Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1020)

Side by Side Diff: webrtc/modules/video_coding/jitter_buffer.cc

Issue 1543503002: Lint fix for webrtc/modules/video_coding PART 2! (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 #include "webrtc/modules/video_coding/jitter_buffer.h" 10 #include "webrtc/modules/video_coding/jitter_buffer.h"
(...skipping 75 matching lines...) Expand 10 before | Expand all | Expand 10 after
86 if (it != end() && it->second->FrameType() == kVideoFrameKey) { 86 if (it != end() && it->second->FrameType() == kVideoFrameKey) {
87 *key_frame_it = it; 87 *key_frame_it = it;
88 return drop_count; 88 return drop_count;
89 } 89 }
90 } 90 }
91 *key_frame_it = end(); 91 *key_frame_it = end();
92 return drop_count; 92 return drop_count;
93 } 93 }
94 94
95 void FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state, 95 void FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state,
96 UnorderedFrameList* free_frames) { 96 UnorderedFrameList* free_frames) {
97 while (!empty()) { 97 while (!empty()) {
98 VCMFrameBuffer* oldest_frame = Front(); 98 VCMFrameBuffer* oldest_frame = Front();
99 bool remove_frame = false; 99 bool remove_frame = false;
100 if (oldest_frame->GetState() == kStateEmpty && size() > 1) { 100 if (oldest_frame->GetState() == kStateEmpty && size() > 1) {
101 // This frame is empty, try to update the last decoded state and drop it 101 // This frame is empty, try to update the last decoded state and drop it
102 // if successful. 102 // if successful.
103 remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame); 103 remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame);
104 } else { 104 } else {
105 remove_frame = decoding_state->IsOldFrame(oldest_frame); 105 remove_frame = decoding_state->IsOldFrame(oldest_frame);
106 } 106 }
(...skipping 317 matching lines...) Expand 10 before | Expand all | Expand 10 after
424 // (I.e. frames per second since last calculation.) 424 // (I.e. frames per second since last calculation.)
425 // frame_rate = r(0)/2 + r(-1)/2 425 // frame_rate = r(0)/2 + r(-1)/2
426 // (I.e. fr/s average this and the previous calculation.) 426 // (I.e. fr/s average this and the previous calculation.)
427 *framerate = (incoming_frame_rate_ + static_cast<unsigned int>(rate)) / 2; 427 *framerate = (incoming_frame_rate_ + static_cast<unsigned int>(rate)) / 2;
428 incoming_frame_rate_ = static_cast<unsigned int>(rate); 428 incoming_frame_rate_ = static_cast<unsigned int>(rate);
429 429
430 // Calculate bit rate 430 // Calculate bit rate
431 if (incoming_bit_count_ == 0) { 431 if (incoming_bit_count_ == 0) {
432 *bitrate = 0; 432 *bitrate = 0;
433 } else { 433 } else {
434 *bitrate = 10 * ((100 * incoming_bit_count_) / 434 *bitrate =
435 static_cast<unsigned int>(diff)); 435 10 * ((100 * incoming_bit_count_) / static_cast<unsigned int>(diff));
436 } 436 }
437 incoming_bit_rate_ = *bitrate; 437 incoming_bit_rate_ = *bitrate;
438 438
439 // Reset count 439 // Reset count
440 incoming_frame_count_ = 0; 440 incoming_frame_count_ = 0;
441 incoming_bit_count_ = 0; 441 incoming_bit_count_ = 0;
442 time_last_incoming_frame_count_ = now; 442 time_last_incoming_frame_count_ = now;
443 443
444 } else { 444 } else {
445 // No frames since last call 445 // No frames since last call
(...skipping 20 matching lines...) Expand all
466 } 466 }
467 } else if (incomplete_frames_.size() <= 1) { 467 } else if (incomplete_frames_.size() <= 1) {
468 // Frame not ready to be decoded. 468 // Frame not ready to be decoded.
469 return true; 469 return true;
470 } 470 }
471 return false; 471 return false;
472 } 472 }
473 473
474 // Returns immediately or a |max_wait_time_ms| ms event hang waiting for a 474 // Returns immediately or a |max_wait_time_ms| ms event hang waiting for a
475 // complete frame, |max_wait_time_ms| decided by caller. 475 // complete frame, |max_wait_time_ms| decided by caller.
