ifdef FIXED_POINT
|
| + thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1);
|
| + thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32));
|
| + {
|
| + opus_val32 t;
|
| + t = N0<<LM;
|
| + shift = celt_ilog2(t)>>1;
|
| + t = SHL32(t, (7-shift)<<1);
|
| + sqrt_1 = celt_rsqrt_norm(t);
|
| + }
|
| +#else
|
| + thresh = .5f*celt_exp2(-.125f*depth);
|
| + sqrt_1 = celt_rsqrt(N0<<LM);
|
| +#endif
|
| +
|
| + c=0; do
|
| + {
|
| + celt_norm *X;
|
| + opus_val16 prev1;
|
| + opus_val16 prev2;
|
| + opus_val32 Ediff;
|
| + opus_val16 r;
|
| + int renormalize=0;
|
| + prev1 = prev1logE[c*m->nbEBands+i];
|
| + prev2 = prev2logE[c*m->nbEBands+i];
|
| + if (C==1)
|
| + {
|
| + prev1 = MAX16(prev1,prev1logE[m->nbEBands+i]);
|
| + prev2 = MAX16(prev2,prev2logE[m->nbEBands+i]);
|
| + }
|
| + Ediff = EXTEND32(logE[c*m->nbEBands+i])-EXTEND32(MIN16(prev1,prev2));
|
| + Ediff = MAX32(0, Ediff);
|
| +
|
| +#ifdef FIXED_POINT
|
| + if (Ediff < 16384)
|
| + {
|
| + opus_val32 r32 = SHR32(celt_exp2(-EXTRACT16(Ediff)),1);
|
| + r = 2*MIN16(16383,r32);
|
| + } else {
|
| + r = 0;
|
| + }
|
| + if (LM==3)
|
| + r = MULT16_16_Q14(23170, MIN32(23169, r));
|
| + r = SHR16(MIN16(thresh, r),1);
|
| + r = SHR32(MULT16_16_Q15(sqrt_1, r),shift);
|
| +#else
|
| + /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
|
| + short blocks don't have the same energy as long */
|
| + r = 2.f*celt_exp2(-Ediff);
|
| + if (LM==3)
|
| + r *= 1.41421356f;
|
| + r = MIN16(thresh, r);
|
| + r = r*sqrt_1;
|
| +#endif
|
| + X = X_+c*size+(m->eBands[i]<<LM);
|
| + for (k=0;k<1<<LM;k++)
|
| + {
|
| + /* Detect collapse */
|
| + if (!(collapse_masks[i*C+c]&1<<k))
|
| + {
|
| + /* Fill with noise */
|
| + for (j=0;j<N0;j++)
|
| + {
|
| + seed = celt_lcg_rand(seed);
|
| + X[(j<<LM)+k] = (seed&0x8000 ? r : -r);
|
| + }
|
| + renormalize = 1;
|
| + }
|
| + }
|
| + /* We just added some energy, so we need to renormalise */
|
| + if (renormalize)
|
| + renormalise_vector(X, N0<<LM, Q15ONE, arch);
|
| + } while (++c<C);
|
| + }
|
| +}
|
| +
|
| +static void intensity_stereo(const CELTMode *m, celt_norm * OPUS_RESTRICT X, const celt_norm * OPUS_RESTRICT Y, const celt_ener *bandE, int bandID, int N)
|
| +{
|
| + int i = bandID;
|
| + int j;
|
| + opus_val16 a1, a2;
|
| + opus_val16 left, right;
|
| + opus_val16 norm;
|
| +#ifdef FIXED_POINT
|
| + int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13;
|
| +#endif
|
| + left = VSHR32(bandE[i],shift);
|
| + right = VSHR32(bandE[i+m->nbEBands],shift);
|
| + norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right));
|
| + a1 = DIV32_16(SHL32(EXTEND32(left),14),norm);
|
| + a2 = DIV32_16(SHL32(EXTEND32(right),14),norm);
|
| + for (j=0;j<N;j++)
|
| + {
|
| + celt_norm r, l;
|
| + l = X[j];
|
| + r = Y[j];
|
| + X[j] = EXTRACT16(SHR32(MAC16_16(MULT16_16(a1, l), a2, r), 14));
|
| + /* Side is not encoded, no need to calculate */
|
| + }
|
| +}
|
| +
|
| +static void stereo_split(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, int N)
|
| +{
|
| + int j;
|
| + for (j=0;j<N;j++)
|
| + {
|
| + opus_val32 r, l;
|
| + l = MULT16_16(QCONST16(.70710678f, 15), X[j]);
|
| + r = MULT16_16(QCONST16(.70710678f, 15), Y[j]);
|
| + X[j] = EXTRACT16(SHR32(ADD32(l, r), 15));
|
| + Y[j] = EXTRACT16(SHR32(SUB32(r, l), 15));
|
| + }
|
| +}
|
| +
|
| +static void stereo_merge(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, opus_val16 mid, int N, int arch)
|
| +{
|
| + int j;
|
| + opus_val32 xp=0, side=0;
|
| + opus_val32 El, Er;
|
| + opus_val16 mid2;
|
| +#ifdef FIXED_POINT
|
| + int kl, kr;
|
| +#endif
|
| + opus_val32 t, lgain, rgain;
|
| +
|
| + /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
|
| + dual_inner_prod(Y, X, Y, N, &xp, &side, arch);
|
| + /* Compensating for the mid normalization */
|
| + xp = MULT16_32_Q15(mid, xp);
|
| + /* mid and side are in Q15, not Q14 like X and Y */
|
| + mid2 = SHR32(mid, 1);
|
| + El = MULT16_16(mid2, mid2) + side - 2*xp;
|
| + Er = MULT16_16(mid2, mid2) + side + 2*xp;
|
| + if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28))
|
| + {
|
| + OPUS_COPY(Y, X, N);
