Index: webrtc/modules/audio_coding/codecs/opus/opus/src/silk/fixed/noise_shape_analysis_FIX.c |
diff --git a/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/fixed/noise_shape_analysis_FIX.c b/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/fixed/noise_shape_analysis_FIX.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..22a89f75aec0fc8d624409df861cbb6c2ca38595 |
--- /dev/null |
+++ b/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/fixed/noise_shape_analysis_FIX.c |
@@ -0,0 +1,451 @@ |
+/*********************************************************************** |
+Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
+Redistribution and use in source and binary forms, with or without |
+modification, are permitted provided that the following conditions |
+are met: |
+- Redistributions of source code must retain the above copyright notice, |
+this list of conditions and the following disclaimer. |
+- Redistributions in binary form must reproduce the above copyright |
+notice, this list of conditions and the following disclaimer in the |
+documentation and/or other materials provided with the distribution. |
+- Neither the name of Internet Society, IETF or IETF Trust, nor the |
+names of specific contributors, may be used to endorse or promote |
+products derived from this software without specific prior written |
+permission. |
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
+POSSIBILITY OF SUCH DAMAGE. |
+***********************************************************************/ |
+ |
+#ifdef HAVE_CONFIG_H |
+#include "config.h" |
+#endif |
+ |
+#include "main_FIX.h" |
+#include "stack_alloc.h" |
+#include "tuning_parameters.h" |
+ |
+/* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */ |
+/* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */ |
+/* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */ |
+/* coefficient in an array of coefficients, for monic filters. */ |
+static OPUS_INLINE opus_int32 warped_gain( /* gain in Q16*/ |
+ const opus_int32 *coefs_Q24, |
+ opus_int lambda_Q16, |
+ opus_int order |
+) { |
+ opus_int i; |
+ opus_int32 gain_Q24; |
+ |
+ lambda_Q16 = -lambda_Q16; |
+ gain_Q24 = coefs_Q24[ order - 1 ]; |
+ for( i = order - 2; i >= 0; i-- ) { |
+ gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 ); |
+ } |
+ gain_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 ); |
+ return silk_INVERSE32_varQ( gain_Q24, 40 ); |
+} |
+ |
+/* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */ |
+/* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */ |
+static OPUS_INLINE void limit_warped_coefs( |
+ opus_int32 *coefs_syn_Q24, |
+ opus_int32 *coefs_ana_Q24, |
+ opus_int lambda_Q16, |
+ opus_int32 limit_Q24, |
+ opus_int order |
+) { |
+ opus_int i, iter, ind = 0; |
+ opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_syn_Q16, gain_ana_Q16; |
+ opus_int32 nom_Q16, den_Q24; |
+ |
+ /* Convert to monic coefficients */ |
+ lambda_Q16 = -lambda_Q16; |
+ for( i = order - 1; i > 0; i-- ) { |
+ coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 ); |
+ coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 ); |
+ } |
+ lambda_Q16 = -lambda_Q16; |
+ nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); |
+ den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 ); |
+ gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); |
+ den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 ); |
+ gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); |
+ for( i = 0; i < order; i++ ) { |
+ coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] ); |
+ coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] ); |
+ } |
+ |
+ for( iter = 0; iter < 10; iter++ ) { |
+ /* Find maximum absolute value */ |
+ maxabs_Q24 = -1; |
+ for( i = 0; i < order; i++ ) { |
+ tmp = silk_max( silk_abs_int32( coefs_syn_Q24[ i ] ), silk_abs_int32( coefs_ana_Q24[ i ] ) ); |
+ if( tmp > maxabs_Q24 ) { |
+ maxabs_Q24 = tmp; |
+ ind = i; |
+ } |
+ } |
+ if( maxabs_Q24 <= limit_Q24 ) { |
+ /* Coefficients are within range - done */ |
+ return; |
+ } |
+ |
+ /* Convert back to true warped coefficients */ |
+ for( i = 1; i < order; i++ ) { |
+ coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 ); |
+ coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 ); |
+ } |
+ gain_syn_Q16 = silk_INVERSE32_varQ( gain_syn_Q16, 32 ); |
+ gain_ana_Q16 = silk_INVERSE32_varQ( gain_ana_Q16, 32 ); |
+ for( i = 0; i < order; i++ ) { |
+ coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] ); |
+ coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] ); |
+ } |
+ |
+ /* Apply bandwidth expansion */ |
+ chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ( |
+ silk_SMULWB( maxabs_Q24 - limit_Q24, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ), |
+ silk_MUL( maxabs_Q24, ind + 1 ), 22 ); |
+ silk_bwexpander_32( coefs_syn_Q24, order, chirp_Q16 ); |
+ silk_bwexpander_32( coefs_ana_Q24, order, chirp_Q16 ); |
