Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 /* | |
| 2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license | |
| 5 * that can be found in the LICENSE file in the root of the source | |
| 6 * tree. An additional intellectual property rights grant can be found | |
| 7 * in the file PATENTS. All contributing project authors may | |
| 8 * be found in the AUTHORS file in the root of the source tree. | |
| 9 */ | |
| 10 | |
| 11 #include <math.h> | |
| 12 | |
| 13 #include <limits> | |
| 14 #include <vector> | |
| 15 | |
| 16 #include "testing/gtest/include/gtest/gtest.h" | |
| 17 #include "webrtc/base/checks.h" | |
|
the sun
2015/11/25 10:12:37
Not needed?
terelius
2015/11/27 10:35:23
Done.
| |
| 18 #include "webrtc/base/random.h" | |
| 19 | |
| 20 namespace webrtc { | |
| 21 | |
| 22 namespace { | |
| 23 template <typename T> | |
| 24 T fdiv_remainder(T x, T n) { | |
| 25 assert(n > 0); | |
|
the sun
2015/11/25 10:12:37
ASSERT_GT()
terelius
2015/11/27 10:35:24
ASSERT requires a void function. In this case I th
the sun
2015/11/27 11:02:10
Don't use stdlib assert(). gtest's ASSERT_nn or EX
pbos-webrtc
2015/11/27 11:06:28
Feel free to use RTC_(D)CHECK_GT if all else fails
terelius
2015/11/27 11:46:07
ASSERT does not work since the function does not r
terelius
2015/11/27 11:46:07
Yeah, that would work. Thanks.
| |
| 26 T remainder = x % n; | |
| 27 if (remainder < 0) | |
| 28 remainder += n; | |
| 29 return remainder; | |
| 30 } | |
| 31 } // namespace | |
| 32 | |
| 33 template <typename T> | |
|
the sun
2015/11/25 10:12:37
Can you describe the test method, or provide a lin
terelius
2015/11/27 10:35:24
Done. This is not some sophisticated test for rand
| |
| 34 void UniformBucketTest(T bucket_count, int samples, Random* prng) { | |
| 35 std::vector<int> buckets(bucket_count, 0); | |
| 36 | |
| 37 uint64_t total_values = 1ull << (std::numeric_limits<T>::digits + | |
| 38 std::numeric_limits<T>::is_signed); | |
| 39 T upper_limit = | |
| 40 std::numeric_limits<T>::max() - | |
| 41 static_cast<T>(total_values % static_cast<uint64_t>(bucket_count)); | |
| 42 assert(upper_limit > std::numeric_limits<T>::max() / 2); | |
|
the sun
2015/11/25 10:12:38
ASSERT_GT()
...and other assert()s below.
terelius
2015/11/27 10:35:24
Done.
| |
| 43 | |
| 44 for (int i = 0; i < samples; i++) { | |
| 45 T sample; | |
| 46 do { | |
| 47 // We exclude a few numbers from the range so that it is divisible by | |
| 48 // the number of buckets. If we are unlucky and hit one of the excluded | |
| 49 // numbers we just resample. Note that if the number buckets is a power | |
| 50 // of 2, then we don't have to exclude anything. | |
| 51 sample = prng->Rand<T>(); | |
| 52 } while (sample > upper_limit); | |
| 53 buckets[fdiv_remainder(sample, bucket_count)]++; | |
| 54 } | |
| 55 | |
| 56 for (T i = 0; i < bucket_count; i++) { | |
| 57 // Expect the result to be within 3 standard deviations of the mean. | |
| 58 EXPECT_NEAR(buckets[i], samples / bucket_count, | |
| 59 3 * sqrt(samples / bucket_count)); | |
| 60 } | |
| 61 } | |
| 62 | |
| 63 TEST(RandomNumberGeneratorTest, BucketTestSignedChar) { | |
| 64 Random prng(7297352569824ull); | |
| 65 UniformBucketTest<signed char>(64, 640000, &prng); | |
|
the sun
2015/11/25 10:12:37
Are these number empiric or from some calculation?