|
| + return;
|
| + }
|
| +
|
| +#ifdef FIXED_POINT
|
| + kl = celt_ilog2(El)>>1;
|
| + kr = celt_ilog2(Er)>>1;
|
| +#endif
|
| + t = VSHR32(El, (kl-7)<<1);
|
| + lgain = celt_rsqrt_norm(t);
|
| + t = VSHR32(Er, (kr-7)<<1);
|
| + rgain = celt_rsqrt_norm(t);
|
| +
|
| +#ifdef FIXED_POINT
|
| + if (kl < 7)
|
| + kl = 7;
|
| + if (kr < 7)
|
| + kr = 7;
|
| +#endif
|
| +
|
| + for (j=0;j<N;j++)
|
| + {
|
| + celt_norm r, l;
|
| + /* Apply mid scaling (side is already scaled) */
|
| + l = MULT16_16_P15(mid, X[j]);
|
| + r = Y[j];
|
| + X[j] = EXTRACT16(PSHR32(MULT16_16(lgain, SUB16(l,r)), kl+1));
|
| + Y[j] = EXTRACT16(PSHR32(MULT16_16(rgain, ADD16(l,r)), kr+1));
|
| + }
|
| +}
|
| +
|
| +/* Decide whether we should spread the pulses in the current frame */
|
| +int spreading_decision(const CELTMode *m, const celt_norm *X, int *average,
|
| + int last_decision, int *hf_average, int *tapset_decision, int update_hf,
|
| + int end, int C, int M)
|
| +{
|
| + int i, c, N0;
|
| + int sum = 0, nbBands=0;
|
| + const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
|
| + int decision;
|
| + int hf_sum=0;
|
| +
|
| + celt_assert(end>0);
|
| +
|
| + N0 = M*m->shortMdctSize;
|
| +
|
| + if (M*(eBands[end]-eBands[end-1]) <= 8)
|
| + return SPREAD_NONE;
|
| + c=0; do {
|
| + for (i=0;i<end;i++)
|
| + {
|
| + int j, N, tmp=0;
|
| + int tcount[3] = {0,0,0};
|
| + const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0;
|
| + N = M*(eBands[i+1]-eBands[i]);
|
| + if (N<=8)
|
| + continue;
|
| + /* Compute rough CDF of |x[j]| */
|
| + for (j=0;j<N;j++)
|
| + {
|
| + opus_val32 x2N; /* Q13 */
|
| +
|
| + x2N = MULT16_16(MULT16_16_Q15(x[j], x[j]), N);
|
| + if (x2N < QCONST16(0.25f,13))
|
| + tcount[0]++;
|
| + if (x2N < QCONST16(0.0625f,13))
|
| + tcount[1]++;
|
| + if (x2N < QCONST16(0.015625f,13))
|
| + tcount[2]++;
|
| + }
|
| +
|
| + /* Only include four last bands (8 kHz and up) */
|
| + if (i>m->nbEBands-4)
|
| + hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N);
|
| + tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N);
|
| + sum += tmp*256;
|
| + nbBands++;
|
| + }
|
| + } while (++c<C);
|
| +
|
| + if (update_hf)
|
| + {
|
| + if (hf_sum)
|
| + hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end));
|
| + *hf_average = (*hf_average+hf_sum)>>1;
|
| + hf_sum = *hf_average;
|
| + if (*tapset_decision==2)
|
| + hf_sum += 4;
|
| + else if (*tapset_decision==0)
|
| + hf_sum -= 4;
|
| + if (hf_sum > 22)
|
| + *tapset_decision=2;
|
| + else if (hf_sum > 18)
|
| + *tapset_decision=1;
|
| + else
|
| + *tapset_decision=0;
|
| + }
|
| + /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/
|
| + celt_assert(nbBands>0); /* end has to be non-zero */
|
| + celt_assert(sum>=0);
|
| + sum = celt_udiv(sum, nbBands);
|
| + /* Recursive averaging */
|
| + sum = (sum+*average)>>1;
|
| + *average = sum;
|
| + /* Hysteresis */
|
| + sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2;
|
| + if (sum < 80)
|
| + {
|
| + decision = SPREAD_AGGRESSIVE;
|
| + } else if (sum < 256)
|
| + {
|
| + decision = SPREAD_NORMAL;
|
| + } else if (sum < 384)
|
| + {
|
| + decision = SPREAD_LIGHT;
|
| + } else {
|
| + decision = SPREAD_NONE;
|
| + }
|
| +#ifdef FUZZING
|
| + decision = rand()&0x3;
|
| + *tapset_decision=rand()%3;
|
| +#endif
|
| + return decision;
|
| +}
|
| +
|
| +/* Indexing table for converting from natural Hadamard to ordery Hadamard
|
| + This is essentially a bit-reversed Gray, on top of which we've added
|
| + an inversion of the order because we want the DC at the end rather than
|
| + the beginning. The lines are for N=2, 4, 8, 16 */
|
| +static const int ordery_table[] = {
|
| + 1, 0,
|
| + 3, 0, 2, 1,
|
| + 7, 0, 4, 3, 6, 1, 5, 2,
|
| + 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5,
|
| +};
|
| +
|
| +static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard)
|
| +{
|
| + int i,j;
|
| + VARDECL(celt_norm, tmp);
|
| + int N;
|
| + SAVE_STACK;
|
| + N = N0*stride;
|
| + ALLOC(tmp, N, celt_norm);
|
| + celt_assert(stride>0);
|
| + if (hadamard)
|
| + {
|
| + const int *ordery = ordery_table+stride-2;
