OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ |
| 10 |
| 11 #include <math.h> |
| 12 |
| 13 #include <limits> |
| 14 #include <vector> |
| 15 |
| 16 #include "testing/gtest/include/gtest/gtest.h" |
| 17 #include "webrtc/base/checks.h" |
| 18 #include "webrtc/base/random.h" |
| 19 |
| 20 namespace webrtc { |
| 21 |
| 22 namespace { |
| 23 template <typename T> |
| 24 T fdiv_remainder(T x, T n) { |
| 25 assert(n > 0); |
| 26 T remainder = x % n; |
| 27 if (remainder < 0) |
| 28 remainder += n; |
| 29 return remainder; |
| 30 } |
| 31 } // namespace |
| 32 |
| 33 template <typename T> |
| 34 void UniformBucketTest(T bucket_count, int samples, Random* prng) { |
| 35 std::vector<int> buckets(bucket_count, 0); |
| 36 |
| 37 uint64_t total_values = 1ull << (std::numeric_limits<T>::digits + |
| 38 std::numeric_limits<T>::is_signed); |
| 39 T upper_limit = |
| 40 std::numeric_limits<T>::max() - |
| 41 static_cast<T>(total_values % static_cast<uint64_t>(bucket_count)); |
| 42 assert(upper_limit > std::numeric_limits<T>::max() / 2); |
| 43 |
| 44 for (int i = 0; i < samples; i++) { |
| 45 T sample; |
| 46 do { |
| 47 // We exclude a few numbers from the range so that it is divisible by |
| 48 // the number of buckets. If we are unlucky and hit one of the excluded |
| 49 // numbers we just resample. Note that if the number buckets is a power |
| 50 // of 2, then we don't have to exclude anything. |
| 51 sample = prng->Rand<T>(); |
| 52 } while (sample > upper_limit); |
| 53 buckets[fdiv_remainder(sample, bucket_count)]++; |
| 54 } |
| 55 |
| 56 for (T i = 0; i < bucket_count; i++) { |
| 57 // Expect the result to be within 3 standard deviations of the mean. |
| 58 EXPECT_NEAR(buckets[i], samples / bucket_count, |
| 59 3 * sqrt(samples / bucket_count)); |
| 60 } |
| 61 } |
| 62 |
| 63 TEST(RandomNumberGeneratorTest, BucketTestSignedChar) { |
| 64 Random prng(7297352569824ull); |
| 65 UniformBucketTest<signed char>(64, 640000, &prng); |
| 66 UniformBucketTest<signed char>(11, 440000, &prng); |
| 67 UniformBucketTest<signed char>(3, 270000, &prng); |
| 68 } |
| 69 |
| 70 TEST(RandomNumberGeneratorTest, BucketTestUnsignedChar) { |
| 71 Random prng(7297352569824ull); |
| 72 UniformBucketTest<unsigned char>(64, 640000, &prng); |
| 73 UniformBucketTest<unsigned char>(11, 440000, &prng); |
| 74 UniformBucketTest<unsigned char>(3, 270000, &prng); |
| 75 } |
| 76 |
| 77 TEST(RandomNumberGeneratorTest, BucketTestSignedShort) { |
| 78 Random prng(7297352569824ull); |
| 79 UniformBucketTest<int16_t>(64, 640000, &prng); |
| 80 UniformBucketTest<int16_t>(11, 440000, &prng); |
| 81 UniformBucketTest<int16_t>(3, 270000, &prng); |
| 82 } |
| 83 |
| 84 TEST(RandomNumberGeneratorTest, BucketTestUnsignedShort) { |
| 85 Random prng(7297352569824ull); |
| 86 UniformBucketTest<uint16_t>(64, 640000, &prng); |
| 87 UniformBucketTest<uint16_t>(11, 440000, &prng); |
| 88 UniformBucketTest<uint16_t>(3, 270000, &prng); |
| 89 } |
| 90 |
| 91 TEST(RandomNumberGeneratorTest, BucketTestSignedInt) { |
| 92 Random prng(7297352569824ull); |
| 93 UniformBucketTest<signed int>(64, 640000, &prng); |
| 94 UniformBucketTest<signed int>(11, 440000, &prng); |
| 95 UniformBucketTest<signed int>(3, 270000, &prng); |
| 96 } |
| 97 |
| 98 TEST(RandomNumberGeneratorTest, BucketTestUnsignedInt) { |
| 99 Random prng(7297352569824ull); |
| 100 UniformBucketTest<unsigned int>(64, 640000, &prng); |
| 101 UniformBucketTest<unsigned int>(11, 440000, &prng); |
| 102 UniformBucketTest<unsigned int>(3, 270000, &prng); |
| 103 } |
| 104 |
| 105 // The range of the random numbers is divided into bucket count intervals |
| 106 // of consecutive numbers. Check that approximately equally many numbers |
| 107 // from each inteval are generated. |
| 108 void BucketTestSignedInterval(unsigned int bucket_count, |
| 109 unsigned int samples, |
| 110 int32_t low, |
| 111 int32_t high, |
| 112 int sigma_level, |
| 113 Random* prng) { |
| 114 std::vector<unsigned int> buckets(bucket_count, 0); |
| 115 |
| 116 assert(high >= low); |
| 117 assert(bucket_count >= 2); |