+ |
+ /* Convert to monic warped coefficients */ |
+ lambda_Q16 = -lambda_Q16; |
+ for( i = order - 1; i > 0; i-- ) { |
+ coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 ); |
+ coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 ); |
+ } |
+ lambda_Q16 = -lambda_Q16; |
+ nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); |
+ den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 ); |
+ gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); |
+ den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 ); |
+ gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); |
+ for( i = 0; i < order; i++ ) { |
+ coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] ); |
+ coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] ); |
+ } |
+ } |
+ silk_assert( 0 ); |
+} |
+ |
+#if defined(MIPSr1_ASM) |
+#include "mips/noise_shape_analysis_FIX_mipsr1.h" |
+#endif |
+ |
+/**************************************************************/ |
+/* Compute noise shaping coefficients and initial gain values */ |
+/**************************************************************/ |
+#ifndef OVERRIDE_silk_noise_shape_analysis_FIX |
+void silk_noise_shape_analysis_FIX( |
+ silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */ |
+ silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */ |
+ const opus_int16 *pitch_res, /* I LPC residual from pitch analysis */ |
+ const opus_int16 *x, /* I Input signal [ frame_length + la_shape ] */ |
+ int arch /* I Run-time architecture */ |
+) |
+{ |
+ silk_shape_state_FIX *psShapeSt = &psEnc->sShape; |
+ opus_int k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0; |
+ opus_int32 SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32; |
+ opus_int32 nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7; |
+ opus_int32 delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8; |
+ opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ]; |
+ opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ]; |
+ opus_int32 AR1_Q24[ MAX_SHAPE_LPC_ORDER ]; |
+ opus_int32 AR2_Q24[ MAX_SHAPE_LPC_ORDER ]; |
+ VARDECL( opus_int16, x_windowed ); |
+ const opus_int16 *x_ptr, *pitch_res_ptr; |
+ SAVE_STACK; |
+ |
+ /* Point to start of first LPC analysis block */ |
+ x_ptr = x - psEnc->sCmn.la_shape; |
+ |
+ /****************/ |
+ /* GAIN CONTROL */ |
+ /****************/ |
+ SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7; |
+ |
+ /* Input quality is the average of the quality in the lowest two VAD bands */ |
+ psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ] |
+ + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 ); |
+ |
+ /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */ |
+ psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 - |
+ SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 ); |
+ |
+ /* Reduce coding SNR during low speech activity */ |
+ if( psEnc->sCmn.useCBR == 0 ) { |
+ b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8; |
+ b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 ); |
+ SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, |
+ silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ), /* Q11*/ |
+ silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/ |
+ } |
+ |
+ if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
+ /* Reduce gains for periodic signals */ |
+ SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 ); |
+ } else { |
+ /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */ |
+ SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, |
+ silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ), |
+ SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 ); |
+ } |
+ |
+ /*************************/ |
+ /* SPARSENESS PROCESSING */ |
+ /*************************/ |
+ /* Set quantizer offset */ |
+ if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
+ /* Initially set to 0; may be overruled in process_gains(..) */ |
+ psEnc->sCmn.indices.quantOffsetType = 0; |
+ psEncCtrl->sparseness_Q8 = 0; |
+ } else { |
+ /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */ |
+ nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 ); |
+ energy_variation_Q7 = 0; |
+ log_energy_prev_Q7 = 0; |
+ pitch_res_ptr = pitch_res; |
+ for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) { |
+ silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples ); |
+ nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/ |
+ |
+ log_energy_Q7 = silk_lin2log( nrg ); |
+ if( k > 0 ) { |
+ energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 ); |
+ } |
+ log_energy_prev_Q7 = log_energy_Q7; |
+ pitch_res_ptr += nSamples; |
+ } |
+ |
+ psEncCtrl->sparseness_Q8 = silk_RSHIFT( silk_sigm_Q15( silk_SMULWB( energy_variation_Q7 - |
+ SILK_FIX_CONST( 5.0, 7 ), SILK_FIX_CONST( 0.1, 16 ) ) ), 7 ); |
+ |
+ /* Set quantization offset depending on sparseness measure */ |
+ if( psEncCtrl->sparseness_Q8 > SILK_FIX_CONST( SPARSENESS_THRESHOLD_QNT_OFFSET, 8 ) ) { |