|
| + for (i=0;i<stride;i++)
|
| + {
|
| + for (j=0;j<N0;j++)
|
| + tmp[ordery[i]*N0+j] = X[j*stride+i];
|
| + }
|
| + } else {
|
| + for (i=0;i<stride;i++)
|
| + for (j=0;j<N0;j++)
|
| + tmp[i*N0+j] = X[j*stride+i];
|
| + }
|
| + OPUS_COPY(X, tmp, N);
|
| + RESTORE_STACK;
|
| +}
|
| +
|
| +static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard)
|
| +{
|
| + int i,j;
|
| + VARDECL(celt_norm, tmp);
|
| + int N;
|
| + SAVE_STACK;
|
| + N = N0*stride;
|
| + ALLOC(tmp, N, celt_norm);
|
| + if (hadamard)
|
| + {
|
| + const int *ordery = ordery_table+stride-2;
|
| + for (i=0;i<stride;i++)
|
| + for (j=0;j<N0;j++)
|
| + tmp[j*stride+i] = X[ordery[i]*N0+j];
|
| + } else {
|
| + for (i=0;i<stride;i++)
|
| + for (j=0;j<N0;j++)
|
| + tmp[j*stride+i] = X[i*N0+j];
|
| + }
|
| + OPUS_COPY(X, tmp, N);
|
| + RESTORE_STACK;
|
| +}
|
| +
|
| +void haar1(celt_norm *X, int N0, int stride)
|
| +{
|
| + int i, j;
|
| + N0 >>= 1;
|
| + for (i=0;i<stride;i++)
|
| + for (j=0;j<N0;j++)
|
| + {
|
| + opus_val32 tmp1, tmp2;
|
| + tmp1 = MULT16_16(QCONST16(.70710678f,15), X[stride*2*j+i]);
|
| + tmp2 = MULT16_16(QCONST16(.70710678f,15), X[stride*(2*j+1)+i]);
|
| + X[stride*2*j+i] = EXTRACT16(PSHR32(ADD32(tmp1, tmp2), 15));
|
| + X[stride*(2*j+1)+i] = EXTRACT16(PSHR32(SUB32(tmp1, tmp2), 15));
|
| + }
|
| +}
|
| +
|
| +static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo)
|
| +{
|
| + static const opus_int16 exp2_table8[8] =
|
| + {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048};
|
| + int qn, qb;
|
| + int N2 = 2*N-1;
|
| + if (stereo && N==2)
|
| + N2--;
|
| + /* The upper limit ensures that in a stereo split with itheta==16384, we'll
|
| + always have enough bits left over to code at least one pulse in the
|
| + side; otherwise it would collapse, since it doesn't get folded. */
|
| + qb = celt_sudiv(b+N2*offset, N2);
|
| + qb = IMIN(b-pulse_cap-(4<<BITRES), qb);
|
| +
|
| + qb = IMIN(8<<BITRES, qb);
|
| +
|
| + if (qb<(1<<BITRES>>1)) {
|
| + qn = 1;
|
| + } else {
|
| + qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES));
|
| + qn = (qn+1)>>1<<1;
|
| + }
|
| + celt_assert(qn <= 256);
|
| + return qn;
|
| +}
|
| +
|
| +struct band_ctx {
|
| + int encode;
|
| + const CELTMode *m;
|
| + int i;
|
| + int intensity;
|
| + int spread;
|
| + int tf_change;
|
| + ec_ctx *ec;
|
| + opus_int32 remaining_bits;
|
| + const celt_ener *bandE;
|
| + opus_uint32 seed;
|
| + int arch;
|
| +};
|
| +
|
| +struct split_ctx {
|
| + int inv;
|
| + int imid;
|
| + int iside;
|
| + int delta;
|
| + int itheta;
|
| + int qalloc;
|
| +};
|
| +
|
| +static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx,
|
| + celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0,
|
| + int LM,
|
| + int stereo, int *fill)
|
| +{
|
| + int qn;
|
| + int itheta=0;
|
| + int delta;
|
| + int imid, iside;
|
| + int qalloc;
|
| + int pulse_cap;
|
| + int offset;
|
| + opus_int32 tell;
|
| + int inv=0;
|
| + int encode;
|
| + const CELTMode *m;
|
| + int i;
|
| + int intensity;
|
| + ec_ctx *ec;
|
| + const celt_ener *bandE;
|
| +
|
| + encode = ctx->encode;
|
| + m = ctx->m;
|
| + i = ctx->i;
|
| + intensity = ctx->intensity;
|
| + ec = ctx->ec;
|
| + bandE = ctx->bandE;
|
| +
|
| + /* Decide on the resolution to give to the split parameter theta */
|
| + pulse_cap = m->logN[i]+LM*(1<<BITRES);
|
| + offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET);
|
| + qn = compute_qn(N, *b, offset, pulse_cap, stereo);
|
| + if (stereo && i>=intensity)
|
| + qn = 1;
|
| + if (encode)
|
| + {
|
| + /* theta is the atan() of the ratio between the (normalized)
|
| + side and mid. With just that parameter, we can re-scale both
|
| + mid and side because we know that 1) they have unit norm and
|
| + 2) they are orthogonal. */
|
| + itheta = stereo_itheta(X, Y, stereo, N, ctx->arch);
|
| + }
|
| + tell = ec_tell_frac(ec);
|
| + if (qn!=1)
|
| + {
|
| + if (encode)
|
| + itheta = (itheta*qn+8192)>>14;
|
| +
|
| + /* Entropy coding of the angle. We use a uniform pdf for the
|
| + time split, a step for stereo, and a triangular one for the rest. */
|
