| Index: webrtc/modules/audio_coding/codecs/opus/opus/src/silk/A2NLSF.c
|
| diff --git a/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/A2NLSF.c b/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/A2NLSF.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..b6e9e5ffccaa05995dfdbfe600166865d899013e
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/A2NLSF.c
|
| @@ -0,0 +1,267 @@
|
| +/***********************************************************************
|
| +Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
| +Redistribution and use in source and binary forms, with or without
|
| +modification, are permitted provided that the following conditions
|
| +are met:
|
| +- Redistributions of source code must retain the above copyright notice,
|
| +this list of conditions and the following disclaimer.
|
| +- Redistributions in binary form must reproduce the above copyright
|
| +notice, this list of conditions and the following disclaimer in the
|
| +documentation and/or other materials provided with the distribution.
|
| +- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
| +names of specific contributors, may be used to endorse or promote
|
| +products derived from this software without specific prior written
|
| +permission.
|
| +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
| +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
| +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
| +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
| +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
| +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
| +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
| +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
| +POSSIBILITY OF SUCH DAMAGE.
|
| +***********************************************************************/
|
| +
|
| +/* Conversion between prediction filter coefficients and NLSFs */
|
| +/* Requires the order to be an even number */
|
| +/* A piecewise linear approximation maps LSF <-> cos(LSF) */
|
| +/* Therefore the result is not accurate NLSFs, but the two */
|
| +/* functions are accurate inverses of each other */
|
| +
|
| +#ifdef HAVE_CONFIG_H
|
| +#include "config.h"
|
| +#endif
|
| +
|
| +#include "SigProc_FIX.h"
|
| +#include "tables.h"
|
| +
|
| +/* Number of binary divisions, when not in low complexity mode */
|
| +#define BIN_DIV_STEPS_A2NLSF_FIX 3 /* must be no higher than 16 - log2( LSF_COS_TAB_SZ_FIX ) */
|
| +#define MAX_ITERATIONS_A2NLSF_FIX 30
|
| +
|
| +/* Helper function for A2NLSF(..) */
|
| +/* Transforms polynomials from cos(n*f) to cos(f)^n */
|
| +static OPUS_INLINE void silk_A2NLSF_trans_poly(
|
| + opus_int32 *p, /* I/O Polynomial */
|
| + const opus_int dd /* I Polynomial order (= filter order / 2 ) */
|
| +)
|
| +{
|
| + opus_int k, n;
|
| +
|
| + for( k = 2; k <= dd; k++ ) {
|
| + for( n = dd; n > k; n-- ) {
|
| + p[ n - 2 ] -= p[ n ];
|
| + }
|
| + p[ k - 2 ] -= silk_LSHIFT( p[ k ], 1 );
|
| + }
|
| +}
|
| +/* Helper function for A2NLSF(..) */
|
| +/* Polynomial evaluation */
|
| +static OPUS_INLINE opus_int32 silk_A2NLSF_eval_poly( /* return the polynomial evaluation, in Q16 */
|
| + opus_int32 *p, /* I Polynomial, Q16 */
|
