| Index: webrtc/modules/audio_coding/codecs/opus/opus/src/celt/vq.c
|
| diff --git a/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/vq.c b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/vq.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..f358396065456b025c710e98467ca234fa706755
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/vq.c
|
| @@ -0,0 +1,408 @@
|
| +/* Copyright (c) 2007-2008 CSIRO
|
| + Copyright (c) 2007-2009 Xiph.Org Foundation
|
| + Written by Jean-Marc Valin */
|
| +/*
|
| + Redistribution and use in source and binary forms, with or without
|
| + modification, are permitted provided that the following conditions
|
| + are met:
|
| +
|
| + - Redistributions of source code must retain the above copyright
|
| + notice, this list of conditions and the following disclaimer.
|
| +
|
| + - Redistributions in binary form must reproduce the above copyright
|
| + notice, this list of conditions and the following disclaimer in the
|
| + documentation and/or other materials provided with the distribution.
|
| +
|
| + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
| + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
| + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
| + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
| + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
| + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
| + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
| + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +*/
|
| +
|
| +#ifdef HAVE_CONFIG_H
|
| +#include "config.h"
|
| +#endif
|
| +
|
| +#include "mathops.h"
|
| +#include "cwrs.h"
|
| +#include "vq.h"
|
| +#include "arch.h"
|
| +#include "os_support.h"
|
| +#include "bands.h"
|
| +#include "rate.h"
|
| +#include "pitch.h"
|
| +
|
| +#ifndef OVERRIDE_vq_exp_rotation1
|
| +static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_val16 s)
|
| +{
|
| + int i;
|
| + opus_val16 ms;
|
| + celt_norm *Xptr;
|
| + Xptr = X;
|
| + ms = NEG16(s);
|
| + for (i=0;i<len-stride;i++)
|
| + {
|
| + celt_norm x1, x2;
|
| + x1 = Xptr[0];
|
| + x2 = Xptr[stride];
|
| + Xptr[stride] = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x2), s, x1), 15));
|
| + *Xptr++ = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x1), ms, x2), 15));
|
| + }
|
| + Xptr = &X[len-2*stride-1];
|
| + for (i=len-2*stride-1;i>=0;i--)
|
| + {
|
| + celt_norm x1, x2;
|
| + x1 = Xptr[0];
|
| + x2 = Xptr[stride];
|
| + Xptr[stride] = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x2), s, x1), 15));
|
| + *Xptr-- = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x1), ms, x2), 15));
|
| + }
|
| +}
|
| +#endif /* OVERRIDE_vq_exp_rotation1 */
|
| +
|
| +static void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread)
|
| +{
|
| + static const int SPREAD_FACTOR[3]={15,10,5};
|
| + int i;
|
| + opus_val16 c, s;
|
| + opus_val16 gain, theta;
|
| + int stride2=0;
|
| + int factor;
|
| +
|
| + if (2*K>=len || spread==SPREAD_NONE)
|
| + return;
|
| + factor = SPREAD_FACTOR[spread-1];
|
| +
|