| 118 uint32_t interval = static_cast<uint32_t>(high - low + 1); |
| 119 uint32_t numbers_per_bucket; |
| 120 if (interval == 0) { |
| 121 // The computation high - low + 1 should be 2^32 but overflowed |
| 122 // Hence, bucket_count must be a power of 2 |
| 123 assert((bucket_count & (bucket_count - 1)) == 0); |
| 124 numbers_per_bucket = (0x80000000u / bucket_count) * 2; |
| 125 } else { |
| 126 assert(interval % bucket_count == 0); |
| 127 numbers_per_bucket = interval / bucket_count; |
| 128 } |
| 129 |
| 130 for (unsigned int i = 0; i < samples; i++) { |
| 131 int32_t sample = prng->Rand(low, high); |
| 132 EXPECT_LE(low, sample); |
| 133 EXPECT_GE(high, sample); |
| 134 buckets[static_cast<uint32_t>(sample - low) / numbers_per_bucket]++; |
| 135 } |
| 136 |
| 137 for (unsigned int i = 0; i < bucket_count; i++) { |
| 138 // Expect the result to be within 3 standard deviations of the mean, |
| 139 // or more generally, within sigma_level standard deviations of the mean. |
| 140 double mean = static_cast<double>(samples) / bucket_count; |
| 141 EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); |
| 142 } |
| 143 } |
| 144 |
| 145 // The range of the random numbers is divided into bucket count intervals |
| 146 // of consecutive numbers. Check that approximately equally many numbers |
| 147 // from each inteval are generated. |
| 148 void BucketTestUnsignedInterval(unsigned int bucket_count, |
| 149 unsigned int samples, |
| 150 uint32_t low, |
| 151 uint32_t high, |
| 152 int sigma_level, |
| 153 Random* prng) { |
| 154 std::vector<unsigned int> buckets(bucket_count, 0); |
| 155 |
| 156 assert(high >= low); |
| 157 assert(bucket_count >= 2); |
| 158 uint32_t interval = static_cast<uint32_t>(high - low + 1); |
| 159 uint32_t numbers_per_bucket; |
| 160 if (interval == 0) { |
| 161 // The computation high - low + 1 should be 2^32 but overflowed |
| 162 // Hence, bucket_count must be a power of 2 |
| 163 assert((bucket_count & (bucket_count - 1)) == 0); |
| 164 numbers_per_bucket = (0x80000000u / bucket_count) * 2; |
| 165 } else { |
| 166 assert(interval % bucket_count == 0); |
| 167 numbers_per_bucket = interval / bucket_count; |
| 168 } |
| 169 |
| 170 for (unsigned int i = 0; i < samples; i++) { |
| 171 uint32_t sample = prng->Rand(low, high); |
| 172 EXPECT_LE(low, sample); |
| 173 EXPECT_GE(high, sample); |
| 174 buckets[static_cast<uint32_t>(sample - low) / numbers_per_bucket]++; |
| 175 } |
| 176 |
| 177 for (unsigned int i = 0; i < bucket_count; i++) { |
| 178 // Expect the result to be within 3 standard deviations of the mean, |
| 179 // or more generally, within sigma_level standard deviations of the mean. |
| 180 double mean = static_cast<double>(samples) / bucket_count; |
| 181 EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); |
| 182 } |
| 183 } |
| 184 |
| 185 TEST(RandomNumberGeneratorTest, UniformUnsignedInterval) { |
| 186 Random prng(299792458ull); |
| 187 BucketTestUnsignedInterval(2, 100000, 0, 1, 3, &prng); |
| 188 BucketTestUnsignedInterval(7, 100000, 1, 14, 3, &prng); |
| 189 BucketTestUnsignedInterval(11, 100000, 1000, 1010, 3, &prng); |
| 190 BucketTestUnsignedInterval(100, 100000, 0, 99, 3, &prng); |
| 191 BucketTestUnsignedInterval(2, 100000, 0, 4294967295, 3, &prng); |
| 192 BucketTestUnsignedInterval(17, 100000, 455, 2147484110, 3, &prng); |
| 193 // 99.7% of all samples will be within 3 standard deviations of the mean, |
| 194 // but since we test 1000 buckets we allow an interval of 4 sigma. |
| 195 BucketTestUnsignedInterval(1000, 1000000, 0, 2147483999, 4, &prng); |
| 196 } |
| 197 |
| 198 TEST(RandomNumberGeneratorTest, UniformSignedInterval) { |
| 199 Random prng(66260695729ull); |
| 200 BucketTestSignedInterval(2, 100000, 0, 1, 3, &prng); |
| 201 BucketTestSignedInterval(7, 100000, -2, 4, 3, &prng); |
| 202 BucketTestSignedInterval(11, 100000, 1000, 1010, 3, &prng); |
| 203 BucketTestSignedInterval(100, 100000, 0, 99, 3, &prng); |
| 204 BucketTestSignedInterval(2, 100000, std::numeric_limits<int32_t>::min(), |
