Index: webrtc/modules/audio_coding/codecs/opus/opus/src/silk/fixed/x86/burg_modified_FIX_sse.c |
diff --git a/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/fixed/x86/burg_modified_FIX_sse.c b/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/fixed/x86/burg_modified_FIX_sse.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..3756095fbe62dc073911c21d21174c7f44f434e4 |
--- /dev/null |
+++ b/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/fixed/x86/burg_modified_FIX_sse.c |
@@ -0,0 +1,375 @@ |
+/* Copyright (c) 2014, Cisco Systems, INC |
+ Written by XiangMingZhu WeiZhou MinPeng YanWang |
+ |
+ Redistribution and use in source and binary forms, with or without |
+ modification, are permitted provided that the following conditions |
+ are met: |
+ |
+ - Redistributions of source code must retain the above copyright |
+ notice, this list of conditions and the following disclaimer. |
+ |
+ - Redistributions in binary form must reproduce the above copyright |
+ notice, this list of conditions and the following disclaimer in the |
+ documentation and/or other materials provided with the distribution. |
+ |
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
+ OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+*/ |
+ |
+#ifdef HAVE_CONFIG_H |
+#include "config.h" |
+#endif |
+ |
+#include <xmmintrin.h> |
+#include <emmintrin.h> |
+#include <smmintrin.h> |
+ |
+#include "SigProc_FIX.h" |
+#include "define.h" |
+#include "tuning_parameters.h" |
+#include "pitch.h" |
+#include "celt/x86/x86cpu.h" |
+ |
+#define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */ |
+ |
+#define QA 25 |
+#define N_BITS_HEAD_ROOM 2 |
+#define MIN_RSHIFTS -16 |
+#define MAX_RSHIFTS (32 - QA) |
+ |
+/* Compute reflection coefficients from input signal */ |
+void silk_burg_modified_sse4_1( |
+ opus_int32 *res_nrg, /* O Residual energy */ |
+ opus_int *res_nrg_Q, /* O Residual energy Q value */ |
+ opus_int32 A_Q16[], /* O Prediction coefficients (length order) */ |
+ const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */ |
+ const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */ |
+ const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */ |
+ const opus_int nb_subfr, /* I Number of subframes stacked in x */ |
+ const opus_int D, /* I Order */ |
+ int arch /* I Run-time architecture */ |
+) |
+{ |
+ opus_int k, n, s, lz, rshifts, rshifts_extra, reached_max_gain; |
+ opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2; |
+ const opus_int16 *x_ptr; |
+ opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ]; |
+ opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ]; |
+ opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ]; |
+ opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ]; |
+ opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ]; |
+ opus_int32 xcorr[ SILK_MAX_ORDER_LPC ]; |
+ |
+ __m128i FIRST_3210, LAST_3210, ATMP_3210, TMP1_3210, TMP2_3210, T1_3210, T2_3210, PTR_3210, SUBFR_3210, X1_3210, X2_3210; |
+ __m128i CONST1 = _mm_set1_epi32(1); |
+ |
+ silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); |
+ |
+ /* Compute autocorrelations, added over subframes */ |
+ silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length ); |
+ if( rshifts > MAX_RSHIFTS ) { |
+ C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS ); |
+ silk_assert( C0 > 0 ); |
+ rshifts = MAX_RSHIFTS; |
+ } else { |
+ lz = silk_CLZ32( C0 ) - 1; |
+ rshifts_extra = N_BITS_HEAD_ROOM - lz; |
+ if( rshifts_extra > 0 ) { |
+ rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts ); |
+ C0 = silk_RSHIFT32( C0, rshifts_extra ); |
+ } else { |
+ rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts ); |
+ C0 = silk_LSHIFT32( C0, -rshifts_extra ); |
+ } |
+ rshifts += rshifts_extra; |
+ } |
+ CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */ |
+ silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) ); |
+ if( rshifts > 0 ) { |
+ for( s = 0; s < nb_subfr; s++ ) { |
+ x_ptr = x + s * subfr_length; |
+ for( n = 1; n < D + 1; n++ ) { |
+ C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64( |
+ silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n, arch ), rshifts ); |
+ } |
+ } |
+ } else { |
+ for( s = 0; s < nb_subfr; s++ ) { |
+ int i; |
+ opus_int32 d; |
+ x_ptr = x + s * subfr_length; |
+ celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch ); |
+ for( n = 1; n < D + 1; n++ ) { |
+ for ( i = n + subfr_length - D, d = 0; i < subfr_length; i++ ) |
+ d = MAC16_16( d, x_ptr[ i ], x_ptr[ i - n ] ); |
+ xcorr[ n - 1 ] += d; |
+ } |
+ for( n = 1; n < D + 1; n++ ) { |
+ C_first_row[ n - 1 ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts ); |
+ } |
+ } |
+ } |
+ silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) ); |
+ |
+ /* Initialize */ |
+ CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */ |
+ |
+ invGain_Q30 = (opus_int32)1 << 30; |
+ reached_max_gain = 0; |
+ for( n = 0; n < D; n++ ) { |
+ /* Update first row of correlation matrix (without first element) */ |
+ /* Update last row of correlation matrix (without last element, stored in reversed order) */ |
+ /* Update C * Af */ |
+ /* Update C * flipud(Af) (stored in reversed order) */ |
+ if( rshifts > -2 ) { |
+ for( s = 0; s < nb_subfr; s++ ) { |
+ x_ptr = x + s * subfr_length; |
+ x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */ |
+ x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts) */ |
+ tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */ |
+ tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */ |
+ for( k = 0; k < n; k++ ) { |
+ C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */ |
+ C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */ |
+ Atmp_QA = Af_QA[ k ]; |
+ tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */ |
+ tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */ |
+ } |
+ tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */ |
+ tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */ |
+ for( k = 0; k <= n; k++ ) { |
+ CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */ |
+ CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */ |
+ } |
+ } |
+ } else { |
+ for( s = 0; s < nb_subfr; s++ ) { |
+ x_ptr = x + s * subfr_length; |
+ x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */ |
+ x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */ |
+ tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */ |
+ tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */ |
+ |
+ X1_3210 = _mm_set1_epi32( x1 ); |
+ X2_3210 = _mm_set1_epi32( x2 ); |
+ TMP1_3210 = _mm_setzero_si128(); |
+ TMP2_3210 = _mm_setzero_si128(); |
+ for( k = 0; k < n - 3; k += 4 ) { |
+ PTR_3210 = OP_CVTEPI16_EPI32_M64( &x_ptr[ n - k - 1 - 3 ] ); |
+ SUBFR_3210 = OP_CVTEPI16_EPI32_M64( &x_ptr[ subfr_length - n + k ] ); |
+ FIRST_3210 = _mm_loadu_si128( (__m128i *)&C_first_row[ k ] ); |
+ PTR_3210 = _mm_shuffle_epi32( PTR_3210, _MM_SHUFFLE( 0, 1, 2, 3 ) ); |
+ LAST_3210 = _mm_loadu_si128( (__m128i *)&C_last_row[ k ] ); |
+ ATMP_3210 = _mm_loadu_si128( (__m128i *)&Af_QA[ k ] ); |
+ |
+ T1_3210 = _mm_mullo_epi32( PTR_3210, X1_3210 ); |
+ T2_3210 = _mm_mullo_epi32( SUBFR_3210, X2_3210 ); |
+ |
+ ATMP_3210 = _mm_srai_epi32( ATMP_3210, 7 ); |
+ ATMP_3210 = _mm_add_epi32( ATMP_3210, CONST1 ); |
+ ATMP_3210 = _mm_srai_epi32( ATMP_3210, 1 ); |
+ |
+ FIRST_3210 = _mm_add_epi32( FIRST_3210, T1_3210 ); |
+ LAST_3210 = _mm_add_epi32( LAST_3210, T2_3210 ); |
+ |
+ PTR_3210 = _mm_mullo_epi32( ATMP_3210, PTR_3210 ); |
+ SUBFR_3210 = _mm_mullo_epi32( ATMP_3210, SUBFR_3210 ); |
+ |
