Index: webrtc/modules/audio_coding/codecs/opus/opus/src/celt/bands.c |
diff --git a/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/bands.c b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/bands.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..25f229e26734011fe91de03a446f6b883c5e1fa4 |
--- /dev/null |
+++ b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/bands.c |
@@ -0,0 +1,1529 @@ |
+/* Copyright (c) 2007-2008 CSIRO |
+ Copyright (c) 2007-2009 Xiph.Org Foundation |
+ Copyright (c) 2008-2009 Gregory Maxwell |
+ Written by Jean-Marc Valin and Gregory Maxwell */ |
+/* |
+ Redistribution and use in source and binary forms, with or without |
+ modification, are permitted provided that the following conditions |
+ are met: |
+ |
+ - Redistributions of source code must retain the above copyright |
+ notice, this list of conditions and the following disclaimer. |
+ |
+ - Redistributions in binary form must reproduce the above copyright |
+ notice, this list of conditions and the following disclaimer in the |
+ documentation and/or other materials provided with the distribution. |
+ |
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
+ OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+*/ |
+ |
+#ifdef HAVE_CONFIG_H |
+#include "config.h" |
+#endif |
+ |
+#include <math.h> |
+#include "bands.h" |
+#include "modes.h" |
+#include "vq.h" |
+#include "cwrs.h" |
+#include "stack_alloc.h" |
+#include "os_support.h" |
+#include "mathops.h" |
+#include "rate.h" |
+#include "quant_bands.h" |
+#include "pitch.h" |
+ |
+int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev) |
+{ |
+ int i; |
+ for (i=0;i<N;i++) |
+ { |
+ if (val < thresholds[i]) |
+ break; |
+ } |
+ if (i>prev && val < thresholds[prev]+hysteresis[prev]) |
+ i=prev; |
+ if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1]) |
+ i=prev; |
+ return i; |
+} |
+ |
+opus_uint32 celt_lcg_rand(opus_uint32 seed) |
+{ |
+ return 1664525 * seed + 1013904223; |
+} |
+ |
+/* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness |
+ with this approximation is important because it has an impact on the bit allocation */ |
+static opus_int16 bitexact_cos(opus_int16 x) |
+{ |
+ opus_int32 tmp; |
+ opus_int16 x2; |
+ tmp = (4096+((opus_int32)(x)*(x)))>>13; |
+ celt_assert(tmp<=32767); |
+ x2 = tmp; |
+ x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2))))); |
+ celt_assert(x2<=32766); |
+ return 1+x2; |
+} |
+ |
+static int bitexact_log2tan(int isin,int icos) |
+{ |
+ int lc; |
+ int ls; |
+ lc=EC_ILOG(icos); |
+ ls=EC_ILOG(isin); |
+ icos<<=15-lc; |
+ isin<<=15-ls; |
+ return (ls-lc)*(1<<11) |
+ +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932) |
+ -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932); |
+} |
+ |
+#ifdef FIXED_POINT |
+/* Compute the amplitude (sqrt energy) in each of the bands */ |
+void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM) |
+{ |
+ int i, c, N; |
+ const opus_int16 *eBands = m->eBands; |
+ N = m->shortMdctSize<<LM; |
+ c=0; do { |
+ for (i=0;i<end;i++) |
+ { |
+ int j; |
+ opus_val32 maxval=0; |
+ opus_val32 sum = 0; |
+ |
+ maxval = celt_maxabs32(&X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM); |
+ if (maxval > 0) |
+ { |
+ int shift = celt_ilog2(maxval) - 14 + (((m->logN[i]>>BITRES)+LM+1)>>1); |
+ j=eBands[i]<<LM; |
+ if (shift>0) |
+ { |
+ do { |
+ sum = MAC16_16(sum, EXTRACT16(SHR32(X[j+c*N],shift)), |
+ EXTRACT16(SHR32(X[j+c*N],shift))); |
+ } while (++j<eBands[i+1]<<LM); |
+ } else { |
+ do { |
+ sum = MAC16_16(sum, EXTRACT16(SHL32(X[j+c*N],-shift)), |
+ EXTRACT16(SHL32(X[j+c*N],-shift))); |
+ } while (++j<eBands[i+1]<<LM); |
+ } |
+ /* We're adding one here to ensure the normalized band isn't larger than unity norm */ |
+ bandE[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift); |
+ } else { |
+ bandE[i+c*m->nbEBands] = EPSILON; |
+ } |
+ /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ |
+ } |
+ } while (++c<C); |
+ /*printf ("\n");*/ |
+} |
+ |
+/* Normalise each band such that the energy is one. */ |
+void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) |
+{ |
+ int i, c, N; |
+ const opus_int16 *eBands = m->eBands; |
+ N = M*m->shortMdctSize; |
+ c=0; do { |
+ i=0; do { |
+ opus_val16 g; |
+ int j,shift; |
+ opus_val16 E; |
+ shift = celt_zlog2(bandE[i+c*m->nbEBands])-13; |
+ E = VSHR32(bandE[i+c*m->nbEBands], shift); |
+ g = EXTRACT16(celt_rcp(SHL32(E,3))); |
+ j=M*eBands[i]; do { |
+ X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g); |
+ } while (++j<M*eBands[i+1]); |
+ } while (++i<end); |
+ } while (++c<C); |
+} |
+ |
+#else /* FIXED_POINT */ |
+/* Compute the amplitude (sqrt energy) in each of the bands */ |
+void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM) |
+{ |
+ int i, c, N; |
+ const opus_int16 *eBands = m->eBands; |
+ N = m->shortMdctSize<<LM; |
+ c=0; do { |
+ for (i=0;i<end;i++) |
+ { |
+ opus_val32 sum; |
+ sum = 1e-27f + celt_inner_prod_c(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM); |
+ bandE[i+c*m->nbEBands] = celt_sqrt(sum); |
