| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| 11 #include "webrtc/modules/remote_bitrate_estimator/overuse_estimator.h" | 11 #include "webrtc/modules/remote_bitrate_estimator/overuse_estimator.h" |
| 12 | 12 |
| 13 #include <algorithm> | 13 #include <algorithm> |
| 14 #include <assert.h> | 14 #include <assert.h> |
| 15 #include <math.h> | 15 #include <math.h> |
| 16 #include <stdlib.h> | 16 #include <stdlib.h> |
| 17 #include <string.h> | 17 #include <string.h> |
| 18 | 18 |
| 19 #include "webrtc/base/checks.h" | |
| 20 #include "webrtc/modules/remote_bitrate_estimator/include/bwe_defines.h" | 19 #include "webrtc/modules/remote_bitrate_estimator/include/bwe_defines.h" |
| 21 #include "webrtc/system_wrappers/include/logging.h" | 20 #include "webrtc/system_wrappers/include/logging.h" |
| 22 | 21 |
| 23 namespace webrtc { | 22 namespace webrtc { |
| 24 | 23 |
| 25 enum { kMinFramePeriodHistoryLength = 60 }; | 24 enum { kMinFramePeriodHistoryLength = 60 }; |
| 26 enum { kDeltaCounterMax = 1000 }; | 25 enum { kDeltaCounterMax = 1000 }; |
| 27 | 26 |
| 28 OveruseEstimator::OveruseEstimator() | 27 OveruseEstimator::OveruseEstimator(const OverUseDetectorOptions& options) |
| 29 : num_of_deltas_(0), | 28 : options_(options), |
| 30 offset_(0), | 29 num_of_deltas_(0), |
| 31 prev_offset_(offset_), | 30 slope_(options_.initial_slope), |
| 32 e_(0.1), | 31 offset_(options_.initial_offset), |
| 33 process_noise_(1e-2), | 32 prev_offset_(options_.initial_offset), |
| 34 avg_noise_(0), | 33 E_(), |
| 35 var_noise_(50), | 34 process_noise_(), |
| 36 send_delta_history_() {} | 35 avg_noise_(options_.initial_avg_noise), |
| 36 var_noise_(options_.initial_var_noise), |
| 37 ts_delta_hist_() { |
| 38 memcpy(E_, options_.initial_e, sizeof(E_)); |
| 39 memcpy(process_noise_, options_.initial_process_noise, |
| 40 sizeof(process_noise_)); |
| 41 } |
| 37 | 42 |
| 38 OveruseEstimator::~OveruseEstimator() { | 43 OveruseEstimator::~OveruseEstimator() { |
| 39 send_delta_history_.clear(); | 44 ts_delta_hist_.clear(); |
| 40 } | 45 } |
| 41 | 46 |
| 42 void OveruseEstimator::Update(double recv_delta_ms, | 47 void OveruseEstimator::Update(int64_t t_delta, |
| 43 double send_delta_ms, | 48 double ts_delta, |
| 49 int size_delta, |
| 44 BandwidthUsage current_hypothesis) { | 50 BandwidthUsage current_hypothesis) { |
| 45 const double min_frame_period = UpdateMinFramePeriod(send_delta_ms); | 51 const double min_frame_period = UpdateMinFramePeriod(ts_delta); |
| 46 const double delta_ms = recv_delta_ms - send_delta_ms; | 52 const double t_ts_delta = t_delta - ts_delta; |
| 53 double fs_delta = size_delta; |
| 47 | 54 |
| 48 ++num_of_deltas_; | 55 ++num_of_deltas_; |
| 49 if (num_of_deltas_ > kDeltaCounterMax) { | 56 if (num_of_deltas_ > kDeltaCounterMax) { |
| 50 num_of_deltas_ = kDeltaCounterMax; | 57 num_of_deltas_ = kDeltaCounterMax; |
| 51 } | 58 } |
| 52 | 59 |
| 53 // Update the Kalman filter. | 60 // Update the Kalman filter. |
| 54 e_ += process_noise_; | 61 E_[0][0] += process_noise_[0]; |
| 62 E_[1][1] += process_noise_[1]; |