| + gain = celt_div((opus_val32)MULT16_16(Q15_ONE,len),(opus_val32)(len+factor*K));
|
| + theta = HALF16(MULT16_16_Q15(gain,gain));
|
| +
|
| + c = celt_cos_norm(EXTEND32(theta));
|
| + s = celt_cos_norm(EXTEND32(SUB16(Q15ONE,theta))); /* sin(theta) */
|
| +
|
| + if (len>=8*stride)
|
| + {
|
| + stride2 = 1;
|
| + /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
|
| + It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
|
| + while ((stride2*stride2+stride2)*stride + (stride>>2) < len)
|
| + stride2++;
|
| + }
|
| + /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
|
| + extract_collapse_mask().*/
|
| + len = celt_udiv(len, stride);
|
| + for (i=0;i<stride;i++)
|
| + {
|
| + if (dir < 0)
|
| + {
|
| + if (stride2)
|
| + exp_rotation1(X+i*len, len, stride2, s, c);
|
| + exp_rotation1(X+i*len, len, 1, c, s);
|
| + } else {
|
| + exp_rotation1(X+i*len, len, 1, c, -s);
|
| + if (stride2)
|
| + exp_rotation1(X+i*len, len, stride2, s, -c);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/** Takes the pitch vector and the decoded residual vector, computes the gain
|
| + that will give ||p+g*y||=1 and mixes the residual with the pitch. */
|
| +static void normalise_residual(int * OPUS_RESTRICT iy, celt_norm * OPUS_RESTRICT X,
|
| + int N, opus_val32 Ryy, opus_val16 gain)
|
| +{
|
| + int i;
|
| +#ifdef FIXED_POINT
|
| + int k;
|
| +#endif
|
| + opus_val32 t;
|
| + opus_val16 g;
|
| +
|
| +#ifdef FIXED_POINT
|
| + k = celt_ilog2(Ryy)>>1;
|
| +#endif
|
| + t = VSHR32(Ryy, 2*(k-7));
|
| + g = MULT16_16_P15(celt_rsqrt_norm(t),gain);
|
| +
|
| + i=0;
|
| + do
|
| + X[i] = EXTRACT16(PSHR32(MULT16_16(g, iy[i]), k+1));
|
| + while (++i < N);
|
| +}
|
| +
|
| +static unsigned extract_collapse_mask(int *iy, int N, int B)
|
| +{
|
| + unsigned collapse_mask;
|
| + int N0;
|
| + int i;
|
| + if (B<=1)
|
| + return 1;
|
| + /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
|
| + exp_rotation().*/
|
| + N0 = celt_udiv(N, B);
|
| + collapse_mask = 0;
|
| + i=0; do {
|
| + int j;
|
| + unsigned tmp=0;
|
| + j=0; do {
|
| + tmp |= iy[i*N0+j];
|
| + } while (++j<N0);
|
| + collapse_mask |= (tmp!=0)<<i;
|
| + } while (++i<B);
|
| + return collapse_mask;
|
| +}
|
| +
|
| +unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
|
| +#ifdef RESYNTH
|
| + , opus_val16 gain
|
| +#endif
|
| + )
|
| +{
|
| + VARDECL(celt_norm, y);
|
| + VARDECL(int, iy);
|
| + VARDECL(opus_val16, signx);
|
| + int i, j;
|
| + opus_val16 s;
|
| + int pulsesLeft;
|
| + opus_val32 sum;
|
| + opus_val32 xy;
|
| + opus_val16 yy;
|
| + unsigned collapse_mask;
|
| + SAVE_STACK;
|
| +
|
| + celt_assert2(K>0, "alg_quant() needs at least one pulse");
|
| + celt_assert2(N>1, "alg_quant() needs at least two dimensions");
|
| +
|
| + ALLOC(y, N, celt_norm);
|
| + ALLOC(iy, N, int);
|
| + ALLOC(signx, N, opus_val16);
|
| +
|
| + exp_rotation(X, N, 1, B, K, spread);
|
| +
|
| + /* Get rid of the sign */
|
| + sum = 0;
|
| + j=0; do {
|
| + if (X[j]>0)
|
| + signx[j]=1;
|
| + else {
|
| + signx[j]=-1;
|
| + X[j]=-X[j];
|
| + }
|
| + iy[j] = 0;
|
| + y[j] = 0;
|