476 bool VCMJitterBuffer::NextCompleteTimestamp( 476 bool VCMJitterBuffer::NextCompleteTimestamp(uint32_t max_wait_time_ms,
477 uint32_t max_wait_time_ms, uint32_t* timestamp) { 477 uint32_t* timestamp) {
478 crit_sect_->Enter(); 478 crit_sect_->Enter();
479 if (!running_) { 479 if (!running_) {
480 crit_sect_->Leave(); 480 crit_sect_->Leave();
481 return false; 481 return false;
482 } 482 }
483 CleanUpOldOrEmptyFrames(); 483 CleanUpOldOrEmptyFrames();
484 484
485 if (decodable_frames_.empty() || 485 if (decodable_frames_.empty() ||
486 decodable_frames_.Front()->GetState() != kStateComplete) { 486 decodable_frames_.Front()->GetState() != kStateComplete) {
487 const int64_t end_wait_time_ms = clock_->TimeInMilliseconds() + 487 const int64_t end_wait_time_ms =
488 max_wait_time_ms; 488 clock_->TimeInMilliseconds() + max_wait_time_ms;
489 int64_t wait_time_ms = max_wait_time_ms; 489 int64_t wait_time_ms = max_wait_time_ms;
490 while (wait_time_ms > 0) { 490 while (wait_time_ms > 0) {
491 crit_sect_->Leave(); 491 crit_sect_->Leave();
492 const EventTypeWrapper ret = 492 const EventTypeWrapper ret =
493 frame_event_->Wait(static_cast<uint32_t>(wait_time_ms)); 493 frame_event_->Wait(static_cast<uint32_t>(wait_time_ms));
494 crit_sect_->Enter(); 494 crit_sect_->Enter();
495 if (ret == kEventSignaled) { 495 if (ret == kEventSignaled) {
496 // Are we shutting down the jitter buffer? 496 // Are we shutting down the jitter buffer?
497 if (!running_) { 497 if (!running_) {
498 crit_sect_->Leave(); 498 crit_sect_->Leave();
499 return false; 499 return false;
500 } 500 }
501 // Finding oldest frame ready for decoder. 501 // Finding oldest frame ready for decoder.
502 CleanUpOldOrEmptyFrames(); 502 CleanUpOldOrEmptyFrames();
503 if (decodable_frames_.empty() || 503 if (decodable_frames_.empty() ||
(...skipping 37 matching lines...) Expand 10 before | Expand all | Expand 10 after
541 oldest_frame = incomplete_frames_.Front(); 541 oldest_frame = incomplete_frames_.Front();
542 // Frame will only be removed from buffer if it is complete (or decodable). 542 // Frame will only be removed from buffer if it is complete (or decodable).
543 if (oldest_frame->GetState() < kStateComplete) { 543 if (oldest_frame->GetState() < kStateComplete) {
544 return false; 544 return false;
545 } 545 }
546 } else { 546 } else {
547 oldest_frame = decodable_frames_.Front(); 547 oldest_frame = decodable_frames_.Front();
548 // If we have exactly one frame in the buffer, release it only if it is 548 // If we have exactly one frame in the buffer, release it only if it is
549 // complete. We know decodable_frames_ is not empty due to the previous 549 // complete. We know decodable_frames_ is not empty due to the previous
550 // check. 550 // check.
551 if (decodable_frames_.size() == 1 && incomplete_frames_.empty() 551 if (decodable_frames_.size() == 1 && incomplete_frames_.empty() &&
552 && oldest_frame->GetState() != kStateComplete) { 552 oldest_frame->GetState() != kStateComplete) {
553 return false; 553 return false;
554 } 554 }
555 } 555 }
556 556
557 *timestamp = oldest_frame->TimeStamp(); 557 *timestamp = oldest_frame->TimeStamp();
558 return true; 558 return true;
559 } 559 }
560 560
561 VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) { 561 VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) {
562 CriticalSectionScoped cs(crit_sect_); 562 CriticalSectionScoped cs(crit_sect_);
(...skipping 18 matching lines...) Expand all
581 } else if (frame->Length() > 0) { 581 } else if (frame->Length() > 0) {
582 // Ignore retransmitted and empty frames. 582 // Ignore retransmitted and empty frames.
583 if (waiting_for_completion_.latest_packet_time >= 0) { 583 if (waiting_for_completion_.latest_packet_time >= 0) {
584 UpdateJitterEstimate(waiting_for_completion_, true); 584 UpdateJitterEstimate(waiting_for_completion_, true);
585 } 585 }
586 if (frame->GetState() == kStateComplete) { 586 if (frame->GetState() == kStateComplete) {
587 UpdateJitterEstimate(*frame, false); 587 UpdateJitterEstimate(*frame, false);
588 } else { 588 } else {
589 // Wait for this one to get complete. 589 // Wait for this one to get complete.
590 waiting_for_completion_.frame_size = frame->Length(); 590 waiting_for_completion_.frame_size = frame->Length();
591 waiting_for_completion_.latest_packet_time = 591 waiting_for_completion_.latest_packet_time = frame->LatestPacketTimeMs();
592 frame->LatestPacketTimeMs();
593 waiting_for_completion_.timestamp = frame->TimeStamp(); 592 waiting_for_completion_.timestamp = frame->TimeStamp();
594 } 593 }
595 } 594 }
596 595
597 // The state must be changed to decoding before cleaning up zero sized 596 // The state must be changed to decoding before cleaning up zero sized
598 // frames to avoid empty frames being cleaned up and then given to the 597 // frames to avoid empty frames being cleaned up and then given to the
599 // decoder. Propagates the missing_frame bit. 598 // decoder. Propagates the missing_frame bit.
600 frame->PrepareForDecode(continuous); 599 frame->PrepareForDecode(continuous);
601 600
602 // We have a frame - update the last decoded state and nack list. 601 // We have a frame - update the last decoded state and nack list.