| 55 | 63 |
| 56 if ((current_hypothesis == kBwOverusing && offset_ < prev_offset_) || | 64 if ((current_hypothesis == kBwOverusing && offset_ < prev_offset_) || |
| 57 (current_hypothesis == kBwUnderusing && offset_ > prev_offset_)) { | 65 (current_hypothesis == kBwUnderusing && offset_ > prev_offset_)) { |
| 58 e_ += 10 * process_noise_; | 66 E_[1][1] += 10 * process_noise_[1]; |
| 59 } | 67 } |
| 60 | 68 |
| 61 const double residual = delta_ms - offset_; | 69 const double h[2] = {fs_delta, 1.0}; |
| 70 const double Eh[2] = {E_[0][0]*h[0] + E_[0][1]*h[1], |
| 71 E_[1][0]*h[0] + E_[1][1]*h[1]}; |
| 72 |
| 73 const double residual = t_ts_delta - slope_*h[0] - offset_; |
| 62 | 74 |
| 63 const bool in_stable_state = (current_hypothesis == kBwNormal); | 75 const bool in_stable_state = (current_hypothesis == kBwNormal); |
| 64 const double max_residual = 3.0 * sqrt(var_noise_); | 76 const double max_residual = 3.0 * sqrt(var_noise_); |
| 65 // We try to filter out very late frames. For instance periodic key | 77 // We try to filter out very late frames. For instance periodic key |
| 66 // frames doesn't fit the Gaussian model well. | 78 // frames doesn't fit the Gaussian model well. |
| 67 if (fabs(residual) < max_residual) { | 79 if (fabs(residual) < max_residual) { |
| 68 UpdateNoiseEstimate(residual, min_frame_period, in_stable_state); | 80 UpdateNoiseEstimate(residual, min_frame_period, in_stable_state); |
| 69 } else { | 81 } else { |
| 70 UpdateNoiseEstimate(residual < 0 ? -max_residual : max_residual, | 82 UpdateNoiseEstimate(residual < 0 ? -max_residual : max_residual, |
| 71 min_frame_period, in_stable_state); | 83 min_frame_period, in_stable_state); |
| 72 } | 84 } |
| 73 const double k = e_ / (var_noise_ + e_); | 85 |
| 86 const double denom = var_noise_ + h[0]*Eh[0] + h[1]*Eh[1]; |
| 87 |
| 88 const double K[2] = {Eh[0] / denom, |
| 89 Eh[1] / denom}; |
| 90 |
| 91 const double IKh[2][2] = {{1.0 - K[0]*h[0], -K[0]*h[1]}, |
| 92 {-K[1]*h[0], 1.0 - K[1]*h[1]}}; |
| 93 const double e00 = E_[0][0]; |
| 94 const double e01 = E_[0][1]; |
| 74 | 95 |
| 75 // Update state. | 96 // Update state. |
| 76 e_ = e_ * (1.0 - k); | 97 E_[0][0] = e00 * IKh[0][0] + E_[1][0] * IKh[0][1]; |
| 98 E_[0][1] = e01 * IKh[0][0] + E_[1][1] * IKh[0][1]; |
| 99 E_[1][0] = e00 * IKh[1][0] + E_[1][0] * IKh[1][1]; |
| 100 E_[1][1] = e01 * IKh[1][0] + E_[1][1] * IKh[1][1]; |
| 77 | 101 |
| 78 // The covariance matrix must be positive. | 102 // The covariance matrix must be positive semi-definite. |
| 79 RTC_DCHECK(e_ >= 0.0); | 103 bool positive_semi_definite = E_[0][0] + E_[1][1] >= 0 && |
| 80 if (e_ < 0) | 104 E_[0][0] * E_[1][1] - E_[0][1] * E_[1][0] >= 0 && E_[0][0] >= 0; |
| 81 LOG(LS_ERROR) << "The over-use estimator's covariance is negative!"; | 105 assert(positive_semi_definite); |
| 106 if (!positive_semi_definite) { |
| 107 LOG(LS_ERROR) << "The over-use estimator's covariance matrix is no longer " |
| 108 "semi-definite."; |
| 109 } |
| 82 | 110 |
| 83 offset_ = offset_ + k * residual; | 111 slope_ = slope_ + K[0] * residual; |