| + if (stereo && N>2)
|
| + {
|
| + int p0 = 3;
|
| + int x = itheta;
|
| + int x0 = qn/2;
|
| + int ft = p0*(x0+1) + x0;
|
| + /* Use a probability of p0 up to itheta=8192 and then use 1 after */
|
| + if (encode)
|
| + {
|
| + ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
|
| + } else {
|
| + int fs;
|
| + fs=ec_decode(ec,ft);
|
| + if (fs<(x0+1)*p0)
|
| + x=fs/p0;
|
| + else
|
| + x=x0+1+(fs-(x0+1)*p0);
|
| + ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
|
| + itheta = x;
|
| + }
|
| + } else if (B0>1 || stereo) {
|
| + /* Uniform pdf */
|
| + if (encode)
|
| + ec_enc_uint(ec, itheta, qn+1);
|
| + else
|
| + itheta = ec_dec_uint(ec, qn+1);
|
| + } else {
|
| + int fs=1, ft;
|
| + ft = ((qn>>1)+1)*((qn>>1)+1);
|
| + if (encode)
|
| + {
|
| + int fl;
|
| +
|
| + fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta;
|
| + fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 :
|
| + ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
|
| +
|
| + ec_encode(ec, fl, fl+fs, ft);
|
| + } else {
|
| + /* Triangular pdf */
|
| + int fl=0;
|
| + int fm;
|
| + fm = ec_decode(ec, ft);
|
| +
|
| + if (fm < ((qn>>1)*((qn>>1) + 1)>>1))
|
| + {
|
| + itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1;
|
| + fs = itheta + 1;
|
| + fl = itheta*(itheta + 1)>>1;
|
| + }
|
| + else
|
| + {
|
| + itheta = (2*(qn + 1)
|
| + - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1;
|
| + fs = qn + 1 - itheta;
|
| + fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
|
| + }
|
| +
|
| + ec_dec_update(ec, fl, fl+fs, ft);
|
| + }
|
| + }
|
| + celt_assert(itheta>=0);
|
| + itheta = celt_udiv((opus_int32)itheta*16384, qn);
|
| + if (encode && stereo)
|
| + {
|
| + if (itheta==0)
|
| + intensity_stereo(m, X, Y, bandE, i, N);
|
| + else
|
| + stereo_split(X, Y, N);
|
| + }
|
| + /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
|
| + Let's do that at higher complexity */
|
| + } else if (stereo) {
|
| + if (encode)
|
| + {
|
| + inv = itheta > 8192;
|
| + if (inv)
|
| + {
|
| + int j;
|
| + for (j=0;j<N;j++)
|
| + Y[j] = -Y[j];
|
| + }
|
| + intensity_stereo(m, X, Y, bandE, i, N);
|
| + }
|
| + if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES)
|
| + {
|
| + if (encode)
|
| + ec_enc_bit_logp(ec, inv, 2);
|
| + else
|
| + inv = ec_dec_bit_logp(ec, 2);
|
| + } else
|
| + inv = 0;
|
| + itheta = 0;
|
| + }
|
| + qalloc = ec_tell_frac(ec) - tell;
|
| + *b -= qalloc;
|
| +
|
| + if (itheta == 0)
|
| + {
|
| + imid = 32767;
|
| + iside = 0;
|
| + *fill &= (1<<B)-1;
|
| + delta = -16384;
|
| + } else if (itheta == 16384)
|
| + {
|
| + imid = 0;
|
| + iside = 32767;
|
| + *fill &= ((1<<B)-1)<<B;
|
| + delta = 16384;
|
| + } else {
|
| + imid = bitexact_cos((opus_int16)itheta);
|
| + iside = bitexact_cos((opus_int16)(16384-itheta));
|
| + /* This is the mid vs side allocation that minimizes squared error
|
| + in that band. */
|
| + delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid));
|
| + }
|
| +
|
| + sctx->inv = inv;
|
| + sctx->imid = imid;
|
| + sctx->iside = iside;
|
| + sctx->delta = delta;
|
| + sctx->itheta = itheta;
|
| + sctx->qalloc = qalloc;
|
| +}
|
| +static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b,
|
| + celt_norm *lowband_out)
|
| +{
|
| +#ifdef RESYNTH
|
| + int resynth = 1;
|
| +#else
|
| + int resynth = !ctx->encode;
|
| +#endif
|
| + int c;
|
| + int stereo;
|
| + celt_norm *x = X;
|
| + int encode;
|
| + ec_ctx *ec;
|
| +
|
| + encode = ctx->encode;
|
| + ec = ctx->ec;
|
| +
|
| + stereo = Y != NULL;
|
| + c=0; do {
|
| + int sign=0;
|
| + if (ctx->remaining_bits>=1<<BITRES)
|
| + {
|
| + if (encode)
|
| + {
|
| + sign = x[0]<0;
|
| + ec_enc_bits(ec, sign, 1);
|
| + } else {
|
| + sign = ec_dec_bits(ec, 1);
|
| + }
|
| + ctx->remaining_bits -= 1<<BITRES;
|
| + b-=1<<BITRES;
|
| + }
|
| + if (resynth)
|
| + x[0] = sign ? -NORM_SCALING : NORM_SCALING;
|
| + x = Y;
|
| + } while (++c<1+stereo);
|
| + if (lowband_out)
|
| + lowband_out[0] = SHR16(X[0],4);
|
| + return 1;
|
| +}
|
| +
|
| +/* This function is responsible for encoding and decoding a mono partition.