(...skipping 132 matching lines...) Expand 10 before | Expand all | Expand 10 after
735 734
736 VCMFrameBufferStateEnum previous_state = frame->GetState(); 735 VCMFrameBufferStateEnum previous_state = frame->GetState();
737 // Insert packet. 736 // Insert packet.
738 FrameData frame_data; 737 FrameData frame_data;
739 frame_data.rtt_ms = rtt_ms_; 738 frame_data.rtt_ms = rtt_ms_;
740 frame_data.rolling_average_packets_per_frame = average_packets_per_frame_; 739 frame_data.rolling_average_packets_per_frame = average_packets_per_frame_;
741 VCMFrameBufferEnum buffer_state = 740 VCMFrameBufferEnum buffer_state =
742 frame->InsertPacket(packet, now_ms, decode_error_mode_, frame_data); 741 frame->InsertPacket(packet, now_ms, decode_error_mode_, frame_data);
743 742
744 if (previous_state != kStateComplete) { 743 if (previous_state != kStateComplete) {
745 TRACE_EVENT_ASYNC_BEGIN1("webrtc", "Video", frame->TimeStamp(), 744 TRACE_EVENT_ASYNC_BEGIN1("webrtc", "Video", frame->TimeStamp(), "timestamp",
746 "timestamp", frame->TimeStamp()); 745 frame->TimeStamp());
747 } 746 }
748 747
749 if (buffer_state > 0) { 748 if (buffer_state > 0) {
750 incoming_bit_count_ += packet.sizeBytes << 3; 749 incoming_bit_count_ += packet.sizeBytes << 3;
751 if (first_packet_since_reset_) { 750 if (first_packet_since_reset_) {
752 latest_received_sequence_number_ = packet.seqNum; 751 latest_received_sequence_number_ = packet.seqNum;
753 first_packet_since_reset_ = false; 752 first_packet_since_reset_ = false;
754 } else { 753 } else {
755 if (IsPacketRetransmitted(packet)) { 754 if (IsPacketRetransmitted(packet)) {
756 frame->IncrementNackCount(); 755 frame->IncrementNackCount();
757 } 756 }
758 if (!UpdateNackList(packet.seqNum) && 757 if (!UpdateNackList(packet.seqNum) &&
759 packet.frameType != kVideoFrameKey) { 758 packet.frameType != kVideoFrameKey) {
760 buffer_state = kFlushIndicator; 759 buffer_state = kFlushIndicator;
761 } 760 }
762 761
763 latest_received_sequence_number_ = LatestSequenceNumber( 762 latest_received_sequence_number_ =
764 latest_received_sequence_number_, packet.seqNum); 763 LatestSequenceNumber(latest_received_sequence_number_, packet.seqNum);
765 } 764 }
766 } 765 }
767 766
768 // Is the frame already in the decodable list? 767 // Is the frame already in the decodable list?
769 bool continuous = IsContinuous(*frame); 768 bool continuous = IsContinuous(*frame);
770 switch (buffer_state) { 769 switch (buffer_state) {
771 case kGeneralError: 770 case kGeneralError:
772 case kTimeStampError: 771 case kTimeStampError:
773 case kSizeError: { 772 case kSizeError: {
774 free_frames_.push_back(frame); 773 free_frames_.push_back(frame);
(...skipping 12 matching lines...) Expand all
787 } 786 }
788 // Note: There is no break here - continuing to kDecodableSession. 787 // Note: There is no break here - continuing to kDecodableSession.
789 case kDecodableSession: { 788 case kDecodableSession: {
790 *retransmitted = (frame->GetNackCount() > 0); 789 *retransmitted = (frame->GetNackCount() > 0);
791 if (continuous) { 790 if (continuous) {
792 decodable_frames_.InsertFrame(frame); 791 decodable_frames_.InsertFrame(frame);
793 FindAndInsertContinuousFrames(*frame); 792 FindAndInsertContinuousFrames(*frame);
794 } else { 793 } else {
795 incomplete_frames_.InsertFrame(frame); 794 incomplete_frames_.InsertFrame(frame);
796 // If NACKs are enabled, keyframes are triggered by |GetNackList|. 795 // If NACKs are enabled, keyframes are triggered by |GetNackList|.
797 if (nack_mode_ == kNoNack && NonContinuousOrIncompleteDuration() > 796 if (nack_mode_ == kNoNack &&
798 90 * kMaxDiscontinuousFramesTime) { 797 NonContinuousOrIncompleteDuration() >
798 90 * kMaxDiscontinuousFramesTime) {
799 return kFlushIndicator; 799 return kFlushIndicator;
800 } 800 }
801 } 801 }
802 break; 802 break;
803 } 803 }
804 case kIncomplete: { 804 case kIncomplete: {
805 if (frame->GetState() == kStateEmpty && 805 if (frame->GetState() == kStateEmpty &&
806 last_decoded_state_.UpdateEmptyFrame(frame)) { 806 last_decoded_state_.UpdateEmptyFrame(frame)) {
807 free_frames_.push_back(frame); 807 free_frames_.push_back(frame);
808 return kNoError; 808 return kNoError;
809 } else { 809 } else {
810 incomplete_frames_.InsertFrame(frame); 810 incomplete_frames_.InsertFrame(frame);
811 // If NACKs are enabled, keyframes are triggered by |GetNackList|. 811 // If NACKs are enabled, keyframes are triggered by |GetNackList|.