terelius
2015/11/27 10:35:24
Neither. It is just a call that says "Generate 640
| |
| 66 UniformBucketTest<signed char>(11, 440000, &prng); | |
| 67 UniformBucketTest<signed char>(3, 270000, &prng); | |
| 68 } | |
| 69 | |
| 70 TEST(RandomNumberGeneratorTest, BucketTestUnsignedChar) { | |
| 71 Random prng(7297352569824ull); | |
| 72 UniformBucketTest<unsigned char>(64, 640000, &prng); | |
| 73 UniformBucketTest<unsigned char>(11, 440000, &prng); | |
| 74 UniformBucketTest<unsigned char>(3, 270000, &prng); | |
| 75 } | |
| 76 | |
| 77 TEST(RandomNumberGeneratorTest, BucketTestSignedShort) { | |
| 78 Random prng(7297352569824ull); | |
| 79 UniformBucketTest<int16_t>(64, 640000, &prng); | |
| 80 UniformBucketTest<int16_t>(11, 440000, &prng); | |
| 81 UniformBucketTest<int16_t>(3, 270000, &prng); | |
| 82 } | |
| 83 | |
| 84 TEST(RandomNumberGeneratorTest, BucketTestUnsignedShort) { | |
| 85 Random prng(7297352569824ull); | |
| 86 UniformBucketTest<uint16_t>(64, 640000, &prng); | |
| 87 UniformBucketTest<uint16_t>(11, 440000, &prng); | |
| 88 UniformBucketTest<uint16_t>(3, 270000, &prng); | |
| 89 } | |
| 90 | |
| 91 TEST(RandomNumberGeneratorTest, BucketTestSignedInt) { | |
| 92 Random prng(7297352569824ull); | |
| 93 UniformBucketTest<signed int>(64, 640000, &prng); | |
| 94 UniformBucketTest<signed int>(11, 440000, &prng); | |
| 95 UniformBucketTest<signed int>(3, 270000, &prng); | |
| 96 } | |
| 97 | |
| 98 TEST(RandomNumberGeneratorTest, BucketTestUnsignedInt) { | |
| 99 Random prng(7297352569824ull); | |
| 100 UniformBucketTest<unsigned int>(64, 640000, &prng); | |
| 101 UniformBucketTest<unsigned int>(11, 440000, &prng); | |
| 102 UniformBucketTest<unsigned int>(3, 270000, &prng); | |
| 103 } | |
| 104 | |
| 105 // The range of the random numbers is divided into bucket count intervals | |
| 106 // of consecutive numbers. Check that approximately equally many numbers | |
| 107 // from each inteval are generated. | |
| 108 void BucketTestSignedInterval(unsigned int bucket_count, | |
| 109 unsigned int samples, | |
| 110 int32_t low, | |
| 111 int32_t high, | |
| 112 int sigma_level, | |
| 113 Random* prng) { | |
| 114 std::vector<unsigned int> buckets(bucket_count, 0); | |
| 115 | |
| 116 assert(high >= low); | |
| 117 assert(bucket_count >= 2); | |
| 118 uint32_t interval = static_cast<uint32_t>(high - low + 1); | |
| 119 uint32_t numbers_per_bucket; | |
| 120 if (interval == 0) { | |
| 121 // The computation high - low + 1 should be 2^32 but overflowed | |
| 122 // Hence, bucket_count must be a power of 2 | |
| 123 assert((bucket_count & (bucket_count - 1)) == 0); | |
| 124 numbers_per_bucket = (0x80000000u / bucket_count) * 2; | |
| 125 } else { | |
| 126 assert(interval % bucket_count == 0); | |
| 127 numbers_per_bucket = interval / bucket_count; | |
| 128 } | |
| 129 | |
| 130 for (unsigned int i = 0; i < samples; i++) { | |
| 131 int32_t sample = prng->Rand(low, high); | |
| 132 EXPECT_LE(low, sample); | |
| 133 EXPECT_GE(high, sample); | |
| 134 buckets[static_cast<uint32_t>(sample - low) / numbers_per_bucket]++; | |
| 135 } | |
| 136 | |
| 137 for (unsigned int i = 0; i < bucket_count; i++) { | |
| 138 // Expect the result to be within 3 standard deviations of the mean, | |
| 139 // or more generally, within sigma_level standard deviations of the mean. | |
| 140 double mean = static_cast<double>(samples) / bucket_count; | |
| 141 EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); | |
| 142 } | |
| 143 } | |
| 144 | |
| 145 // The range of the random numbers is divided into bucket count intervals | |
| 146 // of consecutive numbers. Check that approximately equally many numbers | |
| 147 // from each inteval are generated. | |