+ _mm_storeu_si128( (__m128i *)&C_first_row[ k ], FIRST_3210 ); |
+ _mm_storeu_si128( (__m128i *)&C_last_row[ k ], LAST_3210 ); |
+ |
+ TMP1_3210 = _mm_add_epi32( TMP1_3210, PTR_3210 ); |
+ TMP2_3210 = _mm_add_epi32( TMP2_3210, SUBFR_3210 ); |
+ } |
+ |
+ TMP1_3210 = _mm_add_epi32( TMP1_3210, _mm_unpackhi_epi64(TMP1_3210, TMP1_3210 ) ); |
+ TMP2_3210 = _mm_add_epi32( TMP2_3210, _mm_unpackhi_epi64(TMP2_3210, TMP2_3210 ) ); |
+ TMP1_3210 = _mm_add_epi32( TMP1_3210, _mm_shufflelo_epi16(TMP1_3210, 0x0E ) ); |
+ TMP2_3210 = _mm_add_epi32( TMP2_3210, _mm_shufflelo_epi16(TMP2_3210, 0x0E ) ); |
+ |
+ tmp1 += _mm_cvtsi128_si32( TMP1_3210 ); |
+ tmp2 += _mm_cvtsi128_si32( TMP2_3210 ); |
+ |
+ for( ; k < n; k++ ) { |
+ C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */ |
+ C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */ |
+ Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */ |
+ tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */ |
+ tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */ |
+ } |
+ |
+ tmp1 = -tmp1; /* Q17 */ |
+ tmp2 = -tmp2; /* Q17 */ |
+ |
+ { |
+ __m128i xmm_tmp1, xmm_tmp2; |
+ __m128i xmm_x_ptr_n_k_x2x0, xmm_x_ptr_n_k_x3x1; |
+ __m128i xmm_x_ptr_sub_x2x0, xmm_x_ptr_sub_x3x1; |
+ |
+ xmm_tmp1 = _mm_set1_epi32( tmp1 ); |
+ xmm_tmp2 = _mm_set1_epi32( tmp2 ); |
+ |
+ for( k = 0; k <= n - 3; k += 4 ) { |
+ xmm_x_ptr_n_k_x2x0 = OP_CVTEPI16_EPI32_M64( &x_ptr[ n - k - 3 ] ); |
+ xmm_x_ptr_sub_x2x0 = OP_CVTEPI16_EPI32_M64( &x_ptr[ subfr_length - n + k - 1 ] ); |
+ |
+ xmm_x_ptr_n_k_x2x0 = _mm_shuffle_epi32( xmm_x_ptr_n_k_x2x0, _MM_SHUFFLE( 0, 1, 2, 3 ) ); |
+ |
+ xmm_x_ptr_n_k_x2x0 = _mm_slli_epi32( xmm_x_ptr_n_k_x2x0, -rshifts - 1 ); |
+ xmm_x_ptr_sub_x2x0 = _mm_slli_epi32( xmm_x_ptr_sub_x2x0, -rshifts - 1 ); |
+ |
+ /* equal shift right 4 bytes, xmm_x_ptr_n_k_x3x1 = _mm_srli_si128(xmm_x_ptr_n_k_x2x0, 4)*/ |
+ xmm_x_ptr_n_k_x3x1 = _mm_shuffle_epi32( xmm_x_ptr_n_k_x2x0, _MM_SHUFFLE( 0, 3, 2, 1 ) ); |
+ xmm_x_ptr_sub_x3x1 = _mm_shuffle_epi32( xmm_x_ptr_sub_x2x0, _MM_SHUFFLE( 0, 3, 2, 1 ) ); |
+ |
+ xmm_x_ptr_n_k_x2x0 = _mm_mul_epi32( xmm_x_ptr_n_k_x2x0, xmm_tmp1 ); |
+ xmm_x_ptr_n_k_x3x1 = _mm_mul_epi32( xmm_x_ptr_n_k_x3x1, xmm_tmp1 ); |
+ xmm_x_ptr_sub_x2x0 = _mm_mul_epi32( xmm_x_ptr_sub_x2x0, xmm_tmp2 ); |
+ xmm_x_ptr_sub_x3x1 = _mm_mul_epi32( xmm_x_ptr_sub_x3x1, xmm_tmp2 ); |
+ |
+ xmm_x_ptr_n_k_x2x0 = _mm_srli_epi64( xmm_x_ptr_n_k_x2x0, 16 ); |
+ xmm_x_ptr_n_k_x3x1 = _mm_slli_epi64( xmm_x_ptr_n_k_x3x1, 16 ); |
+ xmm_x_ptr_sub_x2x0 = _mm_srli_epi64( xmm_x_ptr_sub_x2x0, 16 ); |
+ xmm_x_ptr_sub_x3x1 = _mm_slli_epi64( xmm_x_ptr_sub_x3x1, 16 ); |
+ |
+ xmm_x_ptr_n_k_x2x0 = _mm_blend_epi16( xmm_x_ptr_n_k_x2x0, xmm_x_ptr_n_k_x3x1, 0xCC ); |
+ xmm_x_ptr_sub_x2x0 = _mm_blend_epi16( xmm_x_ptr_sub_x2x0, xmm_x_ptr_sub_x3x1, 0xCC ); |
+ |
+ X1_3210 = _mm_loadu_si128( (__m128i *)&CAf[ k ] ); |
+ PTR_3210 = _mm_loadu_si128( (__m128i *)&CAb[ k ] ); |
+ |
+ X1_3210 = _mm_add_epi32( X1_3210, xmm_x_ptr_n_k_x2x0 ); |
+ PTR_3210 = _mm_add_epi32( PTR_3210, xmm_x_ptr_sub_x2x0 ); |
+ |
+ _mm_storeu_si128( (__m128i *)&CAf[ k ], X1_3210 ); |
+ _mm_storeu_si128( (__m128i *)&CAb[ k ], PTR_3210 ); |
+ } |
+ |
+ for( ; k <= n; k++ ) { |
+ CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1, |
+ silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */ |
+ CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2, |
+ silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */ |
+ } |
+ } |
+ } |
+ } |
+ |
+ /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ |
+ tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */ |
+ tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */ |
+ num = 0; /* Q( -rshifts ) */ |
+ nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */ |
+ for( k = 0; k < n; k++ ) { |