812 if (nack_mode_ == kNoNack && NonContinuousOrIncompleteDuration() > 812 if (nack_mode_ == kNoNack &&
813 90 * kMaxDiscontinuousFramesTime) { 813 NonContinuousOrIncompleteDuration() >
814 90 * kMaxDiscontinuousFramesTime) {
814 return kFlushIndicator; 815 return kFlushIndicator;
815 } 816 }
816 } 817 }
817 break; 818 break;
818 } 819 }
819 case kNoError: 820 case kNoError:
820 case kOutOfBoundsPacket: 821 case kOutOfBoundsPacket:
821 case kDuplicatePacket: { 822 case kDuplicatePacket: {
822 // Put back the frame where it came from. 823 // Put back the frame where it came from.
823 if (frame_list != NULL) { 824 if (frame_list != NULL) {
824 frame_list->InsertFrame(frame); 825 frame_list->InsertFrame(frame);
825 } else { 826 } else {
826 free_frames_.push_back(frame); 827 free_frames_.push_back(frame);
827 } 828 }
828 ++num_duplicated_packets_; 829 ++num_duplicated_packets_;
829 break; 830 break;
830 } 831 }
831 case kFlushIndicator: 832 case kFlushIndicator:
832 free_frames_.push_back(frame); 833 free_frames_.push_back(frame);
833 return kFlushIndicator; 834 return kFlushIndicator;
834 default: assert(false); 835 default:
836 assert(false);
835 } 837 }
836 return buffer_state; 838 return buffer_state;
837 } 839 }
838 840
839 bool VCMJitterBuffer::IsContinuousInState(const VCMFrameBuffer& frame, 841 bool VCMJitterBuffer::IsContinuousInState(
842 const VCMFrameBuffer& frame,
840 const VCMDecodingState& decoding_state) const { 843 const VCMDecodingState& decoding_state) const {
841 // Is this frame (complete or decodable) and continuous? 844 // Is this frame (complete or decodable) and continuous?
842 // kStateDecodable will never be set when decode_error_mode_ is false 845 // kStateDecodable will never be set when decode_error_mode_ is false
843 // as SessionInfo determines this state based on the error mode (and frame 846 // as SessionInfo determines this state based on the error mode (and frame
844 // completeness). 847 // completeness).
845 return (frame.GetState() == kStateComplete || 848 return (frame.GetState() == kStateComplete ||
846 frame.GetState() == kStateDecodable) && 849 frame.GetState() == kStateDecodable) &&
847 decoding_state.ContinuousFrame(&frame); 850 decoding_state.ContinuousFrame(&frame);
848 } 851 }
849 852
850 bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const { 853 bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const {
851 if (IsContinuousInState(frame, last_decoded_state_)) { 854 if (IsContinuousInState(frame, last_decoded_state_)) {
852 return true; 855 return true;
853 } 856 }
854 VCMDecodingState decoding_state; 857 VCMDecodingState decoding_state;
855 decoding_state.CopyFrom(last_decoded_state_); 858 decoding_state.CopyFrom(last_decoded_state_);
856 for (FrameList::const_iterator it = decodable_frames_.begin(); 859 for (FrameList::const_iterator it = decodable_frames_.begin();
857 it != decodable_frames_.end(); ++it) { 860 it != decodable_frames_.end(); ++it) {
858 VCMFrameBuffer* decodable_frame = it->second; 861 VCMFrameBuffer* decodable_frame = it->second;
859 if (IsNewerTimestamp(decodable_frame->TimeStamp(), frame.TimeStamp())) { 862 if (IsNewerTimestamp(decodable_frame->TimeStamp(), frame.TimeStamp())) {
860 break; 863 break;
861 } 864 }
862 decoding_state.SetState(decodable_frame); 865 decoding_state.SetState(decodable_frame);
863 if (IsContinuousInState(frame, decoding_state)) { 866 if (IsContinuousInState(frame, decoding_state)) {
864 return true; 867 return true;
865 } 868 }
866 } 869 }
867 return false; 870 return false;
(...skipping 12 matching lines...) Expand all
880 // Copy original_decoded_state so we can move the state forward with each 883 // Copy original_decoded_state so we can move the state forward with each
881 // decodable frame we find. 884 // decodable frame we find.
882 VCMDecodingState decoding_state; 885 VCMDecodingState decoding_state;
883 decoding_state.CopyFrom(original_decoded_state); 886 decoding_state.CopyFrom(original_decoded_state);
884 887
885 // When temporal layers are available, we search for a complete or decodable 888 // When temporal layers are available, we search for a complete or decodable
886 // frame until we hit one of the following: 889 // frame until we hit one of the following:
887 // 1. Continuous base or sync layer. 890 // 1. Continuous base or sync layer.
888 // 2. The end of the list was reached. 891 // 2. The end of the list was reached.