+ psEnc->sCmn.indices.quantOffsetType = 0; |
+ } else { |
+ psEnc->sCmn.indices.quantOffsetType = 1; |
+ } |
+ |
+ /* Increase coding SNR for sparse signals */ |
+ SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( SPARSE_SNR_INCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SILK_FIX_CONST( 0.5, 8 ) ); |
+ } |
+ |
+ /*******************************/ |
+ /* Control bandwidth expansion */ |
+ /*******************************/ |
+ /* More BWE for signals with high prediction gain */ |
+ strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) ); |
+ BWExp1_Q16 = BWExp2_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ), |
+ silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 ); |
+ delta_Q16 = silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - silk_SMULBB( 3, psEncCtrl->coding_quality_Q14 ), |
+ SILK_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) ); |
+ BWExp1_Q16 = silk_SUB32( BWExp1_Q16, delta_Q16 ); |
+ BWExp2_Q16 = silk_ADD32( BWExp2_Q16, delta_Q16 ); |
+ /* BWExp1 will be applied after BWExp2, so make it relative */ |
+ BWExp1_Q16 = silk_DIV32_16( silk_LSHIFT( BWExp1_Q16, 14 ), silk_RSHIFT( BWExp2_Q16, 2 ) ); |
+ |
+ if( psEnc->sCmn.warping_Q16 > 0 ) { |
+ /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ |
+ warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) ); |
+ } else { |
+ warping_Q16 = 0; |
+ } |
+ |
+ /********************************************/ |
+ /* Compute noise shaping AR coefs and gains */ |
+ /********************************************/ |
+ ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 ); |
+ for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
+ /* Apply window: sine slope followed by flat part followed by cosine slope */ |
+ opus_int shift, slope_part, flat_part; |
+ flat_part = psEnc->sCmn.fs_kHz * 3; |
+ slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 ); |
+ |
+ silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part ); |
+ shift = slope_part; |
+ silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) ); |
+ shift += flat_part; |
+ silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part ); |
+ |
+ /* Update pointer: next LPC analysis block */ |
+ x_ptr += psEnc->sCmn.subfr_length; |
+ |
+ if( psEnc->sCmn.warping_Q16 > 0 ) { |
+ /* Calculate warped auto correlation */ |
+ silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder ); |
+ } else { |
+ /* Calculate regular auto correlation */ |
+ silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch ); |
+ } |
+ |
+ /* Add white noise, as a fraction of energy */ |
+ auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ), |
+ SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) ); |
+ |
+ /* Calculate the reflection coefficients using schur */ |
+ nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder ); |
+ silk_assert( nrg >= 0 ); |
+ |
+ /* Convert reflection coefficients to prediction coefficients */ |
+ silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder ); |
+ |
+ Qnrg = -scale; /* range: -12...30*/ |
+ silk_assert( Qnrg >= -12 ); |
+ silk_assert( Qnrg <= 30 ); |
+ |
+ /* Make sure that Qnrg is an even number */ |
+ if( Qnrg & 1 ) { |
+ Qnrg -= 1; |
+ nrg >>= 1; |
+ } |
+ |
+ tmp32 = silk_SQRT_APPROX( nrg ); |
+ Qnrg >>= 1; /* range: -6...15*/ |
+ |
+ psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg ); |
+ |
+ if( psEnc->sCmn.warping_Q16 > 0 ) { |
+ /* Adjust gain for warping */ |
+ gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder ); |
+ silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 ); |
+ if ( silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ) >= ( silk_int32_MAX >> 1 ) ) { |
+ psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX; |
+ } else { |
+ psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); |
+ } |
+ } |
+ |
+ /* Bandwidth expansion for synthesis filter shaping */ |
+ silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 ); |
+ |
+ /* Compute noise shaping filter coefficients */ |
+ silk_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( opus_int32 ) ); |
+ |
+ /* Bandwidth expansion for analysis filter shaping */ |
+ silk_assert( BWExp1_Q16 <= SILK_FIX_CONST( 1.0, 16 ) ); |
+ silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 ); |
+ |
+ /* Ratio of prediction gains, in energy domain */ |
+ pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapingLPCOrder ); |
+ nrg = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapingLPCOrder ); |
+ |
+ /*psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;*/ |
+ pre_nrg_Q30 = silk_LSHIFT32( silk_SMULWB( pre_nrg_Q30, SILK_FIX_CONST( 0.7, 15 ) ), 1 ); |
+ psEncCtrl->GainsPre_Q14[ k ] = ( opus_int ) SILK_FIX_CONST( 0.3, 14 ) + silk_DIV32_varQ( pre_nrg_Q30, nrg, 14 ); |
+ |
+ /* Convert to monic warped prediction coefficients and limit absolute values */ |
+ limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder ); |
