Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(504)

Side by Side Diff: webrtc/modules/audio_processing/aec/aec_core_neon.c

Issue 1456123003: Ducking fix #3: Removed the state as an input to the FilterAdaptation function (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@Aec_Code_Cleanup2_CL
Patch Set: Changes in response to reviewer comments Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
(...skipping 16 matching lines...) Expand all
27 enum { kFloatExponentShift = 23 }; 27 enum { kFloatExponentShift = 23 };
28 28
29 __inline static float MulRe(float aRe, float aIm, float bRe, float bIm) { 29 __inline static float MulRe(float aRe, float aIm, float bRe, float bIm) {
30 return aRe * bRe - aIm * bIm; 30 return aRe * bRe - aIm * bIm;
31 } 31 }
32 32
33 __inline static float MulIm(float aRe, float aIm, float bRe, float bIm) { 33 __inline static float MulIm(float aRe, float aIm, float bRe, float bIm) {
34 return aRe * bIm + aIm * bRe; 34 return aRe * bIm + aIm * bRe;
35 } 35 }
36 36
37 static void FilterFarNEON(int num_partitions, 37 static void FilterFarNEON(
38 int xfBufBlockPos, 38 int num_partitions,
39 float xfBuf[2][kExtendedNumPartitions * PART_LEN1], 39 int x_fft_buf_block_pos,
40 float wfBuf[2][kExtendedNumPartitions * PART_LEN1], 40 const float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
41 float yf[2][PART_LEN1]) { 41 const float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
42 float y_fft[2][PART_LEN1]) {
42 int i; 43 int i;
43 const int num_partitions_local = num_partitions; 44 const int num_partitions_local = num_partitions;
44 for (i = 0; i < num_partitions_local; i++) { 45 for (i = 0; i < num_partitions_local; i++) {
45 int j; 46 int j;
46 int xPos = (i + xfBufBlockPos) * PART_LEN1; 47 int xPos = (i + x_fft_buf_block_pos) * PART_LEN1;
47 int pos = i * PART_LEN1; 48 int pos = i * PART_LEN1;
48 // Check for wrap 49 // Check for wrap
49 if (i + xfBufBlockPos >= num_partitions_local) { 50 if (i + x_fft_buf_block_pos >= num_partitions_local) {
50 xPos -= num_partitions_local * PART_LEN1; 51 xPos -= num_partitions_local * PART_LEN1;
51 } 52 }
52 53
53 // vectorized code (four at once) 54 // vectorized code (four at once)
54 for (j = 0; j + 3 < PART_LEN1; j += 4) { 55 for (j = 0; j + 3 < PART_LEN1; j += 4) {
55 const float32x4_t xfBuf_re = vld1q_f32(&xfBuf[0][xPos + j]); 56 const float32x4_t x_fft_buf_re = vld1q_f32(&x_fft_buf[0][xPos + j]);
56 const float32x4_t xfBuf_im = vld1q_f32(&xfBuf[1][xPos + j]); 57 const float32x4_t x_fft_buf_im = vld1q_f32(&x_fft_buf[1][xPos + j]);
57 const float32x4_t wfBuf_re = vld1q_f32(&wfBuf[0][pos + j]); 58 const float32x4_t h_fft_buf_re = vld1q_f32(&h_fft_buf[0][pos + j]);
58 const float32x4_t wfBuf_im = vld1q_f32(&wfBuf[1][pos + j]); 59 const float32x4_t h_fft_buf_im = vld1q_f32(&h_fft_buf[1][pos + j]);
59 const float32x4_t yf_re = vld1q_f32(&yf[0][j]); 60 const float32x4_t y_fft_re = vld1q_f32(&y_fft[0][j]);
60 const float32x4_t yf_im = vld1q_f32(&yf[1][j]); 61 const float32x4_t y_fft_im = vld1q_f32(&y_fft[1][j]);
61 const float32x4_t a = vmulq_f32(xfBuf_re, wfBuf_re); 62 const float32x4_t a = vmulq_f32(x_fft_buf_re, h_fft_buf_re);
62 const float32x4_t e = vmlsq_f32(a, xfBuf_im, wfBuf_im); 63 const float32x4_t e = vmlsq_f32(a, x_fft_buf_im, h_fft_buf_im);
63 const float32x4_t c = vmulq_f32(xfBuf_re, wfBuf_im); 64 const float32x4_t c = vmulq_f32(x_fft_buf_re, h_fft_buf_im);
64 const float32x4_t f = vmlaq_f32(c, xfBuf_im, wfBuf_re); 65 const float32x4_t f = vmlaq_f32(c, x_fft_buf_im, h_fft_buf_re);
65 const float32x4_t g = vaddq_f32(yf_re, e); 66 const float32x4_t g = vaddq_f32(y_fft_re, e);
66 const float32x4_t h = vaddq_f32(yf_im, f); 67 const float32x4_t h = vaddq_f32(y_fft_im, f);
67 vst1q_f32(&yf[0][j], g); 68 vst1q_f32(&y_fft[0][j], g);
68 vst1q_f32(&yf[1][j], h); 69 vst1q_f32(&y_fft[1][j], h);
69 } 70 }
70 // scalar code for the remaining items. 71 // scalar code for the remaining items.