889 for (FrameList::iterator it = incomplete_frames_.begin(); 892 for (FrameList::iterator it = incomplete_frames_.begin();
890 it != incomplete_frames_.end();) { 893 it != incomplete_frames_.end();) {
891 VCMFrameBuffer* frame = it->second; 894 VCMFrameBuffer* frame = it->second;
892 if (IsNewerTimestamp(original_decoded_state.time_stamp(), 895 if (IsNewerTimestamp(original_decoded_state.time_stamp(),
893 frame->TimeStamp())) { 896 frame->TimeStamp())) {
894 ++it; 897 ++it;
895 continue; 898 continue;
896 } 899 }
897 if (IsContinuousInState(*frame, decoding_state)) { 900 if (IsContinuousInState(*frame, decoding_state)) {
898 decodable_frames_.InsertFrame(frame); 901 decodable_frames_.InsertFrame(frame);
899 incomplete_frames_.erase(it++); 902 incomplete_frames_.erase(it++);
900 decoding_state.SetState(frame); 903 decoding_state.SetState(frame);
(...skipping 89 matching lines...) Expand 10 before | Expand all | Expand 10 after
990 993
991 std::vector<uint16_t> VCMJitterBuffer::GetNackList(bool* request_key_frame) { 994 std::vector<uint16_t> VCMJitterBuffer::GetNackList(bool* request_key_frame) {
992 CriticalSectionScoped cs(crit_sect_); 995 CriticalSectionScoped cs(crit_sect_);
993 *request_key_frame = false; 996 *request_key_frame = false;
994 if (nack_mode_ == kNoNack) { 997 if (nack_mode_ == kNoNack) {
995 return std::vector<uint16_t>(); 998 return std::vector<uint16_t>();
996 } 999 }
997 if (last_decoded_state_.in_initial_state()) { 1000 if (last_decoded_state_.in_initial_state()) {
998 VCMFrameBuffer* next_frame = NextFrame(); 1001 VCMFrameBuffer* next_frame = NextFrame();
999 const bool first_frame_is_key = next_frame && 1002 const bool first_frame_is_key = next_frame &&
1000 next_frame->FrameType() == kVideoFrameKey && 1003 next_frame->FrameType() == kVideoFrameKey &&
1001 next_frame->HaveFirstPacket(); 1004 next_frame->HaveFirstPacket();
1002 if (!first_frame_is_key) { 1005 if (!first_frame_is_key) {
1003 bool have_non_empty_frame = decodable_frames_.end() != find_if( 1006 bool have_non_empty_frame =
1004 decodable_frames_.begin(), decodable_frames_.end(), 1007 decodable_frames_.end() != find_if(decodable_frames_.begin(),
1005 HasNonEmptyState); 1008 decodable_frames_.end(),
1009 HasNonEmptyState);
1006 if (!have_non_empty_frame) { 1010 if (!have_non_empty_frame) {
1007 have_non_empty_frame = incomplete_frames_.end() != find_if( 1011 have_non_empty_frame =
1008 incomplete_frames_.begin(), incomplete_frames_.end(), 1012 incomplete_frames_.end() != find_if(incomplete_frames_.begin(),
1009 HasNonEmptyState); 1013 incomplete_frames_.end(),
1014 HasNonEmptyState);
1010 } 1015 }
1011 bool found_key_frame = RecycleFramesUntilKeyFrame(); 1016 bool found_key_frame = RecycleFramesUntilKeyFrame();
1012 if (!found_key_frame) { 1017 if (!found_key_frame) {
1013 *request_key_frame = have_non_empty_frame; 1018 *request_key_frame = have_non_empty_frame;
1014 return std::vector<uint16_t>(); 1019 return std::vector<uint16_t>();
1015 } 1020 }
1016 } 1021 }
1017 } 1022 }
1018 if (TooLargeNackList()) { 1023 if (TooLargeNackList()) {
1019 *request_key_frame = !HandleTooLargeNackList(); 1024 *request_key_frame = !HandleTooLargeNackList();
1020 } 1025 }
1021 if (max_incomplete_time_ms_ > 0) { 1026 if (max_incomplete_time_ms_ > 0) {
1022 int non_continuous_incomplete_duration = 1027 int non_continuous_incomplete_duration =
1023 NonContinuousOrIncompleteDuration(); 1028 NonContinuousOrIncompleteDuration();
1024 if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) { 1029 if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) {
1025 LOG_F(LS_WARNING) << "Too long non-decodable duration: " 1030 LOG_F(LS_WARNING) << "Too long non-decodable duration: "
1026 << non_continuous_incomplete_duration << " > " 1031 << non_continuous_incomplete_duration << " > "
1027 << 90 * max_incomplete_time_ms_; 1032 << 90 * max_incomplete_time_ms_;
1028 FrameList::reverse_iterator rit = find_if(incomplete_frames_.rbegin(), 1033 FrameList::reverse_iterator rit = find_if(
1029 incomplete_frames_.rend(), IsKeyFrame); 1034 incomplete_frames_.rbegin(), incomplete_frames_.rend(), IsKeyFrame);
1030 if (rit == incomplete_frames_.rend()) { 1035 if (rit == incomplete_frames_.rend()) {
1031 // Request a key frame if we don't have one already. 1036 // Request a key frame if we don't have one already.