| 148 void BucketTestUnsignedInterval(unsigned int bucket_count, | |
| 149 unsigned int samples, | |
| 150 uint32_t low, | |
| 151 uint32_t high, | |
| 152 int sigma_level, | |
| 153 Random* prng) { | |
| 154 std::vector<unsigned int> buckets(bucket_count, 0); | |
| 155 | |
| 156 assert(high >= low); | |
| 157 assert(bucket_count >= 2); | |
| 158 uint32_t interval = static_cast<uint32_t>(high - low + 1); | |
| 159 uint32_t numbers_per_bucket; | |
| 160 if (interval == 0) { | |
| 161 // The computation high - low + 1 should be 2^32 but overflowed | |
| 162 // Hence, bucket_count must be a power of 2 | |
| 163 assert((bucket_count & (bucket_count - 1)) == 0); | |
| 164 numbers_per_bucket = (0x80000000u / bucket_count) * 2; | |
| 165 } else { | |
| 166 assert(interval % bucket_count == 0); | |
| 167 numbers_per_bucket = interval / bucket_count; | |
| 168 } | |
| 169 | |
| 170 for (unsigned int i = 0; i < samples; i++) { | |
| 171 uint32_t sample = prng->Rand(low, high); | |
| 172 EXPECT_LE(low, sample); | |
| 173 EXPECT_GE(high, sample); | |
| 174 buckets[static_cast<uint32_t>(sample - low) / numbers_per_bucket]++; | |
| 175 } | |
| 176 | |
| 177 for (unsigned int i = 0; i < bucket_count; i++) { | |
| 178 // Expect the result to be within 3 standard deviations of the mean, | |
| 179 // or more generally, within sigma_level standard deviations of the mean. | |
| 180 double mean = static_cast<double>(samples) / bucket_count; | |
| 181 EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); | |
| 182 } | |
| 183 } | |
| 184 | |
| 185 TEST(RandomNumberGeneratorTest, UniformUnsignedInterval) { | |
| 186 Random prng(299792458ull); | |
| 187 BucketTestUnsignedInterval(2, 100000, 0, 1, 3, &prng); | |
| 188 BucketTestUnsignedInterval(7, 100000, 1, 14, 3, &prng); | |
| 189 BucketTestUnsignedInterval(11, 100000, 1000, 1010, 3, &prng); | |
| 190 BucketTestUnsignedInterval(100, 100000, 0, 99, 3, &prng); | |
| 191 BucketTestUnsignedInterval(2, 100000, 0, 4294967295, 3, &prng); | |
| 192 BucketTestUnsignedInterval(17, 100000, 455, 2147484110, 3, &prng); | |
| 193 // 99.7% of all samples will be within 3 standard deviations of the mean, | |
| 194 // but since we test 1000 buckets we allow an interval of 4 sigma. | |
| 195 BucketTestUnsignedInterval(1000, 1000000, 0, 2147483999, 4, &prng); | |
| 196 } | |
| 197 | |
| 198 TEST(RandomNumberGeneratorTest, UniformSignedInterval) { | |
| 199 Random prng(66260695729ull); | |
| 200 BucketTestSignedInterval(2, 100000, 0, 1, 3, &prng); | |
| 201 BucketTestSignedInterval(7, 100000, -2, 4, 3, &prng); | |
| 202 BucketTestSignedInterval(11, 100000, 1000, 1010, 3, &prng); | |
| 203 BucketTestSignedInterval(100, 100000, 0, 99, 3, &prng); | |
| 204 BucketTestSignedInterval(2, 100000, std::numeric_limits<int32_t>::min(), | |
| 205 std::numeric_limits<int32_t>::max(), 3, &prng); | |
| 206 BucketTestSignedInterval(17, 100000, -1073741826, 1073741829, 3, &prng); | |
| 207 // 99.7% of all samples will be within 3 standard deviations of the mean, | |
| 208 // but since we test 1000 buckets we allow an interval of 4 sigma. | |
| 209 BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng); | |
| 210 } | |
| 211 | |
| 212 // The range of the random numbers is divided into bucket count intervals | |
| 213 // of consecutive numbers. Check that approximately equally many numbers | |
| 214 // from each inteval are generated. | |
| 215 void BucketTestFloat(unsigned int bucket_count, | |
| 216 unsigned int samples, | |
| 217 int sigma_level, | |
| 218 Random* prng) { | |
| 219 assert(bucket_count >= 2); | |
| 220 std::vector<unsigned int> buckets(bucket_count, 0); | |
| 221 | |