71 for (; j < PART_LEN1; j++) { 72 for (; j < PART_LEN1; j++) {
72 yf[0][j] += MulRe(xfBuf[0][xPos + j], 73 y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j],
73 xfBuf[1][xPos + j], 74 x_fft_buf[1][xPos + j],
74 wfBuf[0][pos + j], 75 h_fft_buf[0][pos + j],
75 wfBuf[1][pos + j]); 76 h_fft_buf[1][pos + j]);
76 yf[1][j] += MulIm(xfBuf[0][xPos + j], 77 y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j],
77 xfBuf[1][xPos + j], 78 x_fft_buf[1][xPos + j],
78 wfBuf[0][pos + j], 79 h_fft_buf[0][pos + j],
79 wfBuf[1][pos + j]); 80 h_fft_buf[1][pos + j]);
80 } 81 }
81 } 82 }
82 } 83 }
83 84
84 // ARM64's arm_neon.h has already defined vdivq_f32 vsqrtq_f32. 85 // ARM64's arm_neon.h has already defined vdivq_f32 vsqrtq_f32.
85 #if !defined (WEBRTC_ARCH_ARM64) 86 #if !defined (WEBRTC_ARCH_ARM64)
86 static float32x4_t vdivq_f32(float32x4_t a, float32x4_t b) { 87 static float32x4_t vdivq_f32(float32x4_t a, float32x4_t b) {
87 int i; 88 int i;
88 float32x4_t x = vrecpeq_f32(b); 89 float32x4_t x = vrecpeq_f32(b);
89 // from arm documentation 90 // from arm documentation
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after
122 x = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, x), s), x); 123 x = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, x), s), x);
123 } 124 }
124 // sqrt(s) = s * 1/sqrt(s) 125 // sqrt(s) = s * 1/sqrt(s)
125 return vmulq_f32(s, x);; 126 return vmulq_f32(s, x);;
126 } 127 }
127 #endif // WEBRTC_ARCH_ARM64 128 #endif // WEBRTC_ARCH_ARM64
128 129
129 static void ScaleErrorSignalNEON(int extended_filter_enabled, 130 static void ScaleErrorSignalNEON(int extended_filter_enabled,
130 float normal_mu, 131 float normal_mu,
131 float normal_error_threshold, 132 float normal_error_threshold,
132 float *xPow, 133 float xPow[PART_LEN1],
133 float ef[2][PART_LEN1]) { 134 float ef[2][PART_LEN1]) {
134 const float mu = extended_filter_enabled ? kExtendedMu : normal_mu; 135 const float mu = extended_filter_enabled ? kExtendedMu : normal_mu;
135 const float error_threshold = extended_filter_enabled ? 136 const float error_threshold = extended_filter_enabled ?