1032 *request_key_frame = true; 1037 *request_key_frame = true;
1033 return std::vector<uint16_t>(); 1038 return std::vector<uint16_t>();
1034 } else { 1039 } else {
1035 // Skip to the last key frame. If it's incomplete we will start 1040 // Skip to the last key frame. If it's incomplete we will start
1036 // NACKing it. 1041 // NACKing it.
1037 // Note that the estimated low sequence number is correct for VP8 1042 // Note that the estimated low sequence number is correct for VP8
1038 // streams because only the first packet of a key frame is marked. 1043 // streams because only the first packet of a key frame is marked.
1039 last_decoded_state_.Reset(); 1044 last_decoded_state_.Reset();
(...skipping 19 matching lines...) Expand all
1059 return NULL; 1064 return NULL;
1060 } 1065 }
1061 1066
1062 bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) { 1067 bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) {
1063 if (nack_mode_ == kNoNack) { 1068 if (nack_mode_ == kNoNack) {
1064 return true; 1069 return true;
1065 } 1070 }
1066 // Make sure we don't add packets which are already too old to be decoded. 1071 // Make sure we don't add packets which are already too old to be decoded.
1067 if (!last_decoded_state_.in_initial_state()) { 1072 if (!last_decoded_state_.in_initial_state()) {
1068 latest_received_sequence_number_ = LatestSequenceNumber( 1073 latest_received_sequence_number_ = LatestSequenceNumber(
1069 latest_received_sequence_number_, 1074 latest_received_sequence_number_, last_decoded_state_.sequence_num());
1070 last_decoded_state_.sequence_num());
1071 } 1075 }
1072 if (IsNewerSequenceNumber(sequence_number, 1076 if (IsNewerSequenceNumber(sequence_number,
1073 latest_received_sequence_number_)) { 1077 latest_received_sequence_number_)) {
1074 // Push any missing sequence numbers to the NACK list. 1078 // Push any missing sequence numbers to the NACK list.
1075 for (uint16_t i = latest_received_sequence_number_ + 1; 1079 for (uint16_t i = latest_received_sequence_number_ + 1;
1076 IsNewerSequenceNumber(sequence_number, i); ++i) { 1080 IsNewerSequenceNumber(sequence_number, i); ++i) {
1077 missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i); 1081 missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i);
1078 TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "AddNack", 1082 TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "AddNack",
1079 "seqnum", i); 1083 "seqnum", i);
1080 } 1084 }
(...skipping 29 matching lines...) Expand all
1110 key_frame_found = RecycleFramesUntilKeyFrame(); 1114 key_frame_found = RecycleFramesUntilKeyFrame();
1111 } 1115 }
1112 return key_frame_found; 1116 return key_frame_found;
1113 } 1117 }
1114 1118
1115 bool VCMJitterBuffer::MissingTooOldPacket( 1119 bool VCMJitterBuffer::MissingTooOldPacket(
1116 uint16_t latest_sequence_number) const { 1120 uint16_t latest_sequence_number) const {
1117 if (missing_sequence_numbers_.empty()) { 1121 if (missing_sequence_numbers_.empty()) {
1118 return false; 1122 return false;
1119 } 1123 }
1120 const uint16_t age_of_oldest_missing_packet = latest_sequence_number - 1124 const uint16_t age_of_oldest_missing_packet =
1121 *missing_sequence_numbers_.begin(); 1125 latest_sequence_number - *missing_sequence_numbers_.begin();
1122 // Recycle frames if the NACK list contains too old sequence numbers as 1126 // Recycle frames if the NACK list contains too old sequence numbers as
1123 // the packets may have already been dropped by the sender. 1127 // the packets may have already been dropped by the sender.
1124 return age_of_oldest_missing_packet > max_packet_age_to_nack_; 1128 return age_of_oldest_missing_packet > max_packet_age_to_nack_;
1125 } 1129 }
1126 1130
1127 bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) { 1131 bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) {
1128 bool key_frame_found = false; 1132 bool key_frame_found = false;
1129 const uint16_t age_of_oldest_missing_packet = latest_sequence_number - 1133 const uint16_t age_of_oldest_missing_packet =
1130 *missing_sequence_numbers_.begin(); 1134 latest_sequence_number - *missing_sequence_numbers_.begin();
1131 LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: " 1135 LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: "
1132 << age_of_oldest_missing_packet << " > " 1136 << age_of_oldest_missing_packet << " > "
1133 << max_packet_age_to_nack_; 1137 << max_packet_age_to_nack_;
1134 while (MissingTooOldPacket(latest_sequence_number)) { 1138 while (MissingTooOldPacket(latest_sequence_number)) {
1135 key_frame_found = RecycleFramesUntilKeyFrame(); 1139 key_frame_found = RecycleFramesUntilKeyFrame();
1136 } 1140 }
1137 return key_frame_found; 1141 return key_frame_found;
1138 } 1142 }
1139 1143
1140 void VCMJitterBuffer::DropPacketsFromNackList( 1144 void VCMJitterBuffer::DropPacketsFromNackList(
1141 uint16_t last_decoded_sequence_number) { 1145 uint16_t last_decoded_sequence_number) {
1142 // Erase all sequence numbers from the NACK list which we won't need any 1146 // Erase all sequence numbers from the NACK list which we won't need any
1143 // longer. 1147 // longer.