|
| + It can split the band in two and transmit the energy difference with
|
| + the two half-bands. It can be called recursively so bands can end up being
|
| + split in 8 parts. */
|
| +static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X,
|
| + int N, int b, int B, celt_norm *lowband,
|
| + int LM,
|
| + opus_val16 gain, int fill)
|
| +{
|
| + const unsigned char *cache;
|
| + int q;
|
| + int curr_bits;
|
| + int imid=0, iside=0;
|
| + int B0=B;
|
| + opus_val16 mid=0, side=0;
|
| + unsigned cm=0;
|
| +#ifdef RESYNTH
|
| + int resynth = 1;
|
| +#else
|
| + int resynth = !ctx->encode;
|
| +#endif
|
| + celt_norm *Y=NULL;
|
| + int encode;
|
| + const CELTMode *m;
|
| + int i;
|
| + int spread;
|
| + ec_ctx *ec;
|
| +
|
| + encode = ctx->encode;
|
| + m = ctx->m;
|
| + i = ctx->i;
|
| + spread = ctx->spread;
|
| + ec = ctx->ec;
|
| +
|
| + /* If we need 1.5 more bit than we can produce, split the band in two. */
|
| + cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i];
|
| + if (LM != -1 && b > cache[cache[0]]+12 && N>2)
|
| + {
|
| + int mbits, sbits, delta;
|
| + int itheta;
|
| + int qalloc;
|
| + struct split_ctx sctx;
|
| + celt_norm *next_lowband2=NULL;
|
| + opus_int32 rebalance;
|
| +
|
| + N >>= 1;
|
| + Y = X+N;
|
| + LM -= 1;
|
| + if (B==1)
|
| + fill = (fill&1)|(fill<<1);
|
| + B = (B+1)>>1;
|
| +
|
| + compute_theta(ctx, &sctx, X, Y, N, &b, B, B0,
|
| + LM, 0, &fill);
|
| + imid = sctx.imid;
|
| + iside = sctx.iside;
|
| + delta = sctx.delta;
|
| + itheta = sctx.itheta;
|
| + qalloc = sctx.qalloc;
|
| +#ifdef FIXED_POINT
|
| + mid = imid;
|
| + side = iside;
|
| +#else
|
| + mid = (1.f/32768)*imid;
|
| + side = (1.f/32768)*iside;
|
| +#endif
|
| +
|
| + /* Give more bits to low-energy MDCTs than they would otherwise deserve */
|
| + if (B0>1 && (itheta&0x3fff))
|
| + {
|
| + if (itheta > 8192)
|
| + /* Rough approximation for pre-echo masking */
|
| + delta -= delta>>(4-LM);
|
| + else
|
| + /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */
|
| + delta = IMIN(0, delta + (N<<BITRES>>(5-LM)));
|
| + }
|
| + mbits = IMAX(0, IMIN(b, (b-delta)/2));
|
| + sbits = b-mbits;
|
| + ctx->remaining_bits -= qalloc;
|
| +
|
| + if (lowband)
|
| + next_lowband2 = lowband+N; /* >32-bit split case */
|
| +
|
| + rebalance = ctx->remaining_bits;
|
| + if (mbits >= sbits)
|
| + {
|
| + cm = quant_partition(ctx, X, N, mbits, B,
|
| + lowband, LM,
|
| + MULT16_16_P15(gain,mid), fill);
|
| + rebalance = mbits - (rebalance-ctx->remaining_bits);
|
| + if (rebalance > 3<<BITRES && itheta!=0)
|
| + sbits += rebalance - (3<<BITRES);
|
| + cm |= quant_partition(ctx, Y, N, sbits, B,
|
| + next_lowband2, LM,
|
| + MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
|
| + } else {
|
| + cm = quant_partition(ctx, Y, N, sbits, B,
|
| + next_lowband2, LM,
|
| + MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
|
| + rebalance = sbits - (rebalance-ctx->remaining_bits);
|
| + if (rebalance > 3<<BITRES && itheta!=16384)
|
| + mbits += rebalance - (3<<BITRES);
|
| + cm |= quant_partition(ctx, X, N, mbits, B,
|
| + lowband, LM,
|
| + MULT16_16_P15(gain,mid), fill);
|
| + }
|
| + } else {
|
| + /* This is the basic no-split case */
|
| + q = bits2pulses(m, i, LM, b);
|
| + curr_bits = pulses2bits(m, i, LM, q);
|
| + ctx->remaining_bits -= curr_bits;
|
| +
|
| + /* Ensures we can never bust the budget */
|
| + while (ctx->remaining_bits < 0 && q > 0)
|
| + {
|
| + ctx->remaining_bits += curr_bits;
|
| + q--;
|
| + curr_bits = pulses2bits(m, i, LM, q);
|
| + ctx->remaining_bits -= curr_bits;
|
| + }
|
| +
|
| + if (q!=0)
|
| + {
|
| + int K = get_pulses(q);
|
| +
|
| + /* Finally do the actual quantization */
|
| + if (encode)
|
| + {
|
| + cm = alg_quant(X, N, K, spread, B, ec
|
| +#ifdef RESYNTH
|
| + , gain
|
| +#endif
|
| + );
|
| + } else {
|
| + cm = alg_unquant(X, N, K, spread, B, ec, gain);
|
| + }
|
| + } else {
|
| + /* If there's no pulse, fill the band anyway */
|
| + int j;
|
| + if (resynth)
|
| + {
|
| + unsigned cm_mask;
|
| + /* B can be as large as 16, so this shift might overflow an int on a
|
| + 16-bit platform; use a long to get defined behavior.*/
|
| + cm_mask = (unsigned)(1UL<<B)-1;
|
| + fill &= cm_mask;
|
| + if (!fill)
|
| + {
|
| + OPUS_CLEAR(X, N);
|
| + } else {
|
| + if (lowband == NULL)
|
| + {
|
| + /* Noise */
|
| + for (j=0;j<N;j++)
|
| + {
|
| + ctx->seed = celt_lcg_rand(ctx->seed);
|
| + X[j] = (celt_norm)((opus_int32)ctx->seed>>20);
|
| + }
|
| + cm = cm_mask;
|
| + } else {
|
| + /* Folded spectrum */
|
| + for (j=0;j<N;j++)
|
| + {
|
| + opus_val16 tmp;