+ /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ |
+ } |
+ } while (++c<C); |
+ /*printf ("\n");*/ |
+} |
+ |
+/* Normalise each band such that the energy is one. */ |
+void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) |
+{ |
+ int i, c, N; |
+ const opus_int16 *eBands = m->eBands; |
+ N = M*m->shortMdctSize; |
+ c=0; do { |
+ for (i=0;i<end;i++) |
+ { |
+ int j; |
+ opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]); |
+ for (j=M*eBands[i];j<M*eBands[i+1];j++) |
+ X[j+c*N] = freq[j+c*N]*g; |
+ } |
+ } while (++c<C); |
+} |
+ |
+#endif /* FIXED_POINT */ |
+ |
+/* De-normalise the energy to produce the synthesis from the unit-energy bands */ |
+void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, |
+ celt_sig * OPUS_RESTRICT freq, const opus_val16 *bandLogE, int start, |
+ int end, int M, int downsample, int silence) |
+{ |
+ int i, N; |
+ int bound; |
+ celt_sig * OPUS_RESTRICT f; |
+ const celt_norm * OPUS_RESTRICT x; |
+ const opus_int16 *eBands = m->eBands; |
+ N = M*m->shortMdctSize; |
+ bound = M*eBands[end]; |
+ if (downsample!=1) |
+ bound = IMIN(bound, N/downsample); |
+ if (silence) |
+ { |
+ bound = 0; |
+ start = end = 0; |
+ } |
+ f = freq; |
+ x = X+M*eBands[start]; |
+ for (i=0;i<M*eBands[start];i++) |
+ *f++ = 0; |
+ for (i=start;i<end;i++) |
+ { |
+ int j, band_end; |
+ opus_val16 g; |
+ opus_val16 lg; |
+#ifdef FIXED_POINT |
+ int shift; |
+#endif |
+ j=M*eBands[i]; |
+ band_end = M*eBands[i+1]; |
+ lg = ADD16(bandLogE[i], SHL16((opus_val16)eMeans[i],6)); |
+#ifndef FIXED_POINT |
+ g = celt_exp2(lg); |
+#else |
+ /* Handle the integer part of the log energy */ |
+ shift = 16-(lg>>DB_SHIFT); |
+ if (shift>31) |
+ { |
+ shift=0; |
+ g=0; |
+ } else { |
+ /* Handle the fractional part. */ |
+ g = celt_exp2_frac(lg&((1<<DB_SHIFT)-1)); |
+ } |
+ /* Handle extreme gains with negative shift. */ |
+ if (shift<0) |
+ { |
+ /* For shift < -2 we'd be likely to overflow, so we're capping |
+ the gain here. This shouldn't happen unless the bitstream is |
+ already corrupted. */ |
+ if (shift < -2) |
+ { |
+ g = 32767; |
+ shift = -2; |
+ } |
+ do { |
+ *f++ = SHL32(MULT16_16(*x++, g), -shift); |
+ } while (++j<band_end); |
+ } else |
+#endif |
+ /* Be careful of the fixed-point "else" just above when changing this code */ |
+ do { |
+ *f++ = SHR32(MULT16_16(*x++, g), shift); |
+ } while (++j<band_end); |
+ } |
+ celt_assert(start <= end); |
+ OPUS_CLEAR(&freq[bound], N-bound); |
+} |
+ |
+/* This prevents energy collapse for transients with multiple short MDCTs */ |
+void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size, |
+ int start, int end, const opus_val16 *logE, const opus_val16 *prev1logE, |
+ const opus_val16 *prev2logE, const int *pulses, opus_uint32 seed, int arch) |
+{ |
+ int c, i, j, k; |
+ for (i=start;i<end;i++) |
+ { |
+ int N0; |
+ opus_val16 thresh, sqrt_1; |
+ int depth; |
+#ifdef FIXED_POINT |
+ int shift; |
+ opus_val32 thresh32; |
+#endif |
+ |
+ N0 = m->eBands[i+1]-m->eBands[i]; |
+ /* depth in 1/8 bits */ |
+ celt_assert(pulses[i]>=0); |
+ depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM; |
+ |
+#ifdef FIXED_POINT |
+ thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1); |
+ thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32)); |
+ { |
+ opus_val32 t; |
+ t = N0<<LM; |
+ shift = celt_ilog2(t)>>1; |
+ t = SHL32(t, (7-shift)<<1); |
+ sqrt_1 = celt_rsqrt_norm(t); |
+ } |
+#else |
+ thresh = .5f*celt_exp2(-.125f*depth); |
+ sqrt_1 = celt_rsqrt(N0<<LM); |
+#endif |
+ |
+ c=0; do |
+ { |
+ celt_norm *X; |
+ opus_val16 prev1; |
+ opus_val16 prev2; |
+ opus_val32 Ediff; |
+ opus_val16 r; |
+ int renormalize=0; |
+ prev1 = prev1logE[c*m->nbEBands+i]; |
+ prev2 = prev2logE[c*m->nbEBands+i]; |
+ if (C==1) |
+ { |
+ prev1 = MAX16(prev1,prev1logE[m->nbEBands+i]); |
+ prev2 = MAX16(prev2,prev2logE[m->nbEBands+i]); |
+ } |
+ Ediff = EXTEND32(logE[c*m->nbEBands+i])-EXTEND32(MIN16(prev1,prev2)); |
+ Ediff = MAX32(0, Ediff); |
+ |
+#ifdef FIXED_POINT |
+ if (Ediff < 16384) |
+ { |
+ opus_val32 r32 = SHR32(celt_exp2(-EXTRACT16(Ediff)),1); |
+ r = 2*MIN16(16383,r32); |
+ } else { |
+ r = 0; |
+ } |
+ if (LM==3) |
+ r = MULT16_16_Q14(23170, MIN32(23169, r)); |
+ r = SHR16(MIN16(thresh, r),1); |
+ r = SHR32(MULT16_16_Q15(sqrt_1, r),shift); |
+#else |
+ /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because |
+ short blocks don't have the same energy as long */ |
+ r = 2.f*celt_exp2(-Ediff); |
+ if (LM==3) |
+ r *= 1.41421356f; |
+ r = MIN16(thresh, r); |
+ r = r*sqrt_1; |
+#endif |
+ X = X_+c*size+(m->eBands[i]<<LM); |
+ for (k=0;k<1<<LM;k++) |
+ { |
+ /* Detect collapse */ |
+ if (!(collapse_masks[i*C+c]&1<<k)) |
+ { |
+ /* Fill with noise */ |
+ for (j=0;j<N0;j++) |
+ { |
+ seed = celt_lcg_rand(seed); |
+ X[(j<<LM)+k] = (seed&0x8000 ? r : -r); |
+ } |
+ renormalize = 1; |
+ } |
+ } |
+ /* We just added some energy, so we need to renormalise */ |
+ if (renormalize) |
+ renormalise_vector(X, N0<<LM, Q15ONE, arch); |
+ } while (++c<C); |
+ } |
+} |
+ |