1144 missing_sequence_numbers_.erase(missing_sequence_numbers_.begin(), 1148 missing_sequence_numbers_.erase(
1145 missing_sequence_numbers_.upper_bound( 1149 missing_sequence_numbers_.begin(),
1146 last_decoded_sequence_number)); 1150 missing_sequence_numbers_.upper_bound(last_decoded_sequence_number));
1147 } 1151 }
1148 1152
1149 int64_t VCMJitterBuffer::LastDecodedTimestamp() const { 1153 int64_t VCMJitterBuffer::LastDecodedTimestamp() const {
1150 CriticalSectionScoped cs(crit_sect_); 1154 CriticalSectionScoped cs(crit_sect_);
1151 return last_decoded_state_.time_stamp(); 1155 return last_decoded_state_.time_stamp();
1152 } 1156 }
1153 1157
1154 void VCMJitterBuffer::RenderBufferSize(uint32_t* timestamp_start, 1158 void VCMJitterBuffer::RenderBufferSize(uint32_t* timestamp_start,
1155 uint32_t* timestamp_end) { 1159 uint32_t* timestamp_end) {
1156 CriticalSectionScoped cs(crit_sect_); 1160 CriticalSectionScoped cs(crit_sect_);
(...skipping 63 matching lines...) Expand 10 before | Expand all | Expand 10 after
1220 missing_sequence_numbers_.clear(); 1224 missing_sequence_numbers_.clear();
1221 } 1225 }
1222 return key_frame_found; 1226 return key_frame_found;
1223 } 1227 }
1224 1228
1225 // Must be called under the critical section |crit_sect_|. 1229 // Must be called under the critical section |crit_sect_|.
1226 void VCMJitterBuffer::CountFrame(const VCMFrameBuffer& frame) { 1230 void VCMJitterBuffer::CountFrame(const VCMFrameBuffer& frame) {
1227 incoming_frame_count_++; 1231 incoming_frame_count_++;
1228 1232
1229 if (frame.FrameType() == kVideoFrameKey) { 1233 if (frame.FrameType() == kVideoFrameKey) {
1230 TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", 1234 TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", frame.TimeStamp(),
1231 frame.TimeStamp(), "KeyComplete"); 1235 "KeyComplete");
1232 } else { 1236 } else {
1233 TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", 1237 TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", frame.TimeStamp(),
1234 frame.TimeStamp(), "DeltaComplete"); 1238 "DeltaComplete");
1235 } 1239 }
1236 1240
1237 // Update receive statistics. We count all layers, thus when you use layers 1241 // Update receive statistics. We count all layers, thus when you use layers
1238 // adding all key and delta frames might differ from frame count. 1242 // adding all key and delta frames might differ from frame count.
1239 if (frame.IsSessionComplete()) { 1243 if (frame.IsSessionComplete()) {
1240 if (frame.FrameType() == kVideoFrameKey) { 1244 if (frame.FrameType() == kVideoFrameKey) {
1241 ++receive_statistics_.key_frames; 1245 ++receive_statistics_.key_frames;
1242 } else { 1246 } else {
1243 ++receive_statistics_.delta_frames; 1247 ++receive_statistics_.delta_frames;
1244 } 1248 }
1245 if (stats_callback_ != NULL) 1249 if (stats_callback_ != NULL)
1246 stats_callback_->OnFrameCountsUpdated(receive_statistics_); 1250 stats_callback_->OnFrameCountsUpdated(receive_statistics_);
1247 } 1251 }
1248 } 1252 }
1249 1253
1250 void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) { 1254 void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) {
1251 if (frame_counter_ > kFastConvergeThreshold) { 1255 if (frame_counter_ > kFastConvergeThreshold) {
1252 average_packets_per_frame_ = average_packets_per_frame_ 1256 average_packets_per_frame_ =
1253 * (1 - kNormalConvergeMultiplier) 1257 average_packets_per_frame_ * (1 - kNormalConvergeMultiplier) +
1254 + current_number_packets * kNormalConvergeMultiplier; 1258 current_number_packets * kNormalConvergeMultiplier;
1255 } else if (frame_counter_ > 0) { 1259 } else if (frame_counter_ > 0) {
1256 average_packets_per_frame_ = average_packets_per_frame_ 1260 average_packets_per_frame_ =
1257 * (1 - kFastConvergeMultiplier) 1261 average_packets_per_frame_ * (1 - kFastConvergeMultiplier) +
1258 + current_number_packets * kFastConvergeMultiplier; 1262 current_number_packets * kFastConvergeMultiplier;
1259 frame_counter_++; 1263 frame_counter_++;
1260 } else { 1264 } else {
1261 average_packets_per_frame_ = current_number_packets; 1265 average_packets_per_frame_ = current_number_packets;
1262 frame_counter_++; 1266 frame_counter_++;
1263 } 1267 }
1264 } 1268 }
1265 1269
1266 // Must be called under the critical section |crit_sect_|. 1270 // Must be called under the critical section |crit_sect_|.