+ Atmp_QA = Af_QA[ k ]; |
+ lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1; |
+ lz = silk_min( 32 - QA, lz ); |
+ Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */ |
+ |
+ tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ |
+ tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ |
+ num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ |
+ nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ), |
+ Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */ |
+ } |
+ CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */ |
+ CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */ |
+ num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */ |
+ num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */ |
+ |
+ /* Calculate the next order reflection (parcor) coefficient */ |
+ if( silk_abs( num ) < nrg ) { |
+ rc_Q31 = silk_DIV32_varQ( num, nrg, 31 ); |
+ } else { |
+ rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN; |
+ } |
+ |
+ /* Update inverse prediction gain */ |
+ tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 ); |
+ tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 ); |
+ if( tmp1 <= minInvGain_Q30 ) { |
+ /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */ |
+ tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */ |
+ rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */ |
+ /* Newton-Raphson iteration */ |
+ rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */ |
+ rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */ |
+ if( num < 0 ) { |
+ /* Ensure adjusted reflection coefficients has the original sign */ |
+ rc_Q31 = -rc_Q31; |
+ } |
+ invGain_Q30 = minInvGain_Q30; |
+ reached_max_gain = 1; |
+ } else { |
+ invGain_Q30 = tmp1; |
+ } |
+ |
+ /* Update the AR coefficients */ |
+ for( k = 0; k < (n + 1) >> 1; k++ ) { |
+ tmp1 = Af_QA[ k ]; /* QA */ |
+ tmp2 = Af_QA[ n - k - 1 ]; /* QA */ |
+ Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */ |
+ Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */ |
+ } |
+ Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */ |
+ |
+ if( reached_max_gain ) { |
+ /* Reached max prediction gain; set remaining coefficients to zero and exit loop */ |
+ for( k = n + 1; k < D; k++ ) { |
+ Af_QA[ k ] = 0; |
+ } |
+ break; |
+ } |
+ |
+ /* Update C * Af and C * Ab */ |
+ for( k = 0; k <= n + 1; k++ ) { |
+ tmp1 = CAf[ k ]; /* Q( -rshifts ) */ |
+ tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */ |
+ CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */ |
+ CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */ |
+ } |
+ } |
+ |
+ if( reached_max_gain ) { |
+ for( k = 0; k < D; k++ ) { |
+ /* Scale coefficients */ |
+ A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); |
+ } |
+ /* Subtract energy of preceding samples from C0 */ |
+ if( rshifts > 0 ) { |
+ for( s = 0; s < nb_subfr; s++ ) { |
+ x_ptr = x + s * subfr_length; |
+ C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D, arch ), rshifts ); |
+ } |
+ } else { |
+ for( s = 0; s < nb_subfr; s++ ) { |
+ x_ptr = x + s * subfr_length; |
+ C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D, arch ), -rshifts ); |
+ } |
+ } |
+ /* Approximate residual energy */ |
+ *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 ); |
+ *res_nrg_Q = -rshifts; |
+ } else { |
+ /* Return residual energy */ |
+ nrg = CAf[ 0 ]; /* Q( -rshifts ) */ |
+ tmp1 = (opus_int32)1 << 16; /* Q16 */ |
+ for( k = 0; k < D; k++ ) { |
+ Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */ |
+ nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */ |
+ tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */ |
+ A_Q16[ k ] = -Atmp1; |
+ } |
+ *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ), -tmp1 );/* Q( -rshifts ) */ |
+ *res_nrg_Q = -rshifts; |
+ } |
+} |