+static void intensity_stereo(const CELTMode *m, celt_norm * OPUS_RESTRICT X, const celt_norm * OPUS_RESTRICT Y, const celt_ener *bandE, int bandID, int N) |
+{ |
+ int i = bandID; |
+ int j; |
+ opus_val16 a1, a2; |
+ opus_val16 left, right; |
+ opus_val16 norm; |
+#ifdef FIXED_POINT |
+ int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13; |
+#endif |
+ left = VSHR32(bandE[i],shift); |
+ right = VSHR32(bandE[i+m->nbEBands],shift); |
+ norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); |
+ a1 = DIV32_16(SHL32(EXTEND32(left),14),norm); |
+ a2 = DIV32_16(SHL32(EXTEND32(right),14),norm); |
+ for (j=0;j<N;j++) |
+ { |
+ celt_norm r, l; |
+ l = X[j]; |
+ r = Y[j]; |
+ X[j] = EXTRACT16(SHR32(MAC16_16(MULT16_16(a1, l), a2, r), 14)); |
+ /* Side is not encoded, no need to calculate */ |
+ } |
+} |
+ |
+static void stereo_split(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, int N) |
+{ |
+ int j; |
+ for (j=0;j<N;j++) |
+ { |
+ opus_val32 r, l; |
+ l = MULT16_16(QCONST16(.70710678f, 15), X[j]); |
+ r = MULT16_16(QCONST16(.70710678f, 15), Y[j]); |
+ X[j] = EXTRACT16(SHR32(ADD32(l, r), 15)); |
+ Y[j] = EXTRACT16(SHR32(SUB32(r, l), 15)); |
+ } |
+} |
+ |
+static void stereo_merge(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, opus_val16 mid, int N, int arch) |
+{ |
+ int j; |
+ opus_val32 xp=0, side=0; |
+ opus_val32 El, Er; |
+ opus_val16 mid2; |
+#ifdef FIXED_POINT |
+ int kl, kr; |
+#endif |
+ opus_val32 t, lgain, rgain; |
+ |
+ /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ |
+ dual_inner_prod(Y, X, Y, N, &xp, &side, arch); |
+ /* Compensating for the mid normalization */ |
+ xp = MULT16_32_Q15(mid, xp); |
+ /* mid and side are in Q15, not Q14 like X and Y */ |
+ mid2 = SHR32(mid, 1); |
+ El = MULT16_16(mid2, mid2) + side - 2*xp; |
+ Er = MULT16_16(mid2, mid2) + side + 2*xp; |
+ if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28)) |
+ { |
+ OPUS_COPY(Y, X, N); |
+ return; |
+ } |
+ |
+#ifdef FIXED_POINT |
+ kl = celt_ilog2(El)>>1; |
+ kr = celt_ilog2(Er)>>1; |
+#endif |
+ t = VSHR32(El, (kl-7)<<1); |
+ lgain = celt_rsqrt_norm(t); |
+ t = VSHR32(Er, (kr-7)<<1); |
+ rgain = celt_rsqrt_norm(t); |
+ |
+#ifdef FIXED_POINT |
+ if (kl < 7) |
+ kl = 7; |
+ if (kr < 7) |
+ kr = 7; |
+#endif |
+ |
+ for (j=0;j<N;j++) |
+ { |
+ celt_norm r, l; |
+ /* Apply mid scaling (side is already scaled) */ |
+ l = MULT16_16_P15(mid, X[j]); |
+ r = Y[j]; |
+ X[j] = EXTRACT16(PSHR32(MULT16_16(lgain, SUB16(l,r)), kl+1)); |
+ Y[j] = EXTRACT16(PSHR32(MULT16_16(rgain, ADD16(l,r)), kr+1)); |
+ } |
+} |
+ |
+/* Decide whether we should spread the pulses in the current frame */ |
+int spreading_decision(const CELTMode *m, const celt_norm *X, int *average, |
+ int last_decision, int *hf_average, int *tapset_decision, int update_hf, |
+ int end, int C, int M) |
+{ |
+ int i, c, N0; |
+ int sum = 0, nbBands=0; |
+ const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
+ int decision; |
+ int hf_sum=0; |
+ |
+ celt_assert(end>0); |
+ |
+ N0 = M*m->shortMdctSize; |
+ |
+ if (M*(eBands[end]-eBands[end-1]) <= 8) |
+ return SPREAD_NONE; |
+ c=0; do { |
+ for (i=0;i<end;i++) |
+ { |
+ int j, N, tmp=0; |
+ int tcount[3] = {0,0,0}; |
+ const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0; |
+ N = M*(eBands[i+1]-eBands[i]); |
+ if (N<=8) |
+ continue; |
+ /* Compute rough CDF of |x[j]| */ |
+ for (j=0;j<N;j++) |
+ { |
+ opus_val32 x2N; /* Q13 */ |
+ |
+ x2N = MULT16_16(MULT16_16_Q15(x[j], x[j]), N); |
+ if (x2N < QCONST16(0.25f,13)) |
+ tcount[0]++; |
+ if (x2N < QCONST16(0.0625f,13)) |
+ tcount[1]++; |
+ if (x2N < QCONST16(0.015625f,13)) |
+ tcount[2]++; |
+ } |
+ |
+ /* Only include four last bands (8 kHz and up) */ |
+ if (i>m->nbEBands-4) |
+ hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N); |
+ tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); |
+ sum += tmp*256; |
+ nbBands++; |
+ } |
+ } while (++c<C); |
+ |
+ if (update_hf) |
+ { |
+ if (hf_sum) |
+ hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end)); |
+ *hf_average = (*hf_average+hf_sum)>>1; |
+ hf_sum = *hf_average; |
+ if (*tapset_decision==2) |
+ hf_sum += 4; |
+ else if (*tapset_decision==0) |
+ hf_sum -= 4; |
+ if (hf_sum > 22) |
+ *tapset_decision=2; |
+ else if (hf_sum > 18) |
+ *tapset_decision=1; |
+ else |
+ *tapset_decision=0; |
+ } |
+ /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ |
+ celt_assert(nbBands>0); /* end has to be non-zero */ |
+ celt_assert(sum>=0); |
+ sum = celt_udiv(sum, nbBands); |
+ /* Recursive averaging */ |
+ sum = (sum+*average)>>1; |
+ *average = sum; |
+ /* Hysteresis */ |
+ sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; |
+ if (sum < 80) |
+ { |
+ decision = SPREAD_AGGRESSIVE; |
+ } else if (sum < 256) |
+ { |
+ decision = SPREAD_NORMAL; |
+ } else if (sum < 384) |
+ { |
+ decision = SPREAD_LIGHT; |
+ } else { |
+ decision = SPREAD_NONE; |
+ } |
+#ifdef FUZZING |
+ decision = rand()&0x3; |
+ *tapset_decision=rand()%3; |
+#endif |
+ return decision; |
+} |
+ |
+/* Indexing table for converting from natural Hadamard to ordery Hadamard |