|
| + ctx->seed = celt_lcg_rand(ctx->seed);
|
| + /* About 48 dB below the "normal" folding level */
|
| + tmp = QCONST16(1.0f/256, 10);
|
| + tmp = (ctx->seed)&0x8000 ? tmp : -tmp;
|
| + X[j] = lowband[j]+tmp;
|
| + }
|
| + cm = fill;
|
| + }
|
| + renormalise_vector(X, N, gain, ctx->arch);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + return cm;
|
| +}
|
| +
|
| +
|
| +/* This function is responsible for encoding and decoding a band for the mono case. */
|
| +static unsigned quant_band(struct band_ctx *ctx, celt_norm *X,
|
| + int N, int b, int B, celt_norm *lowband,
|
| + int LM, celt_norm *lowband_out,
|
| + opus_val16 gain, celt_norm *lowband_scratch, int fill)
|
| +{
|
| + int N0=N;
|
| + int N_B=N;
|
| + int N_B0;
|
| + int B0=B;
|
| + int time_divide=0;
|
| + int recombine=0;
|
| + int longBlocks;
|
| + unsigned cm=0;
|
| +#ifdef RESYNTH
|
| + int resynth = 1;
|
| +#else
|
| + int resynth = !ctx->encode;
|
| +#endif
|
| + int k;
|
| + int encode;
|
| + int tf_change;
|
| +
|
| + encode = ctx->encode;
|
| + tf_change = ctx->tf_change;
|
| +
|
| + longBlocks = B0==1;
|
| +
|
| + N_B = celt_udiv(N_B, B);
|
| +
|
| + /* Special case for one sample */
|
| + if (N==1)
|
| + {
|
| + return quant_band_n1(ctx, X, NULL, b, lowband_out);
|
| + }
|
| +
|
| + if (tf_change>0)
|
| + recombine = tf_change;
|
| + /* Band recombining to increase frequency resolution */
|
| +
|
| + if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1))
|
| + {
|
| + OPUS_COPY(lowband_scratch, lowband, N);
|
| + lowband = lowband_scratch;
|
| + }
|
| +
|
| + for (k=0;k<recombine;k++)
|
| + {
|
| + static const unsigned char bit_interleave_table[16]={
|
| + 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3
|
| + };
|
| + if (encode)
|
| + haar1(X, N>>k, 1<<k);
|
| + if (lowband)
|
| + haar1(lowband, N>>k, 1<<k);
|
| + fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2;
|
| + }
|
| + B>>=recombine;
|
| + N_B<<=recombine;
|
| +
|
| + /* Increasing the time resolution */
|
| + while ((N_B&1) == 0 && tf_change<0)
|
| + {
|
| + if (encode)
|
| + haar1(X, N_B, B);
|
| + if (lowband)
|
| + haar1(lowband, N_B, B);
|
| + fill |= fill<<B;
|
| + B <<= 1;
|
| + N_B >>= 1;
|
| + time_divide++;
|
| + tf_change++;
|
| + }
|
| + B0=B;
|
| + N_B0 = N_B;
|
| +
|
| + /* Reorganize the samples in time order instead of frequency order */
|
| + if (B0>1)
|
| + {
|
| + if (encode)
|
| + deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
|
| + if (lowband)
|
| + deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks);
|
| + }
|
| +
|
| + cm = quant_partition(ctx, X, N, b, B, lowband,
|
| + LM, gain, fill);
|
| +
|
| + /* This code is used by the decoder and by the resynthesis-enabled encoder */
|
| + if (resynth)
|
| + {
|
| + /* Undo the sample reorganization going from time order to frequency order */
|
| + if (B0>1)
|
| + interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
|
| +
|
| + /* Undo time-freq changes that we did earlier */
|
| + N_B = N_B0;
|
| + B = B0;
|
| + for (k=0;k<time_divide;k++)
|
| + {
|
| + B >>= 1;
|
| + N_B <<= 1;
|
| + cm |= cm>>B;
|
| + haar1(X, N_B, B);
|
| + }
|
| +
|
| + for (k=0;k<recombine;k++)
|
| + {
|
| + static const unsigned char bit_deinterleave_table[16]={
|
| + 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F,
|
| + 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF
|
| + };
|
| + cm = bit_deinterleave_table[cm];
|
| + haar1(X, N0>>k, 1<<k);
|
| + }
|
| + B<<=recombine;
|
| +
|
| + /* Scale output for later folding */
|
| + if (lowband_out)
|
| + {
|
| + int j;
|
| + opus_val16 n;
|
| + n = celt_sqrt(SHL32(EXTEND32(N0),22));
|
| + for (j=0;j<N0;j++)
|
| + lowband_out[j] = MULT16_16_Q15(n,X[j]);
|
| + }
|
| + cm &= (1<<B)-1;
|
| + }
|
| + return cm;
|
| +}
|
| +
|
| +
|
| +/* This function is responsible for encoding and decoding a band for the stereo case. */
|
| +static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y,
|
| + int N, int b, int B, celt_norm *lowband,
|
| + int LM, celt_norm *lowband_out,
|
| + celt_norm *lowband_scratch, int fill)
|
| +{
|
| + int imid=0, iside=0;
|
| + int inv = 0;
|
| + opus_val16 mid=0, side=0;
|
| + unsigned cm=0;
|
| +#ifdef RESYNTH
|
| + int resynth = 1;
|
| +#else
|
| + int resynth = !ctx->encode;
|
| +#endif
|
| + int mbits, sbits, delta;
|
| + int itheta;
|
| + int qalloc;
|
| + struct split_ctx sctx;
|
| + int orig_fill;
|
| + int encode;
|
| + ec_ctx *ec;
|
| +
|
| + encode = ctx->encode;
|
| + ec = ctx->ec;
|
| +
|
| + /* Special case for one sample */
|
| + if (N==1)
|
| + {
|
