| Index: webrtc/modules/audio_processing/aec/aec_core.c
|
| diff --git a/webrtc/modules/audio_processing/aec/aec_core.c b/webrtc/modules/audio_processing/aec/aec_core.c
|
| index 901e0fde0b8b5300c4b657b59bfdf61c7b8c116d..26e13bc2c2dac54529e129c62ab964e3befd282d 100644
|
| --- a/webrtc/modules/audio_processing/aec/aec_core.c
|
| +++ b/webrtc/modules/audio_processing/aec/aec_core.c
|
| @@ -565,41 +565,17 @@ static void InitMetrics(AecCore* self) {
|
| InitStats(&self->rerl);
|
| }
|
|
|
| -static void UpdateLevel(PowerLevel* level, float in[2][PART_LEN1]) {
|
| - // Do the energy calculation in the frequency domain. The FFT is performed on
|
| - // a segment of PART_LEN2 samples due to overlap, but we only want the energy
|
| - // of half that data (the last PART_LEN samples). Parseval's relation states
|
| - // that the energy is preserved according to
|
| - //
|
| - // \sum_{n=0}^{N-1} |x(n)|^2 = 1/N * \sum_{n=0}^{N-1} |X(n)|^2
|
| - // = ENERGY,
|
| - //
|
| - // where N = PART_LEN2. Since we are only interested in calculating the energy
|
| - // for the last PART_LEN samples we approximate by calculating ENERGY and
|
| - // divide by 2,
|
| - //
|
| - // \sum_{n=N/2}^{N-1} |x(n)|^2 ~= ENERGY / 2
|
| - //
|
| - // Since we deal with real valued time domain signals we only store frequency
|
| - // bins [0, PART_LEN], which is what |in| consists of. To calculate ENERGY we
|
| - // need to add the contribution from the missing part in
|
| - // [PART_LEN+1, PART_LEN2-1]. These values are, up to a phase shift, identical
|
| - // with the values in [1, PART_LEN-1], hence multiply those values by 2. This
|
| - // is the values in the for loop below, but multiplication by 2 and division
|
| - // by 2 cancel.
|
| -
|
| - // TODO(bjornv): Investigate reusing energy calculations performed at other
|
| - // places in the code.
|
| - int k = 1;
|
| - // Imaginary parts are zero at end points and left out of the calculation.
|
| - float energy = (in[0][0] * in[0][0]) / 2;
|
| - energy += (in[0][PART_LEN] * in[0][PART_LEN]) / 2;
|
| -
|
| - for (k = 1; k < PART_LEN; k++) {
|
| - energy += (in[0][k] * in[0][k] + in[1][k] * in[1][k]);
|
| - }
|
| - energy /= PART_LEN2;
|
| +static float CalculatePower(const float* in, size_t num_samples) {
|
| + size_t k;
|
| + float energy = 0.0f;
|
|
|
| + for (k = 0; k < num_samples; ++k) {
|
| + energy += in[k] * in[k];
|
| + }
|
| + return energy / num_samples;
|
| +}
|
| +
|
| +static void UpdateLevel(PowerLevel* level, float energy) {
|
| level->sfrsum += energy;
|
| level->sfrcounter++;
|
|
|
| @@ -630,7 +606,12 @@ static void UpdateMetrics(AecCore* aec) {
|
| const float actThresholdNoisy = 8.0f;
|
| const float actThresholdClean = 40.0f;
|
| const float safety = 0.99995f;
|
| - const float noisyPower = 300000.0f;
|
| +
|
| + // To make noisePower consistent with the legacy code, a factor of
|
| + // 2.0f / PART_LEN2 is applied to noisyPower, since the legacy code uses
|
| + // the energy of a frame as the audio levels, while the new code uses a
|
| + // a per-sample energy (i.e., power).
|
| + const float noisyPower = 300000.0f * 2.0f / PART_LEN2;
|
|
|
| float actThreshold;
|
| float echo, suppressedEcho;
|
| @@ -846,7 +827,6 @@ static void Fft(float time_data[PART_LEN2],
|
| }
|
| }
|
|
|
| -
|
| static int SignalBasedDelayCorrection(AecCore* self) {
|
| int delay_correction = 0;
|
| int last_delay = -2;
|
| @@ -979,7 +959,7 @@ static void EchoSubtraction(
|
| // Note that the first PART_LEN samples in fft (before transformation) are
|
| // zero. Hence, the scaling by two in UpdateLevel() should not be
|
| // performed. That scaling is taken care of in UpdateMetrics() instead.
|
| - UpdateLevel(linout_level, e_fft);
|
| + UpdateLevel(linout_level, CalculatePower(e, PART_LEN) / 2.0f);
|
| }
|
|
|
| // Scale error signal inversely with far power.
|
| @@ -1171,6 +1151,9 @@ static void EchoSuppression(AecCore* aec,
|
| // Add comfort noise.
|
| WebRtcAec_ComfortNoise(aec, efw, comfortNoiseHband, aec->noisePow, hNl);
|
|
|
| + // Inverse error fft.
|
| + ScaledInverseFft(efw, fft, 2.0f, 1);
|
| +
|
| // TODO(bjornv): Investigate how to take the windowing below into account if
|
| // needed.
|
| if (aec->metricsMode == 1) {
|
| @@ -1178,12 +1161,9 @@ static void EchoSuppression(AecCore* aec,
|
| // In addition the time domain signal is windowed before transformation,
|
| // losing half the energy on the average. We take care of the first
|
| // scaling only in UpdateMetrics().
|
| - UpdateLevel(&aec->nlpoutlevel, efw);
|
| + UpdateLevel(&aec->nlpoutlevel, CalculatePower(fft, PART_LEN2));
|
| }
|
|
|
| - // Inverse error fft.
|
| - ScaledInverseFft(efw, fft, 2.0f, 1);
|
| -
|
| // Overlap and add to obtain output.
|
| for (i = 0; i < PART_LEN; i++) {
|
| output[i] = (fft[i] * WebRtcAec_sqrtHanning[i] +
|
| @@ -1308,6 +1288,12 @@ static void ProcessBlock(AecCore* aec) {
|
| memcpy(fft, aec->dBuf, sizeof(float) * PART_LEN2);
|
| Fft(fft, df);
|
|
|
| + if (aec->metricsMode == 1) {
|
| + // Update power levels
|
| + UpdateLevel(&aec->farlevel, CalculatePower(farend_ptr, PART_LEN2));
|
| + UpdateLevel(&aec->nearlevel, CalculatePower(aec->dBuf, PART_LEN2));
|
| + }
|
| +
|
| // Power smoothing
|
| for (i = 0; i < PART_LEN1; i++) {
|
| far_spectrum = (xf_ptr[i] * xf_ptr[i]) +
|
| @@ -1405,9 +1391,6 @@ static void ProcessBlock(AecCore* aec) {
|
| EchoSuppression(aec, farend_ptr, echo_subtractor_output, output, outputH_ptr);
|
|
|
| if (aec->metricsMode == 1) {
|
| - // Update power levels and echo metrics
|
| - UpdateLevel(&aec->farlevel, (float(*)[PART_LEN1])xf_ptr);
|
| - UpdateLevel(&aec->nearlevel, df);
|
| UpdateMetrics(aec);
|
| }
|
|
|
|
|