| 222 for (unsigned int i = 0; i < samples; i++) { | |
| 223 uint32_t sample = bucket_count * prng->Rand<float>(); | |
| 224 EXPECT_LE(0u, sample); | |
| 225 EXPECT_GE(bucket_count - 1, sample); | |
| 226 buckets[sample]++; | |
| 227 } | |
| 228 | |
| 229 for (unsigned int i = 0; i < bucket_count; i++) { | |
| 230 // Expect the result to be within 3 standard deviations of the mean, | |
| 231 // or more generally, within sigma_level standard deviations of the mean. | |
| 232 double mean = static_cast<double>(samples) / bucket_count; | |
| 233 EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); | |
| 234 } | |
| 235 } | |
| 236 | |
| 237 TEST(RandomNumberGeneratorTest, UniformFloatInterval) { | |
| 238 Random prng(1380648813ull); | |
| 239 BucketTestFloat(100, 100000, 3, &prng); | |
| 240 // 99.7% of all samples will be within 3 standard deviations of the mean, | |
| 241 // but since we test 1000 buckets we allow an interval of 4 sigma. | |
| 242 // BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng); | |
| 243 } | |
| 244 | |
| 245 TEST(RandomNumberGeneratorTest, SignedHasSameBitPattern) { | |
| 246 Random prng_signed(66738480ull), prng_unsigned(66738480ull); | |
| 247 | |
| 248 for (int i = 0; i < 1000; i++) { | |
| 249 signed int s = prng_signed.Rand<signed int>(); | |
| 250 unsigned int u = prng_unsigned.Rand<unsigned int>(); | |
| 251 EXPECT_EQ(u, static_cast<unsigned int>(s)); | |
| 252 } | |
| 253 | |
| 254 for (int i = 0; i < 1000; i++) { | |
| 255 int16_t s = prng_signed.Rand<int16_t>(); | |
| 256 uint16_t u = prng_unsigned.Rand<uint16_t>(); | |
| 257 EXPECT_EQ(u, static_cast<uint16_t>(s)); | |
| 258 } | |
| 259 | |
| 260 for (int i = 0; i < 1000; i++) { | |
| 261 signed char s = prng_signed.Rand<signed char>(); | |
| 262 unsigned char u = prng_unsigned.Rand<unsigned char>(); | |
| 263 EXPECT_EQ(u, static_cast<unsigned char>(s)); | |
| 264 } | |
| 265 } | |
| 266 | |
| 267 TEST(RandomNumberGeneratorTest, Gaussian) { | |
| 268 const int kN = 100000; | |
| 269 const int kBuckets = 100; | |
| 270 const double kMean = 49; | |
| 271 const double kStddev = 10; | |
| 272 | |
| 273 Random prng(1256637061); | |
| 274 | |
| 275 std::vector<unsigned int> buckets(kBuckets, 0); | |
| 276 for (int i = 0; i < kN; i++) { | |
| 277 int index = prng.Gaussian(kMean, kStddev) + 0.5; | |
| 278 if (index >= 0 && index < kBuckets) { | |
| 279 buckets[index]++; | |
| 280 } | |
| 281 } | |
| 282 | |
| 283 const double kPi = 3.14159265358979323846; | |
| 284 const double kScale = 1 / (kStddev * sqrt(2.0 * kPi)); | |
| 285 const double kDiv = -2.0 * kStddev * kStddev; | |
| 286 for (int n = 0; n < kBuckets; ++n) { | |
| 287 // Use Simpsons rule to estimate the probability that a random gaussian | |
| 288 // sample is in the interval [n-0.5, n-0.5]. | |
|
the sun
2015/11/25 10:12:37
That's an awfully small interval.
terelius
2015/11/27 10:35:24
In this test, we draw a real number x from a gauss
the sun
2015/11/27 11:02:10
But isn't the comment wrong? "[n-0.5, n-0.5]"
terelius
2015/11/27 11:46:07
Oh, sorry. Updated comment.
| |
| 289 double f_left = kScale * exp((n - kMean - 0.5) * (n - kMean - 0.5) / kDiv); | |
| 290 double f_mid = kScale * exp((n - kMean) * (n - kMean) / kDiv); | |
| 291 double f_right = kScale * exp((n - kMean + 0.5) * (n - kMean + 0.5) / kDiv); | |
| 292 double normal_dist = (f_left + 4 * f_mid + f_right) / 6; | |
| 293 // Expect the number of samples to be within 3 standard deviations | |
| 294 // (rounded up) of the expected number of samples in the bucket. | |
| 295 EXPECT_NEAR(buckets[n], kN * normal_dist, 3 * sqrt(kN * normal_dist) + 1); | |
| 296 } | |
| 297 } | |
| 298 | |
| 299 } // namespace webrtc | |
| OLD | NEW |