Index: webrtc/modules/audio_processing/aec/aec_core.c |
diff --git a/webrtc/modules/audio_processing/aec/aec_core.c b/webrtc/modules/audio_processing/aec/aec_core.c |
index 901e0fde0b8b5300c4b657b59bfdf61c7b8c116d..26e13bc2c2dac54529e129c62ab964e3befd282d 100644 |
--- a/webrtc/modules/audio_processing/aec/aec_core.c |
+++ b/webrtc/modules/audio_processing/aec/aec_core.c |
@@ -565,41 +565,17 @@ static void InitMetrics(AecCore* self) { |
InitStats(&self->rerl); |
} |
-static void UpdateLevel(PowerLevel* level, float in[2][PART_LEN1]) { |
- // Do the energy calculation in the frequency domain. The FFT is performed on |
- // a segment of PART_LEN2 samples due to overlap, but we only want the energy |
- // of half that data (the last PART_LEN samples). Parseval's relation states |
- // that the energy is preserved according to |
- // |
- // \sum_{n=0}^{N-1} |x(n)|^2 = 1/N * \sum_{n=0}^{N-1} |X(n)|^2 |
- // = ENERGY, |
- // |
- // where N = PART_LEN2. Since we are only interested in calculating the energy |
- // for the last PART_LEN samples we approximate by calculating ENERGY and |
- // divide by 2, |
- // |
- // \sum_{n=N/2}^{N-1} |x(n)|^2 ~= ENERGY / 2 |
- // |
- // Since we deal with real valued time domain signals we only store frequency |
- // bins [0, PART_LEN], which is what |in| consists of. To calculate ENERGY we |
- // need to add the contribution from the missing part in |
- // [PART_LEN+1, PART_LEN2-1]. These values are, up to a phase shift, identical |
- // with the values in [1, PART_LEN-1], hence multiply those values by 2. This |
- // is the values in the for loop below, but multiplication by 2 and division |
- // by 2 cancel. |
- |
- // TODO(bjornv): Investigate reusing energy calculations performed at other |
- // places in the code. |
- int k = 1; |
- // Imaginary parts are zero at end points and left out of the calculation. |
- float energy = (in[0][0] * in[0][0]) / 2; |
- energy += (in[0][PART_LEN] * in[0][PART_LEN]) / 2; |
- |
- for (k = 1; k < PART_LEN; k++) { |
- energy += (in[0][k] * in[0][k] + in[1][k] * in[1][k]); |
- } |
- energy /= PART_LEN2; |
+static float CalculatePower(const float* in, size_t num_samples) { |
+ size_t k; |
+ float energy = 0.0f; |
+ for (k = 0; k < num_samples; ++k) { |
+ energy += in[k] * in[k]; |
+ } |
+ return energy / num_samples; |
+} |
+ |
+static void UpdateLevel(PowerLevel* level, float energy) { |
level->sfrsum += energy; |
level->sfrcounter++; |
@@ -630,7 +606,12 @@ static void UpdateMetrics(AecCore* aec) { |
const float actThresholdNoisy = 8.0f; |
const float actThresholdClean = 40.0f; |
const float safety = 0.99995f; |
- const float noisyPower = 300000.0f; |
+ |
+ // To make noisePower consistent with the legacy code, a factor of |
+ // 2.0f / PART_LEN2 is applied to noisyPower, since the legacy code uses |
+ // the energy of a frame as the audio levels, while the new code uses a |
+ // a per-sample energy (i.e., power). |
+ const float noisyPower = 300000.0f * 2.0f / PART_LEN2; |
float actThreshold; |
float echo, suppressedEcho; |
@@ -846,7 +827,6 @@ static void Fft(float time_data[PART_LEN2], |
} |
} |
- |
static int SignalBasedDelayCorrection(AecCore* self) { |
int delay_correction = 0; |
int last_delay = -2; |
@@ -979,7 +959,7 @@ static void EchoSubtraction( |
// Note that the first PART_LEN samples in fft (before transformation) are |
// zero. Hence, the scaling by two in UpdateLevel() should not be |
// performed. That scaling is taken care of in UpdateMetrics() instead. |
- UpdateLevel(linout_level, e_fft); |
+ UpdateLevel(linout_level, CalculatePower(e, PART_LEN) / 2.0f); |
} |
// Scale error signal inversely with far power. |
@@ -1171,6 +1151,9 @@ static void EchoSuppression(AecCore* aec, |
// Add comfort noise. |
WebRtcAec_ComfortNoise(aec, efw, comfortNoiseHband, aec->noisePow, hNl); |
+ // Inverse error fft. |
+ ScaledInverseFft(efw, fft, 2.0f, 1); |
+ |
// TODO(bjornv): Investigate how to take the windowing below into account if |
// needed. |
if (aec->metricsMode == 1) { |
@@ -1178,12 +1161,9 @@ static void EchoSuppression(AecCore* aec, |
// In addition the time domain signal is windowed before transformation, |
// losing half the energy on the average. We take care of the first |
// scaling only in UpdateMetrics(). |
- UpdateLevel(&aec->nlpoutlevel, efw); |
+ UpdateLevel(&aec->nlpoutlevel, CalculatePower(fft, PART_LEN2)); |
} |
- // Inverse error fft. |
- ScaledInverseFft(efw, fft, 2.0f, 1); |
- |
// Overlap and add to obtain output. |
for (i = 0; i < PART_LEN; i++) { |
output[i] = (fft[i] * WebRtcAec_sqrtHanning[i] + |
@@ -1308,6 +1288,12 @@ static void ProcessBlock(AecCore* aec) { |
memcpy(fft, aec->dBuf, sizeof(float) * PART_LEN2); |
Fft(fft, df); |
+ if (aec->metricsMode == 1) { |
+ // Update power levels |
+ UpdateLevel(&aec->farlevel, CalculatePower(farend_ptr, PART_LEN2)); |
+ UpdateLevel(&aec->nearlevel, CalculatePower(aec->dBuf, PART_LEN2)); |
+ } |
+ |
// Power smoothing |
for (i = 0; i < PART_LEN1; i++) { |
far_spectrum = (xf_ptr[i] * xf_ptr[i]) + |
@@ -1405,9 +1391,6 @@ static void ProcessBlock(AecCore* aec) { |
EchoSuppression(aec, farend_ptr, echo_subtractor_output, output, outputH_ptr); |
if (aec->metricsMode == 1) { |
- // Update power levels and echo metrics |
- UpdateLevel(&aec->farlevel, (float(*)[PART_LEN1])xf_ptr); |
- UpdateLevel(&aec->nearlevel, df); |
UpdateMetrics(aec); |
} |