| + const opus_int32 x, /* I Evaluation point, Q12 */
|
| + const opus_int dd /* I Order */
|
| +)
|
| +{
|
| + opus_int n;
|
| + opus_int32 x_Q16, y32;
|
| +
|
| + y32 = p[ dd ]; /* Q16 */
|
| + x_Q16 = silk_LSHIFT( x, 4 );
|
| +
|
| + if ( opus_likely( 8 == dd ) )
|
| + {
|
| + y32 = silk_SMLAWW( p[ 7 ], y32, x_Q16 );
|
| + y32 = silk_SMLAWW( p[ 6 ], y32, x_Q16 );
|
| + y32 = silk_SMLAWW( p[ 5 ], y32, x_Q16 );
|
| + y32 = silk_SMLAWW( p[ 4 ], y32, x_Q16 );
|
| + y32 = silk_SMLAWW( p[ 3 ], y32, x_Q16 );
|
| + y32 = silk_SMLAWW( p[ 2 ], y32, x_Q16 );
|
| + y32 = silk_SMLAWW( p[ 1 ], y32, x_Q16 );
|
| + y32 = silk_SMLAWW( p[ 0 ], y32, x_Q16 );
|
| + }
|
| + else
|
| + {
|
| + for( n = dd - 1; n >= 0; n-- ) {
|
| + y32 = silk_SMLAWW( p[ n ], y32, x_Q16 ); /* Q16 */
|
| + }
|
| + }
|
| + return y32;
|
| +}
|
| +
|
| +static OPUS_INLINE void silk_A2NLSF_init(
|
| + const opus_int32 *a_Q16,
|
| + opus_int32 *P,
|
| + opus_int32 *Q,
|
| + const opus_int dd
|
| +)
|
| +{
|
| + opus_int k;
|
| +
|
| + /* Convert filter coefs to even and odd polynomials */
|
| + P[dd] = silk_LSHIFT( 1, 16 );
|
| + Q[dd] = silk_LSHIFT( 1, 16 );
|
| + for( k = 0; k < dd; k++ ) {
|
| + P[ k ] = -a_Q16[ dd - k - 1 ] - a_Q16[ dd + k ]; /* Q16 */
|
| + Q[ k ] = -a_Q16[ dd - k - 1 ] + a_Q16[ dd + k ]; /* Q16 */
|
| + }
|
| +
|
| + /* Divide out zeros as we have that for even filter orders, */
|
| + /* z = 1 is always a root in Q, and */
|
| + /* z = -1 is always a root in P */
|
| + for( k = dd; k > 0; k-- ) {
|
| + P[ k - 1 ] -= P[ k ];
|
| + Q[ k - 1 ] += Q[ k ];
|
| + }
|
| +
|
| + /* Transform polynomials from cos(n*f) to cos(f)^n */
|
| + silk_A2NLSF_trans_poly( P, dd );
|
| + silk_A2NLSF_trans_poly( Q, dd );
|
| +}
|
| +
|
| +/* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */
|
| +/* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
|
| +void silk_A2NLSF(
|
| + opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
|
| + opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */
|
| + const opus_int d /* I Filter order (must be even) */
|
| +)
|
| +{
|
| + opus_int i, k, m, dd, root_ix, ffrac;
|
| + opus_int32 xlo, xhi, xmid;
|
| + opus_int32 ylo, yhi, ymid, thr;
|
| + opus_int32 nom, den;
|
| + opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ];
|
| + opus_int32 Q[ SILK_MAX_ORDER_LPC / 2 + 1 ];
|
| + opus_int32 *PQ[ 2 ];
|
| + opus_int32 *p;
|
| +
|
| + /* Store pointers to array */
|
| + PQ[ 0 ] = P;
|
| + PQ[ 1 ] = Q;
|
| +
|
| + dd = silk_RSHIFT( d, 1 );
|
| +
|
| + silk_A2NLSF_init( a_Q16, P, Q, dd );
|
| +
|
| + /* Find roots, alternating between P and Q */
|
| + p = P; /* Pointer to polynomial */
|
| +
|
| + xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
|
| + ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
|
| +
|
| + if( ylo < 0 ) {
|
| + /* Set the first NLSF to zero and move on to the next */
|
| + NLSF[ 0 ] = 0;
|
| + p = Q; /* Pointer to polynomial */
|
| + ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
|
| + root_ix = 1; /* Index of current root */
|
| + } else {
|
| + root_ix = 0; /* Index of current root */
|
| + }
|
| + k = 1; /* Loop counter */
|
| + i = 0; /* Counter for bandwidth expansions applied */
|
| + thr = 0;
|
| + while( 1 ) {
|
| + /* Evaluate polynomial */