+ This is essentially a bit-reversed Gray, on top of which we've added |
+ an inversion of the order because we want the DC at the end rather than |
+ the beginning. The lines are for N=2, 4, 8, 16 */ |
+static const int ordery_table[] = { |
+ 1, 0, |
+ 3, 0, 2, 1, |
+ 7, 0, 4, 3, 6, 1, 5, 2, |
+ 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5, |
+}; |
+ |
+static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) |
+{ |
+ int i,j; |
+ VARDECL(celt_norm, tmp); |
+ int N; |
+ SAVE_STACK; |
+ N = N0*stride; |
+ ALLOC(tmp, N, celt_norm); |
+ celt_assert(stride>0); |
+ if (hadamard) |
+ { |
+ const int *ordery = ordery_table+stride-2; |
+ for (i=0;i<stride;i++) |
+ { |
+ for (j=0;j<N0;j++) |
+ tmp[ordery[i]*N0+j] = X[j*stride+i]; |
+ } |
+ } else { |
+ for (i=0;i<stride;i++) |
+ for (j=0;j<N0;j++) |
+ tmp[i*N0+j] = X[j*stride+i]; |
+ } |
+ OPUS_COPY(X, tmp, N); |
+ RESTORE_STACK; |
+} |
+ |
+static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) |
+{ |
+ int i,j; |
+ VARDECL(celt_norm, tmp); |
+ int N; |
+ SAVE_STACK; |
+ N = N0*stride; |
+ ALLOC(tmp, N, celt_norm); |
+ if (hadamard) |
+ { |
+ const int *ordery = ordery_table+stride-2; |
+ for (i=0;i<stride;i++) |
+ for (j=0;j<N0;j++) |
+ tmp[j*stride+i] = X[ordery[i]*N0+j]; |
+ } else { |
+ for (i=0;i<stride;i++) |
+ for (j=0;j<N0;j++) |
+ tmp[j*stride+i] = X[i*N0+j]; |
+ } |
+ OPUS_COPY(X, tmp, N); |
+ RESTORE_STACK; |
+} |
+ |
+void haar1(celt_norm *X, int N0, int stride) |
+{ |
+ int i, j; |
+ N0 >>= 1; |
+ for (i=0;i<stride;i++) |
+ for (j=0;j<N0;j++) |
+ { |
+ opus_val32 tmp1, tmp2; |
+ tmp1 = MULT16_16(QCONST16(.70710678f,15), X[stride*2*j+i]); |
+ tmp2 = MULT16_16(QCONST16(.70710678f,15), X[stride*(2*j+1)+i]); |
+ X[stride*2*j+i] = EXTRACT16(PSHR32(ADD32(tmp1, tmp2), 15)); |
+ X[stride*(2*j+1)+i] = EXTRACT16(PSHR32(SUB32(tmp1, tmp2), 15)); |
+ } |
+} |
+ |
+static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo) |
+{ |
+ static const opus_int16 exp2_table8[8] = |
+ {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048}; |
+ int qn, qb; |
+ int N2 = 2*N-1; |
+ if (stereo && N==2) |
+ N2--; |
+ /* The upper limit ensures that in a stereo split with itheta==16384, we'll |
+ always have enough bits left over to code at least one pulse in the |
+ side; otherwise it would collapse, since it doesn't get folded. */ |
+ qb = celt_sudiv(b+N2*offset, N2); |
+ qb = IMIN(b-pulse_cap-(4<<BITRES), qb); |
+ |
+ qb = IMIN(8<<BITRES, qb); |
+ |
+ if (qb<(1<<BITRES>>1)) { |
+ qn = 1; |
+ } else { |
+ qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES)); |
+ qn = (qn+1)>>1<<1; |
+ } |
+ celt_assert(qn <= 256); |
+ return qn; |
+} |
+ |
+struct band_ctx { |
+ int encode; |
+ const CELTMode *m; |
+ int i; |
+ int intensity; |
+ int spread; |
+ int tf_change; |
+ ec_ctx *ec; |
+ opus_int32 remaining_bits; |
+ const celt_ener *bandE; |
+ opus_uint32 seed; |
+ int arch; |
+}; |
+ |
+struct split_ctx { |
+ int inv; |
+ int imid; |
+ int iside; |
+ int delta; |
+ int itheta; |
+ int qalloc; |
+}; |
+ |
+static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx, |
+ celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0, |
+ int LM, |
+ int stereo, int *fill) |
+{ |
+ int qn; |
+ int itheta=0; |
+ int delta; |
+ int imid, iside; |
+ int qalloc; |
+ int pulse_cap; |
+ int offset; |
+ opus_int32 tell; |
+ int inv=0; |
+ int encode; |
+ const CELTMode *m; |
+ int i; |
+ int intensity; |
+ ec_ctx *ec; |
+ const celt_ener *bandE; |
+ |
+ encode = ctx->encode; |
+ m = ctx->m; |
+ i = ctx->i; |
+ intensity = ctx->intensity; |
+ ec = ctx->ec; |
+ bandE = ctx->bandE; |
+ |
+ /* Decide on the resolution to give to the split parameter theta */ |
+ pulse_cap = m->logN[i]+LM*(1<<BITRES); |
+ offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET); |
+ qn = compute_qn(N, *b, offset, pulse_cap, stereo); |
+ if (stereo && i>=intensity) |
+ qn = 1; |
+ if (encode) |
+ { |
+ /* theta is the atan() of the ratio between the (normalized) |
+ side and mid. With just that parameter, we can re-scale both |
+ mid and side because we know that 1) they have unit norm and |
+ 2) they are orthogonal. */ |
+ itheta = stereo_itheta(X, Y, stereo, N, ctx->arch); |
+ } |
+ tell = ec_tell_frac(ec); |
+ if (qn!=1) |
+ { |
+ if (encode) |
+ itheta = (itheta*qn+8192)>>14; |
+ |
+ /* Entropy coding of the angle. We use a uniform pdf for the |
+ time split, a step for stereo, and a triangular one for the rest. */ |
+ if (stereo && N>2) |
+ { |
+ int p0 = 3; |
+ int x = itheta; |
+ int x0 = qn/2; |
+ int ft = p0*(x0+1) + x0; |
+ /* Use a probability of p0 up to itheta=8192 and then use 1 after */ |
+ if (encode) |
+ { |
+ ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); |
+ } else { |
+ int fs; |
+ fs=ec_decode(ec,ft); |
+ if (fs<(x0+1)*p0) |
+ x=fs/p0; |
+ else |
+ x=x0+1+(fs-(x0+1)*p0); |
+ ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); |
+ itheta = x; |
+ } |
+ } else if (B0>1 || stereo) { |
+ /* Uniform pdf */ |
+ if (encode) |
+ ec_enc_uint(ec, itheta, qn+1); |
+ else |
+ itheta = ec_dec_uint(ec, qn+1); |