| + return quant_band_n1(ctx, X, Y, b, lowband_out);
|
| + }
|
| +
|
| + orig_fill = fill;
|
| +
|
| + compute_theta(ctx, &sctx, X, Y, N, &b, B, B,
|
| + LM, 1, &fill);
|
| + inv = sctx.inv;
|
| + imid = sctx.imid;
|
| + iside = sctx.iside;
|
| + delta = sctx.delta;
|
| + itheta = sctx.itheta;
|
| + qalloc = sctx.qalloc;
|
| +#ifdef FIXED_POINT
|
| + mid = imid;
|
| + side = iside;
|
| +#else
|
| + mid = (1.f/32768)*imid;
|
| + side = (1.f/32768)*iside;
|
| +#endif
|
| +
|
| + /* This is a special case for N=2 that only works for stereo and takes
|
| + advantage of the fact that mid and side are orthogonal to encode
|
| + the side with just one bit. */
|
| + if (N==2)
|
| + {
|
| + int c;
|
| + int sign=0;
|
| + celt_norm *x2, *y2;
|
| + mbits = b;
|
| + sbits = 0;
|
| + /* Only need one bit for the side. */
|
| + if (itheta != 0 && itheta != 16384)
|
| + sbits = 1<<BITRES;
|
| + mbits -= sbits;
|
| + c = itheta > 8192;
|
| + ctx->remaining_bits -= qalloc+sbits;
|
| +
|
| + x2 = c ? Y : X;
|
| + y2 = c ? X : Y;
|
| + if (sbits)
|
| + {
|
| + if (encode)
|
| + {
|
| + /* Here we only need to encode a sign for the side. */
|
| + sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
|
| + ec_enc_bits(ec, sign, 1);
|
| + } else {
|
| + sign = ec_dec_bits(ec, 1);
|
| + }
|
| + }
|
| + sign = 1-2*sign;
|
| + /* We use orig_fill here because we want to fold the side, but if
|
| + itheta==16384, we'll have cleared the low bits of fill. */
|
| + cm = quant_band(ctx, x2, N, mbits, B, lowband,
|
| + LM, lowband_out, Q15ONE, lowband_scratch, orig_fill);
|
| + /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
|
| + and there's no need to worry about mixing with the other channel. */
|
| + y2[0] = -sign*x2[1];
|
| + y2[1] = sign*x2[0];
|
| + if (resynth)
|
| + {
|
| + celt_norm tmp;
|
| + X[0] = MULT16_16_Q15(mid, X[0]);
|
| + X[1] = MULT16_16_Q15(mid, X[1]);
|
| + Y[0] = MULT16_16_Q15(side, Y[0]);
|
| + Y[1] = MULT16_16_Q15(side, Y[1]);
|
| + tmp = X[0];
|
| + X[0] = SUB16(tmp,Y[0]);
|
| + Y[0] = ADD16(tmp,Y[0]);
|
| + tmp = X[1];
|
| + X[1] = SUB16(tmp,Y[1]);
|
| + Y[1] = ADD16(tmp,Y[1]);
|
| + }
|
| + } else {
|
| + /* "Normal" split code */
|
| + opus_int32 rebalance;
|
| +
|
| + mbits = IMAX(0, IMIN(b, (b-delta)/2));
|
| + sbits = b-mbits;
|
| + ctx->remaining_bits -= qalloc;
|
| +
|
| + rebalance = ctx->remaining_bits;
|
| + if (mbits >= sbits)
|
| + {
|
| + /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
|
| + mid for folding later. */
|
| + cm = quant_band(ctx, X, N, mbits, B,
|
| + lowband, LM, lowband_out,
|
| + Q15ONE, lowband_scratch, fill);
|
| + rebalance = mbits - (rebalance-ctx->remaining_bits);
|
| + if (rebalance > 3<<BITRES && itheta!=0)
|
| + sbits += rebalance - (3<<BITRES);
|
| +
|
| + /* For a stereo split, the high bits of fill are always zero, so no
|
| + folding will be done to the side. */
|
| + cm |= quant_band(ctx, Y, N, sbits, B,
|
| + NULL, LM, NULL,
|
| + side, NULL, fill>>B);
|
| + } else {
|
| + /* For a stereo split, the high bits of fill are always zero, so no
|
| + folding will be done to the side. */
|
| + cm = quant_band(ctx, Y, N, sbits, B,
|
| + NULL, LM, NULL,
|
| + side, NULL, fill>>B);
|
| + rebalance = sbits - (rebalance-ctx->remaining_bits);
|
| + if (rebalance > 3<<BITRES && itheta!=16384)
|
| + mbits += rebalance - (3<<BITRES);
|
| + /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
|
| + mid for folding later. */
|
| + cm |= quant_band(ctx, X, N, mbits, B,
|
| + lowband, LM, lowband_out,
|
| + Q15ONE, lowband_scratch, fill);
|
| + }
|
| + }
|
| +
|
| +
|
| + /* This code is used by the decoder and by the resynthesis-enabled encoder */
|
| + if (resynth)
|
| + {
|
| + if (N!=2)
|
| + stereo_merge(X, Y, mid, N, ctx->arch);
|
| + if (inv)
|
| + {
|
| + int j;
|
| + for (j=0;j<N;j++)
|
| + Y[j] = -Y[j];
|
| + }
|
| + }
|
| + return cm;
|
| +}
|
| +
|
| +
|
| +void quant_all_bands(int encode, const CELTMode *m, int start, int end,
|
| + celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks,
|
| + const celt_ener *bandE, int *pulses, int shortBlocks, int spread,
|
| + int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits,
|
| + opus_int32 balance, ec_ctx *ec, int LM, int codedBands,
|
| + opus_uint32 *seed, int arch)
|
| +{
|
| + int i;
|
| + opus_int32 remaining_bits;
|
| + const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
|
| + celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2;
|
| + VARDECL(celt_norm, _norm);
|
| + celt_norm *lowband_scratch;
|
| + int B;
|
| + int M;
|
| + int lowband_offset;
|
| + int update_lowband = 1;
|