1267 void VCMJitterBuffer::CleanUpOldOrEmptyFrames() { 1271 void VCMJitterBuffer::CleanUpOldOrEmptyFrames() {
1268 decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_, 1272 decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
1269 &free_frames_); 1273 &free_frames_);
1270 incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_, 1274 incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
1271 &free_frames_); 1275 &free_frames_);
1272 if (!last_decoded_state_.in_initial_state()) { 1276 if (!last_decoded_state_.in_initial_state()) {
1273 DropPacketsFromNackList(last_decoded_state_.sequence_num()); 1277 DropPacketsFromNackList(last_decoded_state_.sequence_num());
1274 } 1278 }
1275 } 1279 }
1276 1280
1277 // Must be called from within |crit_sect_|. 1281 // Must be called from within |crit_sect_|.
1278 bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const { 1282 bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const {
1279 return missing_sequence_numbers_.find(packet.seqNum) != 1283 return missing_sequence_numbers_.find(packet.seqNum) !=
1280 missing_sequence_numbers_.end(); 1284 missing_sequence_numbers_.end();
1281 } 1285 }
1282 1286
1283 // Must be called under the critical section |crit_sect_|. Should never be 1287 // Must be called under the critical section |crit_sect_|. Should never be
1284 // called with retransmitted frames, they must be filtered out before this 1288 // called with retransmitted frames, they must be filtered out before this
1285 // function is called. 1289 // function is called.
1286 void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample, 1290 void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample,
1287 bool incomplete_frame) { 1291 bool incomplete_frame) {
1288 if (sample.latest_packet_time == -1) { 1292 if (sample.latest_packet_time == -1) {
1289 return; 1293 return;
1290 } 1294 }
(...skipping 11 matching lines...) Expand all
1302 } 1306 }
1303 // No retransmitted frames should be a part of the jitter 1307 // No retransmitted frames should be a part of the jitter
1304 // estimate. 1308 // estimate.
1305 UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.TimeStamp(), 1309 UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.TimeStamp(),
1306 frame.Length(), incomplete_frame); 1310 frame.Length(), incomplete_frame);
1307 } 1311 }
1308 1312
1309 // Must be called under the critical section |crit_sect_|. Should never be 1313 // Must be called under the critical section |crit_sect_|. Should never be
1310 // called with retransmitted frames, they must be filtered out before this 1314 // called with retransmitted frames, they must be filtered out before this
1311 // function is called. 1315 // function is called.
1312 void VCMJitterBuffer::UpdateJitterEstimate( 1316 void VCMJitterBuffer::UpdateJitterEstimate(int64_t latest_packet_time_ms,
1313 int64_t latest_packet_time_ms, 1317 uint32_t timestamp,
1314 uint32_t timestamp, 1318 unsigned int frame_size,
1315 unsigned int frame_size, 1319 bool incomplete_frame) {
1316 bool incomplete_frame) {
1317 if (latest_packet_time_ms == -1) { 1320 if (latest_packet_time_ms == -1) {
1318 return; 1321 return;
1319 } 1322 }
1320 int64_t frame_delay; 1323 int64_t frame_delay;
1321 bool not_reordered = inter_frame_delay_.CalculateDelay(timestamp, 1324 bool not_reordered = inter_frame_delay_.CalculateDelay(
1322 &frame_delay, 1325 timestamp, &frame_delay, latest_packet_time_ms);
1323 latest_packet_time_ms);
1324 // Filter out frames which have been reordered in time by the network 1326 // Filter out frames which have been reordered in time by the network
1325 if (not_reordered) { 1327 if (not_reordered) {
1326 // Update the jitter estimate with the new samples 1328 // Update the jitter estimate with the new samples
1327 jitter_estimate_.UpdateEstimate(frame_delay, frame_size, incomplete_frame); 1329 jitter_estimate_.UpdateEstimate(frame_delay, frame_size, incomplete_frame);
1328 } 1330 }
1329 } 1331 }
1330 1332
1331 bool VCMJitterBuffer::WaitForRetransmissions() { 1333 bool VCMJitterBuffer::WaitForRetransmissions() {
1332 if (nack_mode_ == kNoNack) { 1334 if (nack_mode_ == kNoNack) {
1333 // NACK disabled -> don't wait for retransmissions. 1335 // NACK disabled -> don't wait for retransmissions.
1334 return false; 1336 return false;
1335 } 1337 }
1336 // Evaluate if the RTT is higher than |high_rtt_nack_threshold_ms_|, and in 1338 // Evaluate if the RTT is higher than |high_rtt_nack_threshold_ms_|, and in
1337 // that case we don't wait for retransmissions. 1339 // that case we don't wait for retransmissions.
1338 if (high_rtt_nack_threshold_ms_ >= 0 && 1340 if (high_rtt_nack_threshold_ms_ >= 0 &&
1339 rtt_ms_ >= high_rtt_nack_threshold_ms_) { 1341 rtt_ms_ >= high_rtt_nack_threshold_ms_) {
1340 return false; 1342 return false;
1341 } 1343 }
1342 return true; 1344 return true;
1343 } 1345 }
1344 } // namespace webrtc 1346 } // namespace webrtc
OLDNEW
« no previous file with comments | « webrtc/modules/video_coding/jitter_buffer.h ('k') | webrtc/modules/video_coding/jitter_buffer_common.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698