+ |
+ /* Convert from Q24 to Q13 and store in int16 */ |
+ for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) { |
+ psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) ); |
+ psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) ); |
+ } |
+ } |
+ |
+ /*****************/ |
+ /* Gain tweaking */ |
+ /*****************/ |
+ /* Increase gains during low speech activity and put lower limit on gains */ |
+ gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) ); |
+ gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) ); |
+ silk_assert( gain_mult_Q16 > 0 ); |
+ for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
+ psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); |
+ silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 ); |
+ psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 ); |
+ } |
+ |
+ gain_mult_Q16 = SILK_FIX_CONST( 1.0, 16 ) + silk_RSHIFT_ROUND( silk_MLA( SILK_FIX_CONST( INPUT_TILT, 26 ), |
+ psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( HIGH_RATE_INPUT_TILT, 12 ) ), 10 ); |
+ for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
+ psEncCtrl->GainsPre_Q14[ k ] = silk_SMULWB( gain_mult_Q16, psEncCtrl->GainsPre_Q14[ k ] ); |
+ } |
+ |
+ /************************************************/ |
+ /* Control low-frequency shaping and noise tilt */ |
+ /************************************************/ |
+ /* Less low frequency shaping for noisy inputs */ |
+ strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ), |
+ SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) ); |
+ strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 ); |
+ if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
+ /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */ |
+ /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/ |
+ opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz ); |
+ for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
+ b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] ); |
+ /* Pack two coefficients in one int32 */ |
+ psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 ); |
+ psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) ); |
+ } |
+ silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/ |
+ Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) - |
+ silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ), |
+ silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) ); |
+ } else { |
+ b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/ |
+ /* Pack two coefficients in one int32 */ |
+ psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - |
+ silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 ); |
+ psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) ); |
+ for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) { |
+ psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ]; |
+ } |
+ Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 ); |
+ } |
+ |
+ /****************************/ |
+ /* HARMONIC SHAPING CONTROL */ |
+ /****************************/ |
+ /* Control boosting of harmonic frequencies */ |
+ HarmBoost_Q16 = silk_SMULWB( silk_SMULWB( SILK_FIX_CONST( 1.0, 17 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 3 ), |
+ psEnc->LTPCorr_Q15 ), SILK_FIX_CONST( LOW_RATE_HARMONIC_BOOST, 16 ) ); |
+ |
+ /* More harmonic boost for noisy input signals */ |
+ HarmBoost_Q16 = silk_SMLAWB( HarmBoost_Q16, |
+ SILK_FIX_CONST( 1.0, 16 ) - silk_LSHIFT( psEncCtrl->input_quality_Q14, 2 ), SILK_FIX_CONST( LOW_INPUT_QUALITY_HARMONIC_BOOST, 16 ) ); |
+ |
+ if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
+ /* More harmonic noise shaping for high bitrates or noisy input */ |
+ HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ), |
+ SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ), |
+ psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) ); |
+ |
+ /* Less harmonic noise shaping for less periodic signals */ |
+ HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ), |
+ silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) ); |
+ } else { |
+ HarmShapeGain_Q16 = 0; |
+ } |
+ |
+ /*************************/ |
+ /* Smooth over subframes */ |
+ /*************************/ |
+ for( k = 0; k < MAX_NB_SUBFR; k++ ) { |
+ psShapeSt->HarmBoost_smth_Q16 = |
+ silk_SMLAWB( psShapeSt->HarmBoost_smth_Q16, HarmBoost_Q16 - psShapeSt->HarmBoost_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); |
+ psShapeSt->HarmShapeGain_smth_Q16 = |
+ silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); |
+ psShapeSt->Tilt_smth_Q16 = |
+ silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); |
+ |
+ psEncCtrl->HarmBoost_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmBoost_smth_Q16, 2 ); |
+ psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 ); |
+ psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 ); |
+ } |
+ RESTORE_STACK; |
+} |
+#endif /* OVERRIDE_silk_noise_shape_analysis_FIX */ |