| 112 prev_offset_ = offset_; |
| 113 offset_ = offset_ + K[1] * residual; |
| 84 } | 114 } |
| 85 | 115 |
| 86 double OveruseEstimator::UpdateMinFramePeriod(double send_delta_ms) { | 116 double OveruseEstimator::UpdateMinFramePeriod(double ts_delta) { |
| 87 double min_frame_period = send_delta_ms; | 117 double min_frame_period = ts_delta; |
| 88 if (send_delta_history_.size() >= kMinFramePeriodHistoryLength) { | 118 if (ts_delta_hist_.size() >= kMinFramePeriodHistoryLength) { |
| 89 send_delta_history_.pop_front(); | 119 ts_delta_hist_.pop_front(); |
| 90 } | 120 } |
| 91 for (double delta_ms : send_delta_history_) { | 121 std::list<double>::iterator it = ts_delta_hist_.begin(); |
| 92 min_frame_period = std::min(delta_ms, min_frame_period); | 122 for (; it != ts_delta_hist_.end(); it++) { |
| 123 min_frame_period = std::min(*it, min_frame_period); |
| 93 } | 124 } |
| 94 send_delta_history_.push_back(send_delta_ms); | 125 ts_delta_hist_.push_back(ts_delta); |
| 95 return min_frame_period; | 126 return min_frame_period; |
| 96 } | 127 } |
| 97 | 128 |
| 98 void OveruseEstimator::UpdateNoiseEstimate(double residual, | 129 void OveruseEstimator::UpdateNoiseEstimate(double residual, |
| 99 double send_delta_ms, | 130 double ts_delta, |
| 100 bool stable_state) { | 131 bool stable_state) { |
| 101 if (!stable_state) { | 132 if (!stable_state) { |
| 102 return; | 133 return; |
| 103 } | 134 } |
| 104 // Faster filter during startup to faster adapt to the jitter level | 135 // Faster filter during startup to faster adapt to the jitter level |
| 105 // of the network. |alpha| is tuned for 30 frames per second, but is scaled | 136 // of the network. |alpha| is tuned for 30 frames per second, but is scaled |
| 106 // according to |send_delta_ms|. | 137 // according to |ts_delta|. |
| 107 double alpha = 0.01; | 138 double alpha = 0.01; |
| 108 if (num_of_deltas_ > 10*30) { | 139 if (num_of_deltas_ > 10*30) { |
| 109 alpha = 0.002; | 140 alpha = 0.002; |
| 110 } | 141 } |
| 111 // Only update the noise estimate if we're not over-using. |beta| is a | 142 // Only update the noise estimate if we're not over-using. |beta| is a |
| 112 // function of alpha and the time delta since the previous update. | 143 // function of alpha and the time delta since the previous update. |
| 113 const double beta = pow(1 - alpha, send_delta_ms * 30.0 / 1000.0); | 144 const double beta = pow(1 - alpha, ts_delta * 30.0 / 1000.0); |
| 114 avg_noise_ = beta * avg_noise_ | 145 avg_noise_ = beta * avg_noise_ |
| 115 + (1 - beta) * residual; | 146 + (1 - beta) * residual; |
| 116 var_noise_ = beta * var_noise_ | 147 var_noise_ = beta * var_noise_ |
| 117 + (1 - beta) * (avg_noise_ - residual) * (avg_noise_ - residual); | 148 + (1 - beta) * (avg_noise_ - residual) * (avg_noise_ - residual); |
| 118 if (var_noise_ < 1) { | 149 if (var_noise_ < 1) { |
| 119 var_noise_ = 1; | 150 var_noise_ = 1; |
| 120 } | 151 } |
| 121 } | 152 } |
| 122 } // namespace webrtc | 153 } // namespace webrtc |
| OLD | NEW |