| + int C = Y_ != NULL ? 2 : 1;
|
| + int norm_offset;
|
| +#ifdef RESYNTH
|
| + int resynth = 1;
|
| +#else
|
| + int resynth = !encode;
|
| +#endif
|
| + struct band_ctx ctx;
|
| + SAVE_STACK;
|
| +
|
| + M = 1<<LM;
|
| + B = shortBlocks ? M : 1;
|
| + norm_offset = M*eBands[start];
|
| + /* No need to allocate norm for the last band because we don't need an
|
| + output in that band. */
|
| + ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm);
|
| + norm = _norm;
|
| + norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset;
|
| + /* We can use the last band as scratch space because we don't need that
|
| + scratch space for the last band. */
|
| + lowband_scratch = X_+M*eBands[m->nbEBands-1];
|
| +
|
| + lowband_offset = 0;
|
| + ctx.bandE = bandE;
|
| + ctx.ec = ec;
|
| + ctx.encode = encode;
|
| + ctx.intensity = intensity;
|
| + ctx.m = m;
|
| + ctx.seed = *seed;
|
| + ctx.spread = spread;
|
| + ctx.arch = arch;
|
| + for (i=start;i<end;i++)
|
| + {
|
| + opus_int32 tell;
|
| + int b;
|
| + int N;
|
| + opus_int32 curr_balance;
|
| + int effective_lowband=-1;
|
| + celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y;
|
| + int tf_change=0;
|
| + unsigned x_cm;
|
| + unsigned y_cm;
|
| + int last;
|
| +
|
| + ctx.i = i;
|
| + last = (i==end-1);
|
| +
|
| + X = X_+M*eBands[i];
|
| + if (Y_!=NULL)
|
| + Y = Y_+M*eBands[i];
|
| + else
|
| + Y = NULL;
|
| + N = M*eBands[i+1]-M*eBands[i];
|
| + tell = ec_tell_frac(ec);
|
| +
|
| + /* Compute how many bits we want to allocate to this band */
|
| + if (i != start)
|
| + balance -= tell;
|
| + remaining_bits = total_bits-tell-1;
|
| + ctx.remaining_bits = remaining_bits;
|
| + if (i <= codedBands-1)
|
| + {
|
| + curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i));
|
| + b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance)));
|
| + } else {
|
| + b = 0;
|
| + }
|
| +
|
| + if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0))
|
| + lowband_offset = i;
|
| +
|
| + tf_change = tf_res[i];
|
| + ctx.tf_change = tf_change;
|
| + if (i>=m->effEBands)
|
| + {
|
| + X=norm;
|
| + if (Y_!=NULL)
|
| + Y = norm;
|
| + lowband_scratch = NULL;
|
| + }
|
| + if (i==end-1)
|
| + lowband_scratch = NULL;
|
| +
|
| + /* Get a conservative estimate of the collapse_mask's for the bands we're
|
| + going to be folding from. */
|
| + if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0))
|
| + {
|
| + int fold_start;
|
| + int fold_end;
|
| + int fold_i;
|
| + /* This ensures we never repeat spectral content within one band */
|
| + effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N);
|
| + fold_start = lowband_offset;
|
| + while(M*eBands[--fold_start] > effective_lowband+norm_offset);
|
| + fold_end = lowband_offset-1;
|
| + while(M*eBands[++fold_end] < effective_lowband+norm_offset+N);
|
| + x_cm = y_cm = 0;
|
| + fold_i = fold_start; do {
|
| + x_cm |= collapse_masks[fold_i*C+0];
|
| + y_cm |= collapse_masks[fold_i*C+C-1];
|
| + } while (++fold_i<fold_end);
|
| + }
|
| + /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost
|
| + always) be non-zero. */
|
| + else
|
| + x_cm = y_cm = (1<<B)-1;
|
| +
|
| + if (dual_stereo && i==intensity)
|
| + {
|
| + int j;
|
| +
|
| + /* Switch off dual stereo to do intensity. */
|
| + dual_stereo = 0;
|
| + if (resynth)
|
| + for (j=0;j<M*eBands[i]-norm_offset;j++)
|
| + norm[j] = HALF32(norm[j]+norm2[j]);
|
| + }
|
| + if (dual_stereo)
|
| + {
|
| + x_cm = quant_band(&ctx, X, N, b/2, B,
|
| + effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
|
| + last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm);
|
| + y_cm = quant_band(&ctx, Y, N, b/2, B,
|
| + effective_lowband != -1 ? norm2+effective_lowband : NULL, LM,
|
| + last?NULL:norm2+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, y_cm);
|
| + } else {
|
| + if (Y!=NULL)
|
| + {
|
| + x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
|
| + effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
|
| + last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm);
|
| + } else {
|
| + x_cm = quant_band(&ctx, X, N, b, B,
|
| + effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
|
| + last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm);
|
| + }
|
| + y_cm = x_cm;
|
| + }
|
| + collapse_masks[i*C+0] = (unsigned char)x_cm;
|
| + collapse_masks[i*C+C-1] = (unsigned char)y_cm;
|
| + balance += pulses[i] + tell;
|
| +
|
| + /* Update the folding position only as long as we have 1 bit/sample depth. */
|
| + update_lowband = b>(N<<BITRES);
|
| + }
|
| + *seed = ctx.seed;
|
| +
|
| + RESTORE_STACK;
|
| +}
|
| +
|
|
|