| + } while (++j<N);
|
| +
|
| + xy = yy = 0;
|
| +
|
| + pulsesLeft = K;
|
| +
|
| + /* Do a pre-search by projecting on the pyramid */
|
| + if (K > (N>>1))
|
| + {
|
| + opus_val16 rcp;
|
| + j=0; do {
|
| + sum += X[j];
|
| + } while (++j<N);
|
| +
|
| + /* If X is too small, just replace it with a pulse at 0 */
|
| +#ifdef FIXED_POINT
|
| + if (sum <= K)
|
| +#else
|
| + /* Prevents infinities and NaNs from causing too many pulses
|
| + to be allocated. 64 is an approximation of infinity here. */
|
| + if (!(sum > EPSILON && sum < 64))
|
| +#endif
|
| + {
|
| + X[0] = QCONST16(1.f,14);
|
| + j=1; do
|
| + X[j]=0;
|
| + while (++j<N);
|
| + sum = QCONST16(1.f,14);
|
| + }
|
| + rcp = EXTRACT16(MULT16_32_Q16(K-1, celt_rcp(sum)));
|
| + j=0; do {
|
| +#ifdef FIXED_POINT
|
| + /* It's really important to round *towards zero* here */
|
| + iy[j] = MULT16_16_Q15(X[j],rcp);
|
| +#else
|
| + iy[j] = (int)floor(rcp*X[j]);
|
| +#endif
|
| + y[j] = (celt_norm)iy[j];
|
| + yy = MAC16_16(yy, y[j],y[j]);
|
| + xy = MAC16_16(xy, X[j],y[j]);
|
| + y[j] *= 2;
|
| + pulsesLeft -= iy[j];
|
| + } while (++j<N);
|
| + }
|
| + celt_assert2(pulsesLeft>=1, "Allocated too many pulses in the quick pass");
|
| +
|
| + /* This should never happen, but just in case it does (e.g. on silence)
|
| + we fill the first bin with pulses. */
|
| +#ifdef FIXED_POINT_DEBUG
|
| + celt_assert2(pulsesLeft<=N+3, "Not enough pulses in the quick pass");
|
| +#endif
|
| + if (pulsesLeft > N+3)
|
| + {
|
| + opus_val16 tmp = (opus_val16)pulsesLeft;
|
| + yy = MAC16_16(yy, tmp, tmp);
|
| + yy = MAC16_16(yy, tmp, y[0]);
|
| + iy[0] += pulsesLeft;
|
| + pulsesLeft=0;
|
| + }
|
| +
|
| + s = 1;
|
| + for (i=0;i<pulsesLeft;i++)
|
| + {
|
| + int best_id;
|
| + opus_val32 best_num = -VERY_LARGE16;
|
| + opus_val16 best_den = 0;
|
| +#ifdef FIXED_POINT
|
| + int rshift;
|
| +#endif
|
| +#ifdef FIXED_POINT
|
| + rshift = 1+celt_ilog2(K-pulsesLeft+i+1);
|
| +#endif
|
| + best_id = 0;
|
| + /* The squared magnitude term gets added anyway, so we might as well
|
| + add it outside the loop */
|
| + yy = ADD32(yy, 1);
|
| + j=0;
|
| + do {
|
| + opus_val16 Rxy, Ryy;
|
| + /* Temporary sums of the new pulse(s) */
|
| + Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[j])),rshift));
|
| + /* We're multiplying y[j] by two so we don't have to do it here */
|
| + Ryy = ADD16(yy, y[j]);
|
| +
|
| + /* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that
|
| + Rxy is positive because the sign is pre-computed) */
|
| + Rxy = MULT16_16_Q15(Rxy,Rxy);
|
| + /* The idea is to check for num/den >= best_num/best_den, but that way
|
| + we can do it without any division */
|
| + /* OPT: Make sure to use conditional moves here */
|
| + if (MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num))
|
| + {
|
| + best_den = Ryy;
|
| + best_num = Rxy;
|
| + best_id = j;
|
| + }
|
| + } while (++j<N);
|
| +
|
| + /* Updating the sums of the new pulse(s) */
|
| + xy = ADD32(xy, EXTEND32(X[best_id]));
|
| + /* We're multiplying y[j] by two so we don't have to do it here */
|