+ } else { |
+ int fs=1, ft; |
+ ft = ((qn>>1)+1)*((qn>>1)+1); |
+ if (encode) |
+ { |
+ int fl; |
+ |
+ fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; |
+ fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : |
+ ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); |
+ |
+ ec_encode(ec, fl, fl+fs, ft); |
+ } else { |
+ /* Triangular pdf */ |
+ int fl=0; |
+ int fm; |
+ fm = ec_decode(ec, ft); |
+ |
+ if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) |
+ { |
+ itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; |
+ fs = itheta + 1; |
+ fl = itheta*(itheta + 1)>>1; |
+ } |
+ else |
+ { |
+ itheta = (2*(qn + 1) |
+ - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; |
+ fs = qn + 1 - itheta; |
+ fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); |
+ } |
+ |
+ ec_dec_update(ec, fl, fl+fs, ft); |
+ } |
+ } |
+ celt_assert(itheta>=0); |
+ itheta = celt_udiv((opus_int32)itheta*16384, qn); |
+ if (encode && stereo) |
+ { |
+ if (itheta==0) |
+ intensity_stereo(m, X, Y, bandE, i, N); |
+ else |
+ stereo_split(X, Y, N); |
+ } |
+ /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. |
+ Let's do that at higher complexity */ |
+ } else if (stereo) { |
+ if (encode) |
+ { |
+ inv = itheta > 8192; |
+ if (inv) |
+ { |
+ int j; |
+ for (j=0;j<N;j++) |
+ Y[j] = -Y[j]; |
+ } |
+ intensity_stereo(m, X, Y, bandE, i, N); |
+ } |
+ if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES) |
+ { |
+ if (encode) |
+ ec_enc_bit_logp(ec, inv, 2); |
+ else |
+ inv = ec_dec_bit_logp(ec, 2); |
+ } else |
+ inv = 0; |
+ itheta = 0; |
+ } |
+ qalloc = ec_tell_frac(ec) - tell; |
+ *b -= qalloc; |
+ |
+ if (itheta == 0) |
+ { |
+ imid = 32767; |
+ iside = 0; |
+ *fill &= (1<<B)-1; |
+ delta = -16384; |
+ } else if (itheta == 16384) |
+ { |
+ imid = 0; |
+ iside = 32767; |
+ *fill &= ((1<<B)-1)<<B; |
+ delta = 16384; |
+ } else { |
+ imid = bitexact_cos((opus_int16)itheta); |
+ iside = bitexact_cos((opus_int16)(16384-itheta)); |
+ /* This is the mid vs side allocation that minimizes squared error |
+ in that band. */ |
+ delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); |
+ } |
+ |
+ sctx->inv = inv; |
+ sctx->imid = imid; |
+ sctx->iside = iside; |
+ sctx->delta = delta; |
+ sctx->itheta = itheta; |
+ sctx->qalloc = qalloc; |
+} |
+static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b, |
+ celt_norm *lowband_out) |
+{ |
+#ifdef RESYNTH |
+ int resynth = 1; |
+#else |
+ int resynth = !ctx->encode; |
+#endif |
+ int c; |
+ int stereo; |
+ celt_norm *x = X; |
+ int encode; |
+ ec_ctx *ec; |
+ |
+ encode = ctx->encode; |
+ ec = ctx->ec; |
+ |
+ stereo = Y != NULL; |
+ c=0; do { |
+ int sign=0; |
+ if (ctx->remaining_bits>=1<<BITRES) |
+ { |
+ if (encode) |
+ { |
+ sign = x[0]<0; |
+ ec_enc_bits(ec, sign, 1); |
+ } else { |
+ sign = ec_dec_bits(ec, 1); |
+ } |
+ ctx->remaining_bits -= 1<<BITRES; |
+ b-=1<<BITRES; |
+ } |
+ if (resynth) |
+ x[0] = sign ? -NORM_SCALING : NORM_SCALING; |
+ x = Y; |
+ } while (++c<1+stereo); |
+ if (lowband_out) |
+ lowband_out[0] = SHR16(X[0],4); |
+ return 1; |
+} |
+ |
+/* This function is responsible for encoding and decoding a mono partition. |
+ It can split the band in two and transmit the energy difference with |
+ the two half-bands. It can be called recursively so bands can end up being |
+ split in 8 parts. */ |
+static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X, |
+ int N, int b, int B, celt_norm *lowband, |
+ int LM, |
+ opus_val16 gain, int fill) |
+{ |
+ const unsigned char *cache; |
+ int q; |
+ int curr_bits; |
+ int imid=0, iside=0; |
+ int B0=B; |
+ opus_val16 mid=0, side=0; |
+ unsigned cm=0; |
+#ifdef RESYNTH |
+ int resynth = 1; |
+#else |
+ int resynth = !ctx->encode; |
+#endif |
+ celt_norm *Y=NULL; |
+ int encode; |
+ const CELTMode *m; |
+ int i; |
+ int spread; |
+ ec_ctx *ec; |
+ |
+ encode = ctx->encode; |
+ m = ctx->m; |
+ i = ctx->i; |
+ spread = ctx->spread; |
+ ec = ctx->ec; |
+ |
+ /* If we need 1.5 more bit than we can produce, split the band in two. */ |
+ cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; |
+ if (LM != -1 && b > cache[cache[0]]+12 && N>2) |
+ { |
+ int mbits, sbits, delta; |
+ int itheta; |
+ int qalloc; |
+ struct split_ctx sctx; |
+ celt_norm *next_lowband2=NULL; |
+ opus_int32 rebalance; |
+ |
+ N >>= 1; |
+ Y = X+N; |
+ LM -= 1; |
+ if (B==1) |
+ fill = (fill&1)|(fill<<1); |
+ B = (B+1)>>1; |
+ |
+ compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, |
+ LM, 0, &fill); |
+ imid = sctx.imid; |
+ iside = sctx.iside; |
+ delta = sctx.delta; |
+ itheta = sctx.itheta; |
+ qalloc = sctx.qalloc; |
+#ifdef FIXED_POINT |
+ mid = imid; |
+ side = iside; |
+#else |
+ mid = (1.f/32768)*imid; |
+ side = (1.f/32768)*iside; |
+#endif |
+ |
+ /* Give more bits to low-energy MDCTs than they would otherwise deserve */ |
+ if (B0>1 && (itheta&0x3fff)) |
+ { |
+ if (itheta > 8192) |
+ /* Rough approximation for pre-echo masking */ |
+ delta -= delta>>(4-LM); |
+ else |
+ /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ |
+ delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); |
+ } |
+ mbits = IMAX(0, IMIN(b, (b-delta)/2)); |
+ sbits = b-mbits; |
+ ctx->remaining_bits -= qalloc; |
+ |
+ if (lowband) |
+ next_lowband2 = lowband+N; /* >32-bit split case */ |
+ |
+ rebalance = ctx->remaining_bits; |
+ if (mbits >= sbits) |
+ { |
+ cm = quant_partition(ctx, X, N, mbits, B, |
+ lowband, LM, |
+ MULT16_16_P15(gain,mid), fill); |
+ rebalance = mbits - (rebalance-ctx->remaining_bits); |
+ if (rebalance > 3<<BITRES && itheta!=0) |
+ sbits += rebalance - (3<<BITRES); |
+ cm |= quant_partition(ctx, Y, N, sbits, B, |
+ next_lowband2, LM, |
+ MULT16_16_P15(gain,side), fill>>B)<<(B0>>1); |
+ } else { |
+ cm = quant_partition(ctx, Y, N, sbits, B, |
+ next_lowband2, LM, |
+ MULT16_16_P15(gain,side), fill>>B)<<(B0>>1); |
+ rebalance = sbits - (rebalance-ctx->remaining_bits); |
+ if (rebalance > 3<<BITRES && itheta!=16384) |
+ mbits += rebalance - (3<<BITRES); |
+ cm |= quant_partition(ctx, X, N, mbits, B, |
+ lowband, LM, |
+ MULT16_16_P15(gain,mid), fill); |
+ } |
+ } else { |
+ /* This is the basic no-split case */ |
+ q = bits2pulses(m, i, LM, b); |
+ curr_bits = pulses2bits(m, i, LM, q); |
+ ctx->remaining_bits -= curr_bits; |
+ |
+ /* Ensures we can never bust the budget */ |
+ while (ctx->remaining_bits < 0 && q > 0) |
+ { |
+ ctx->remaining_bits += curr_bits; |
+ q--; |
+ curr_bits = pulses2bits(m, i, LM, q); |
+ ctx->remaining_bits -= curr_bits; |
+ } |
+ |
+ if (q!=0) |
+ { |
+ int K = get_pulses(q); |
+ |
+ /* Finally do the actual quantization */ |
+ if (encode) |
+ { |
+ cm = alg_quant(X, N, K, spread, B, ec |
+#ifdef RESYNTH |
+ , gain |
+#endif |
+ ); |
+ } else { |
+ cm = alg_unquant(X, N, K, spread, B, ec, gain); |
+ } |
+ } else { |
+ /* If there's no pulse, fill the band anyway */ |
+ int j; |
+ if (resynth) |
+ { |
+ unsigned cm_mask; |
+ /* B can be as large as 16, so this shift might overflow an int on a |
+ 16-bit platform; use a long to get defined behavior.*/ |
+ cm_mask = (unsigned)(1UL<<B)-1; |
+ fill &= cm_mask; |
+ if (!fill) |
+ { |
+ OPUS_CLEAR(X, N); |
+ } else { |
+ if (lowband == NULL) |
+ { |
+ /* Noise */ |
+ for (j=0;j<N;j++) |
+ { |
+ ctx->seed = celt_lcg_rand(ctx->seed); |
+ X[j] = (celt_norm)((opus_int32)ctx->seed>>20); |
+ } |
+ cm = cm_mask; |
+ } else { |
+ /* Folded spectrum */ |
+ for (j=0;j<N;j++) |
+ { |
+ opus_val16 tmp; |
+ ctx->seed = celt_lcg_rand(ctx->seed); |
+ /* About 48 dB below the "normal" folding level */ |
+ tmp = QCONST16(1.0f/256, 10); |
+ tmp = (ctx->seed)&0x8000 ? tmp : -tmp; |
+ X[j] = lowband[j]+tmp; |
+ } |
+ cm = fill; |
+ } |
+ renormalise_vector(X, N, gain, ctx->arch); |
+ } |
+ } |
+ } |
+ } |
+ |
+ return cm; |
+} |
+ |
+ |
+/* This function is responsible for encoding and decoding a band for the mono case. */ |
+static unsigned quant_band(struct band_ctx *ctx, celt_norm *X, |
+ int N, int b, int B, celt_norm *lowband, |
+ int LM, celt_norm *lowband_out, |
+ opus_val16 gain, celt_norm *lowband_scratch, int fill) |
+{ |
+ int N0=N; |
+ int N_B=N; |
+ int N_B0; |
+ int B0=B; |
+ int time_divide=0; |
+ int recombine=0; |
+ int longBlocks; |
+ unsigned cm=0; |
+#ifdef RESYNTH |
+ int resynth = 1; |
+#else |
+ int resynth = !ctx->encode; |
+#endif |
+ int k; |
+ int encode; |
+ int tf_change; |
+ |
+ encode = ctx->encode; |
+ tf_change = ctx->tf_change; |
+ |
+ longBlocks = B0==1; |
+ |
+ N_B = celt_udiv(N_B, B); |
+ |
+ /* Special case for one sample */ |
+ if (N==1) |
+ { |
+ return quant_band_n1(ctx, X, NULL, b, lowband_out); |
+ } |
+ |
+ if (tf_change>0) |
+ recombine = tf_change; |
+ /* Band recombining to increase frequency resolution */ |
+ |
+ if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) |
+ { |
+ OPUS_COPY(lowband_scratch, lowband, N); |
+ lowband = lowband_scratch; |
+ } |
+ |
+ for (k=0;k<recombine;k++) |
+ { |
+ static const unsigned char bit_interleave_table[16]={ |
+ 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 |
+ }; |
+ if (encode) |
+ haar1(X, N>>k, 1<<k); |
+ if (lowband) |
+ haar1(lowband, N>>k, 1<<k); |
+ fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; |
+ } |
+ B>>=recombine; |
+ N_B<<=recombine; |
+ |
+ /* Increasing the time resolution */ |
+ while ((N_B&1) == 0 && tf_change<0) |
+ { |
+ if (encode) |
+ haar1(X, N_B, B); |
+ if (lowband) |
+ haar1(lowband, N_B, B); |
+ fill |= fill<<B; |
+ B <<= 1; |
+ N_B >>= 1; |
+ time_divide++; |
+ tf_change++; |
+ } |
+ B0=B; |
+ N_B0 = N_B; |
+ |
+ /* Reorganize the samples in time order instead of frequency order */ |
+ if (B0>1) |
+ { |
+ if (encode) |
+ deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); |
+ if (lowband) |
+ deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); |
+ } |
+ |
+ cm = quant_partition(ctx, X, N, b, B, lowband, |
+ LM, gain, fill); |
+ |
+ /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
+ if (resynth) |
+ { |
+ /* Undo the sample reorganization going from time order to frequency order */ |
+ if (B0>1) |
+ interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); |