| 205 std::numeric_limits<int32_t>::max(), 3, &prng); |
| 206 BucketTestSignedInterval(17, 100000, -1073741826, 1073741829, 3, &prng); |
| 207 // 99.7% of all samples will be within 3 standard deviations of the mean, |
| 208 // but since we test 1000 buckets we allow an interval of 4 sigma. |
| 209 BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng); |
| 210 } |
| 211 |
| 212 // The range of the random numbers is divided into bucket count intervals |
| 213 // of consecutive numbers. Check that approximately equally many numbers |
| 214 // from each inteval are generated. |
| 215 void BucketTestFloat(unsigned int bucket_count, |
| 216 unsigned int samples, |
| 217 int sigma_level, |
| 218 Random* prng) { |
| 219 assert(bucket_count >= 2); |
| 220 std::vector<unsigned int> buckets(bucket_count, 0); |
| 221 |
| 222 for (unsigned int i = 0; i < samples; i++) { |
| 223 uint32_t sample = bucket_count * prng->Rand<float>(); |
| 224 EXPECT_LE(0u, sample); |
| 225 EXPECT_GE(bucket_count - 1, sample); |
| 226 buckets[sample]++; |
| 227 } |
| 228 |
| 229 for (unsigned int i = 0; i < bucket_count; i++) { |
| 230 // Expect the result to be within 3 standard deviations of the mean, |
| 231 // or more generally, within sigma_level standard deviations of the mean. |
| 232 double mean = static_cast<double>(samples) / bucket_count; |
| 233 EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); |
| 234 } |
| 235 } |
| 236 |
| 237 TEST(RandomNumberGeneratorTest, UniformFloatInterval) { |
| 238 Random prng(1380648813ull); |
| 239 BucketTestFloat(100, 100000, 3, &prng); |
| 240 // 99.7% of all samples will be within 3 standard deviations of the mean, |
| 241 // but since we test 1000 buckets we allow an interval of 4 sigma. |
| 242 // BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng); |
| 243 } |
| 244 |
| 245 TEST(RandomNumberGeneratorTest, SignedHasSameBitPattern) { |
| 246 Random prng_signed(66738480ull), prng_unsigned(66738480ull); |
| 247 |
| 248 for (int i = 0; i < 1000; i++) { |
| 249 signed int s = prng_signed.Rand<signed int>(); |
| 250 unsigned int u = prng_unsigned.Rand<unsigned int>(); |
| 251 EXPECT_EQ(u, static_cast<unsigned int>(s)); |
| 252 } |
| 253 |
| 254 for (int i = 0; i < 1000; i++) { |
| 255 int16_t s = prng_signed.Rand<int16_t>(); |
| 256 uint16_t u = prng_unsigned.Rand<uint16_t>(); |
| 257 EXPECT_EQ(u, static_cast<uint16_t>(s)); |
| 258 } |
| 259 |
| 260 for (int i = 0; i < 1000; i++) { |
| 261 signed char s = prng_signed.Rand<signed char>(); |
| 262 unsigned char u = prng_unsigned.Rand<unsigned char>(); |
| 263 EXPECT_EQ(u, static_cast<unsigned char>(s)); |
| 264 } |
| 265 } |
| 266 |
| 267 TEST(RandomNumberGeneratorTest, Gaussian) { |
| 268 const int kN = 100000; |
| 269 const int kBuckets = 100; |
| 270 const double kMean = 49; |
| 271 const double kStddev = 10; |
| 272 |
| 273 Random prng(1256637061); |
| 274 |
| 275 std::vector<unsigned int> buckets(kBuckets, 0); |
| 276 for (int i = 0; i < kN; i++) { |
| 277 int index = prng.Gaussian(kMean, kStddev) + 0.5; |
| 278 if (index >= 0 && index < kBuckets) { |
| 279 buckets[index]++; |
| 280 } |
| 281 } |
| 282 |
| 283 const double kPi = 3.14159265358979323846; |
| 284 const double kScale = 1 / (kStddev * sqrt(2.0 * kPi)); |
| 285 const double kDiv = -2.0 * kStddev * kStddev; |
| 286 for (int n = 0; n < kBuckets; ++n) { |
| 287 // Use Simpsons rule to estimate the probability that a random gaussian |
| 288 // sample is in the interval [n-0.5, n-0.5]. |
| 289 double f_left = kScale * exp((n - kMean - 0.5) * (n - kMean - 0.5) / kDiv); |
| 290 double f_mid = kScale * exp((n - kMean) * (n - kMean) / kDiv); |
| 291 double f_right = kScale * exp((n - kMean + 0.5) * (n - kMean + 0.5) / kDiv); |
| 292 double normal_dist = (f_left + 4 * f_mid + f_right) / 6; |
| 293 // Expect the number of samples to be within 3 standard deviations |
| 294 // (rounded up) of the expected number of samples in the bucket. |
| 295 EXPECT_NEAR(buckets[n], kN * normal_dist, 3 * sqrt(kN * normal_dist) + 1); |
| 296 } |
| 297 } |
| 298 |
| 299 } // namespace webrtc |
OLD | NEW |