| + yy = ADD16(yy, y[best_id]);
|
| +
|
| + /* Only now that we've made the final choice, update y/iy */
|
| + /* Multiplying y[j] by 2 so we don't have to do it everywhere else */
|
| + y[best_id] += 2*s;
|
| + iy[best_id]++;
|
| + }
|
| +
|
| + /* Put the original sign back */
|
| + j=0;
|
| + do {
|
| + X[j] = MULT16_16(signx[j],X[j]);
|
| + if (signx[j] < 0)
|
| + iy[j] = -iy[j];
|
| + } while (++j<N);
|
| + encode_pulses(iy, N, K, enc);
|
| +
|
| +#ifdef RESYNTH
|
| + normalise_residual(iy, X, N, yy, gain);
|
| + exp_rotation(X, N, -1, B, K, spread);
|
| +#endif
|
| +
|
| + collapse_mask = extract_collapse_mask(iy, N, B);
|
| + RESTORE_STACK;
|
| + return collapse_mask;
|
| +}
|
| +
|
| +/** Decode pulse vector and combine the result with the pitch vector to produce
|
| + the final normalised signal in the current band. */
|
| +unsigned alg_unquant(celt_norm *X, int N, int K, int spread, int B,
|
| + ec_dec *dec, opus_val16 gain)
|
| +{
|
| + opus_val32 Ryy;
|
| + unsigned collapse_mask;
|
| + VARDECL(int, iy);
|
| + SAVE_STACK;
|
| +
|
| + celt_assert2(K>0, "alg_unquant() needs at least one pulse");
|
| + celt_assert2(N>1, "alg_unquant() needs at least two dimensions");
|
| + ALLOC(iy, N, int);
|
| + Ryy = decode_pulses(iy, N, K, dec);
|
| + normalise_residual(iy, X, N, Ryy, gain);
|
| + exp_rotation(X, N, -1, B, K, spread);
|
| + collapse_mask = extract_collapse_mask(iy, N, B);
|
| + RESTORE_STACK;
|
| + return collapse_mask;
|
| +}
|
| +
|
| +#ifndef OVERRIDE_renormalise_vector
|
| +void renormalise_vector(celt_norm *X, int N, opus_val16 gain, int arch)
|
| +{
|
| + int i;
|
| +#ifdef FIXED_POINT
|
| + int k;
|
| +#endif
|
| + opus_val32 E;
|
| + opus_val16 g;
|
| + opus_val32 t;
|
| + celt_norm *xptr;
|
| + E = EPSILON + celt_inner_prod(X, X, N, arch);
|
| +#ifdef FIXED_POINT
|
| + k = celt_ilog2(E)>>1;
|
| +#endif
|
| + t = VSHR32(E, 2*(k-7));
|
| + g = MULT16_16_P15(celt_rsqrt_norm(t),gain);
|
| +
|
| + xptr = X;
|
| + for (i=0;i<N;i++)
|
| + {
|
| + *xptr = EXTRACT16(PSHR32(MULT16_16(g, *xptr), k+1));
|
| + xptr++;
|
| + }
|
| + /*return celt_sqrt(E);*/
|
| +}
|
| +#endif /* OVERRIDE_renormalise_vector */
|
| +
|
| +int stereo_itheta(const celt_norm *X, const celt_norm *Y, int stereo, int N, int arch)
|
| +{
|
| + int i;
|
| + int itheta;
|
| + opus_val16 mid, side;
|
| + opus_val32 Emid, Eside;
|
| +
|
| + Emid = Eside = EPSILON;
|
| + if (stereo)
|
| + {
|
| + for (i=0;i<N;i++)
|
| + {
|
| + celt_norm m, s;
|
| + m = ADD16(SHR16(X[i],1),SHR16(Y[i],1));
|
| + s = SUB16(SHR16(X[i],1),SHR16(Y[i],1));
|
| + Emid = MAC16_16(Emid, m, m);
|
| + Eside = MAC16_16(Eside, s, s);
|
| + }
|
| + } else {
|
| + Emid += celt_inner_prod(X, X, N, arch);
|
| + Eside += celt_inner_prod(Y, Y, N, arch);
|
| + }
|
| + mid = celt_sqrt(Emid);
|
| + side = celt_sqrt(Eside);
|
| +#ifdef FIXED_POINT
|
| + /* 0.63662 = 2/pi */
|
| + itheta = MULT16_16_Q15(QCONST16(0.63662f,15),celt_atan2p(side, mid));
|
| +#else
|
| + itheta = (int)floor(.5f+16384*0.63662f*atan2(side,mid));
|
| +#endif
|
| +
|
| + return itheta;
|
| +}
|
|
|