+ |
+ /* Undo time-freq changes that we did earlier */ |
+ N_B = N_B0; |
+ B = B0; |
+ for (k=0;k<time_divide;k++) |
+ { |
+ B >>= 1; |
+ N_B <<= 1; |
+ cm |= cm>>B; |
+ haar1(X, N_B, B); |
+ } |
+ |
+ for (k=0;k<recombine;k++) |
+ { |
+ static const unsigned char bit_deinterleave_table[16]={ |
+ 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, |
+ 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF |
+ }; |
+ cm = bit_deinterleave_table[cm]; |
+ haar1(X, N0>>k, 1<<k); |
+ } |
+ B<<=recombine; |
+ |
+ /* Scale output for later folding */ |
+ if (lowband_out) |
+ { |
+ int j; |
+ opus_val16 n; |
+ n = celt_sqrt(SHL32(EXTEND32(N0),22)); |
+ for (j=0;j<N0;j++) |
+ lowband_out[j] = MULT16_16_Q15(n,X[j]); |
+ } |
+ cm &= (1<<B)-1; |
+ } |
+ return cm; |
+} |
+ |
+ |
+/* This function is responsible for encoding and decoding a band for the stereo case. */ |
+static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, |
+ int N, int b, int B, celt_norm *lowband, |
+ int LM, celt_norm *lowband_out, |
+ celt_norm *lowband_scratch, int fill) |
+{ |
+ int imid=0, iside=0; |
+ int inv = 0; |
+ opus_val16 mid=0, side=0; |
+ unsigned cm=0; |
+#ifdef RESYNTH |
+ int resynth = 1; |
+#else |
+ int resynth = !ctx->encode; |
+#endif |
+ int mbits, sbits, delta; |
+ int itheta; |
+ int qalloc; |
+ struct split_ctx sctx; |
+ int orig_fill; |
+ int encode; |
+ ec_ctx *ec; |
+ |
+ encode = ctx->encode; |
+ ec = ctx->ec; |
+ |
+ /* Special case for one sample */ |
+ if (N==1) |
+ { |
+ return quant_band_n1(ctx, X, Y, b, lowband_out); |
+ } |
+ |
+ orig_fill = fill; |
+ |
+ compute_theta(ctx, &sctx, X, Y, N, &b, B, B, |
+ LM, 1, &fill); |
+ inv = sctx.inv; |
+ imid = sctx.imid; |
+ iside = sctx.iside; |
+ delta = sctx.delta; |
+ itheta = sctx.itheta; |
+ qalloc = sctx.qalloc; |
+#ifdef FIXED_POINT |
+ mid = imid; |
+ side = iside; |
+#else |
+ mid = (1.f/32768)*imid; |
+ side = (1.f/32768)*iside; |
+#endif |
+ |
+ /* This is a special case for N=2 that only works for stereo and takes |
+ advantage of the fact that mid and side are orthogonal to encode |
+ the side with just one bit. */ |
+ if (N==2) |
+ { |
+ int c; |
+ int sign=0; |
+ celt_norm *x2, *y2; |
+ mbits = b; |
+ sbits = 0; |
+ /* Only need one bit for the side. */ |
+ if (itheta != 0 && itheta != 16384) |
+ sbits = 1<<BITRES; |
+ mbits -= sbits; |
+ c = itheta > 8192; |
+ ctx->remaining_bits -= qalloc+sbits; |
+ |
+ x2 = c ? Y : X; |
+ y2 = c ? X : Y; |
+ if (sbits) |
+ { |
+ if (encode) |
+ { |
+ /* Here we only need to encode a sign for the side. */ |
+ sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; |
+ ec_enc_bits(ec, sign, 1); |
+ } else { |
+ sign = ec_dec_bits(ec, 1); |
+ } |
+ } |
+ sign = 1-2*sign; |
+ /* We use orig_fill here because we want to fold the side, but if |
+ itheta==16384, we'll have cleared the low bits of fill. */ |
+ cm = quant_band(ctx, x2, N, mbits, B, lowband, |
+ LM, lowband_out, Q15ONE, lowband_scratch, orig_fill); |
+ /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), |
+ and there's no need to worry about mixing with the other channel. */ |
+ y2[0] = -sign*x2[1]; |
+ y2[1] = sign*x2[0]; |
+ if (resynth) |
+ { |
+ celt_norm tmp; |
+ X[0] = MULT16_16_Q15(mid, X[0]); |
+ X[1] = MULT16_16_Q15(mid, X[1]); |
+ Y[0] = MULT16_16_Q15(side, Y[0]); |
+ Y[1] = MULT16_16_Q15(side, Y[1]); |
+ tmp = X[0]; |
+ X[0] = SUB16(tmp,Y[0]); |
+ Y[0] = ADD16(tmp,Y[0]); |
+ tmp = X[1]; |
+ X[1] = SUB16(tmp,Y[1]); |
+ Y[1] = ADD16(tmp,Y[1]); |
+ } |
+ } else { |
+ /* "Normal" split code */ |
+ opus_int32 rebalance; |
+ |
+ mbits = IMAX(0, IMIN(b, (b-delta)/2)); |
+ sbits = b-mbits; |
+ ctx->remaining_bits -= qalloc; |
+ |
+ rebalance = ctx->remaining_bits; |
+ if (mbits >= sbits) |
+ { |
+ /* In stereo mode, we do not apply a scaling to the mid because we need the normalized |
+ mid for folding later. */ |
+ cm = quant_band(ctx, X, N, mbits, B, |
+ lowband, LM, lowband_out, |
+ Q15ONE, lowband_scratch, fill); |
+ rebalance = mbits - (rebalance-ctx->remaining_bits); |
+ if (rebalance > 3<<BITRES && itheta!=0) |
+ sbits += rebalance - (3<<BITRES); |
+ |
+ /* For a stereo split, the high bits of fill are always zero, so no |
+ folding will be done to the side. */ |
+ cm |= quant_band(ctx, Y, N, sbits, B, |
+ NULL, LM, NULL, |
+ side, NULL, fill>>B); |
+ } else { |
+ /* For a stereo split, the high bits of fill are always zero, so no |
+ folding will be done to the side. */ |
+ cm = quant_band(ctx, Y, N, sbits, B, |
+ NULL, LM, NULL, |
+ side, NULL, fill>>B); |
+ rebalance = sbits - (rebalance-ctx->remaining_bits); |
+ if (rebalance > 3<<BITRES && itheta!=16384) |
+ mbits += rebalance - (3<<BITRES); |
+ /* In stereo mode, we do not apply a scaling to the mid because we need the normalized |
+ mid for folding later. */ |
+ cm |= quant_band(ctx, X, N, mbits, B, |
+ lowband, LM, lowband_out, |
+ Q15ONE, lowband_scratch, fill); |
+ } |
+ } |
+ |
+ |
+ /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
+ if (resynth) |
+ { |
+ if (N!=2) |
+ stereo_merge(X, Y, mid, N, ctx->arch); |