|
| + xhi = silk_LSFCosTab_FIX_Q12[ k ]; /* Q12 */
|
| + yhi = silk_A2NLSF_eval_poly( p, xhi, dd );
|
| +
|
| + /* Detect zero crossing */
|
| + if( ( ylo <= 0 && yhi >= thr ) || ( ylo >= 0 && yhi <= -thr ) ) {
|
| + if( yhi == 0 ) {
|
| + /* If the root lies exactly at the end of the current */
|
| + /* interval, look for the next root in the next interval */
|
| + thr = 1;
|
| + } else {
|
| + thr = 0;
|
| + }
|
| + /* Binary division */
|
| + ffrac = -256;
|
| + for( m = 0; m < BIN_DIV_STEPS_A2NLSF_FIX; m++ ) {
|
| + /* Evaluate polynomial */
|
| + xmid = silk_RSHIFT_ROUND( xlo + xhi, 1 );
|
| + ymid = silk_A2NLSF_eval_poly( p, xmid, dd );
|
| +
|
| + /* Detect zero crossing */
|
| + if( ( ylo <= 0 && ymid >= 0 ) || ( ylo >= 0 && ymid <= 0 ) ) {
|
| + /* Reduce frequency */
|
| + xhi = xmid;
|
| + yhi = ymid;
|
| + } else {
|
| + /* Increase frequency */
|
| + xlo = xmid;
|
| + ylo = ymid;
|
| + ffrac = silk_ADD_RSHIFT( ffrac, 128, m );
|
| + }
|
| + }
|
| +
|
| + /* Interpolate */
|
| + if( silk_abs( ylo ) < 65536 ) {
|
| + /* Avoid dividing by zero */
|
| + den = ylo - yhi;
|
| + nom = silk_LSHIFT( ylo, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) + silk_RSHIFT( den, 1 );
|
| + if( den != 0 ) {
|
| + ffrac += silk_DIV32( nom, den );
|
| + }
|
| + } else {
|
| + /* No risk of dividing by zero because abs(ylo - yhi) >= abs(ylo) >= 65536 */
|
| + ffrac += silk_DIV32( ylo, silk_RSHIFT( ylo - yhi, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) );
|
| + }
|
| + NLSF[ root_ix ] = (opus_int16)silk_min_32( silk_LSHIFT( (opus_int32)k, 8 ) + ffrac, silk_int16_MAX );
|
| +
|
| + silk_assert( NLSF[ root_ix ] >= 0 );
|
| +
|
| + root_ix++; /* Next root */
|
| + if( root_ix >= d ) {
|
| + /* Found all roots */
|
| + break;
|
| + }
|
| + /* Alternate pointer to polynomial */
|
| + p = PQ[ root_ix & 1 ];
|
| +
|
| + /* Evaluate polynomial */
|
| + xlo = silk_LSFCosTab_FIX_Q12[ k - 1 ]; /* Q12*/
|
| + ylo = silk_LSHIFT( 1 - ( root_ix & 2 ), 12 );
|
| + } else {
|
| + /* Increment loop counter */
|
| + k++;
|
| + xlo = xhi;
|
| + ylo = yhi;
|
| + thr = 0;
|
| +
|
| + if( k > LSF_COS_TAB_SZ_FIX ) {
|
| + i++;
|
| + if( i > MAX_ITERATIONS_A2NLSF_FIX ) {
|
| + /* Set NLSFs to white spectrum and exit */
|
| + NLSF[ 0 ] = (opus_int16)silk_DIV32_16( 1 << 15, d + 1 );
|
| + for( k = 1; k < d; k++ ) {
|
| + NLSF[ k ] = (opus_int16)silk_SMULBB( k + 1, NLSF[ 0 ] );
|
| + }
|
| + return;
|
| + }
|
| +
|
| + /* Error: Apply progressively more bandwidth expansion and run again */
|
| + silk_bwexpander_32( a_Q16, d, 65536 - silk_SMULBB( 10 + i, i ) ); /* 10_Q16 = 0.00015*/
|
| +
|
| + silk_A2NLSF_init( a_Q16, P, Q, dd );
|
| + p = P; /* Pointer to polynomial */
|
| + xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
|
| + ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
|
| + if( ylo < 0 ) {
|
| + /* Set the first NLSF to zero and move on to the next */
|
| + NLSF[ 0 ] = 0;
|
| + p = Q; /* Pointer to polynomial */
|
| + ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
|
| + root_ix = 1; /* Index of current root */
|
| + } else {
|
| + root_ix = 0; /* Index of current root */
|
| + }
|
| + k = 1; /* Reset loop counter */
|
| + }
|
| + }
|
| + }
|
| +}
|
|
|