+ if (inv) |
+ { |
+ int j; |
+ for (j=0;j<N;j++) |
+ Y[j] = -Y[j]; |
+ } |
+ } |
+ return cm; |
+} |
+ |
+ |
+void quant_all_bands(int encode, const CELTMode *m, int start, int end, |
+ celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, |
+ const celt_ener *bandE, int *pulses, int shortBlocks, int spread, |
+ int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits, |
+ opus_int32 balance, ec_ctx *ec, int LM, int codedBands, |
+ opus_uint32 *seed, int arch) |
+{ |
+ int i; |
+ opus_int32 remaining_bits; |
+ const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
+ celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; |
+ VARDECL(celt_norm, _norm); |
+ celt_norm *lowband_scratch; |
+ int B; |
+ int M; |
+ int lowband_offset; |
+ int update_lowband = 1; |
+ int C = Y_ != NULL ? 2 : 1; |
+ int norm_offset; |
+#ifdef RESYNTH |
+ int resynth = 1; |
+#else |
+ int resynth = !encode; |
+#endif |
+ struct band_ctx ctx; |
+ SAVE_STACK; |
+ |
+ M = 1<<LM; |
+ B = shortBlocks ? M : 1; |
+ norm_offset = M*eBands[start]; |
+ /* No need to allocate norm for the last band because we don't need an |
+ output in that band. */ |
+ ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); |
+ norm = _norm; |
+ norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; |
+ /* We can use the last band as scratch space because we don't need that |
+ scratch space for the last band. */ |
+ lowband_scratch = X_+M*eBands[m->nbEBands-1]; |
+ |
+ lowband_offset = 0; |
+ ctx.bandE = bandE; |
+ ctx.ec = ec; |
+ ctx.encode = encode; |
+ ctx.intensity = intensity; |
+ ctx.m = m; |
+ ctx.seed = *seed; |
+ ctx.spread = spread; |
+ ctx.arch = arch; |
+ for (i=start;i<end;i++) |
+ { |
+ opus_int32 tell; |
+ int b; |
+ int N; |
+ opus_int32 curr_balance; |
+ int effective_lowband=-1; |
+ celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; |
+ int tf_change=0; |
+ unsigned x_cm; |
+ unsigned y_cm; |
+ int last; |
+ |
+ ctx.i = i; |
+ last = (i==end-1); |
+ |
+ X = X_+M*eBands[i]; |
+ if (Y_!=NULL) |
+ Y = Y_+M*eBands[i]; |
+ else |
+ Y = NULL; |
+ N = M*eBands[i+1]-M*eBands[i]; |
+ tell = ec_tell_frac(ec); |
+ |
+ /* Compute how many bits we want to allocate to this band */ |
+ if (i != start) |
+ balance -= tell; |
+ remaining_bits = total_bits-tell-1; |
+ ctx.remaining_bits = remaining_bits; |
+ if (i <= codedBands-1) |
+ { |
+ curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); |
+ b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); |
+ } else { |
+ b = 0; |
+ } |
+ |
+ if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) |
+ lowband_offset = i; |
+ |
+ tf_change = tf_res[i]; |
+ ctx.tf_change = tf_change; |
+ if (i>=m->effEBands) |
+ { |
+ X=norm; |
+ if (Y_!=NULL) |
+ Y = norm; |
+ lowband_scratch = NULL; |
+ } |
+ if (i==end-1) |
+ lowband_scratch = NULL; |
+ |
+ /* Get a conservative estimate of the collapse_mask's for the bands we're |
+ going to be folding from. */ |
+ if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) |
+ { |
+ int fold_start; |
+ int fold_end; |
+ int fold_i; |
+ /* This ensures we never repeat spectral content within one band */ |
+ effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); |
+ fold_start = lowband_offset; |
+ while(M*eBands[--fold_start] > effective_lowband+norm_offset); |
+ fold_end = lowband_offset-1; |
+ while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); |
+ x_cm = y_cm = 0; |
+ fold_i = fold_start; do { |
+ x_cm |= collapse_masks[fold_i*C+0]; |
+ y_cm |= collapse_masks[fold_i*C+C-1]; |
+ } while (++fold_i<fold_end); |
+ } |
+ /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost |
+ always) be non-zero. */ |
+ else |
+ x_cm = y_cm = (1<<B)-1; |
+ |
+ if (dual_stereo && i==intensity) |
+ { |
+ int j; |
+ |
+ /* Switch off dual stereo to do intensity. */ |
+ dual_stereo = 0; |
+ if (resynth) |
+ for (j=0;j<M*eBands[i]-norm_offset;j++) |
+ norm[j] = HALF32(norm[j]+norm2[j]); |
+ } |
+ if (dual_stereo) |
+ { |
+ x_cm = quant_band(&ctx, X, N, b/2, B, |
+ effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
+ last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm); |
+ y_cm = quant_band(&ctx, Y, N, b/2, B, |
+ effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, |
+ last?NULL:norm2+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, y_cm); |
+ } else { |
+ if (Y!=NULL) |
+ { |
+ x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
+ effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
+ last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm); |
+ } else { |
+ x_cm = quant_band(&ctx, X, N, b, B, |
+ effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
+ last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm); |
+ } |
+ y_cm = x_cm; |
+ } |
+ collapse_masks[i*C+0] = (unsigned char)x_cm; |
+ collapse_masks[i*C+C-1] = (unsigned char)y_cm; |
+ balance += pulses[i] + tell; |
+ |
+ /* Update the folding position only as long as we have 1 bit/sample depth. */ |
+ update_lowband = b>(N<<BITRES); |
+ } |
+ *seed = ctx.seed; |
+ |
+ RESTORE_STACK; |
+} |
+ |