136 kExtendedErrorThreshold : normal_error_threshold; 137 kExtendedErrorThreshold : normal_error_threshold;
137 const float32x4_t k1e_10f = vdupq_n_f32(1e-10f); 138 const float32x4_t k1e_10f = vdupq_n_f32(1e-10f);
138 const float32x4_t kMu = vmovq_n_f32(mu); 139 const float32x4_t kMu = vmovq_n_f32(mu);
139 const float32x4_t kThresh = vmovq_n_f32(error_threshold); 140 const float32x4_t kThresh = vmovq_n_f32(error_threshold);
140 int i; 141 int i;
141 // vectorized code (four at once) 142 // vectorized code (four at once)
142 for (i = 0; i + 3 < PART_LEN1; i += 4) { 143 for (i = 0; i + 3 < PART_LEN1; i += 4) {
(...skipping 36 matching lines...) Expand 10 before | Expand all | Expand 10 after
179 ef[0][i] *= abs_ef; 180 ef[0][i] *= abs_ef;
180 ef[1][i] *= abs_ef; 181 ef[1][i] *= abs_ef;
181 } 182 }
182 183
183 // Stepsize factor 184 // Stepsize factor
184 ef[0][i] *= mu; 185 ef[0][i] *= mu;
185 ef[1][i] *= mu; 186 ef[1][i] *= mu;
186 } 187 }
187 } 188 }
188 189
189 static void FilterAdaptationNEON(AecCore* aec, 190 static void FilterAdaptationNEON(
190 float* fft, 191 int num_partitions,
191 float ef[2][PART_LEN1]) { 192 int x_fft_buf_block_pos,
193 const float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
194 const float e_fft[2][PART_LEN1],
195 float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) {
196 float fft[PART_LEN2];
192 int i; 197 int i;
193 const int num_partitions = aec->num_partitions;
194 for (i = 0; i < num_partitions; i++) { 198 for (i = 0; i < num_partitions; i++) {
195 int xPos = (i + aec->xfBufBlockPos) * PART_LEN1; 199 int xPos = (i + x_fft_buf_block_pos) * PART_LEN1;
196 int pos = i * PART_LEN1; 200 int pos = i * PART_LEN1;
197 int j; 201 int j;
198 // Check for wrap 202 // Check for wrap
199 if (i + aec->xfBufBlockPos >= num_partitions) { 203 if (i + x_fft_buf_block_pos >= num_partitions) {
200 xPos -= num_partitions * PART_LEN1; 204 xPos -= num_partitions * PART_LEN1;
201 } 205 }
202 206
203 // Process the whole array... 207 // Process the whole array...
204 for (j = 0; j < PART_LEN; j += 4) { 208 for (j = 0; j < PART_LEN; j += 4) {
205 // Load xfBuf and ef. 209 // Load x_fft_buf and e_fft.
206 const float32x4_t xfBuf_re = vld1q_f32(&aec->xfBuf[0][xPos + j]); 210 const float32x4_t x_fft_buf_re = vld1q_f32(&x_fft_buf[0][xPos + j]);
207 const float32x4_t xfBuf_im = vld1q_f32(&aec->xfBuf[1][xPos + j]); 211 const float32x4_t x_fft_buf_im = vld1q_f32(&x_fft_buf[1][xPos + j]);
208 const float32x4_t ef_re = vld1q_f32(&ef[0][j]); 212 const float32x4_t e_fft_re = vld1q_f32(&e_fft[0][j]);
209 const float32x4_t ef_im = vld1q_f32(&ef[1][j]); 213 const float32x4_t e_fft_im = vld1q_f32(&e_fft[1][j]);
210 // Calculate the product of conjugate(xfBuf) by ef. 214 // Calculate the product of conjugate(x_fft_buf) by e_fft.
211 // re(conjugate(a) * b) = aRe * bRe + aIm * bIm 215 // re(conjugate(a) * b) = aRe * bRe + aIm * bIm
212 // im(conjugate(a) * b)= aRe * bIm - aIm * bRe 216 // im(conjugate(a) * b)= aRe * bIm - aIm * bRe
213 const float32x4_t a = vmulq_f32(xfBuf_re, ef_re); 217 const float32x4_t a = vmulq_f32(x_fft_buf_re, e_fft_re);
214 const float32x4_t e = vmlaq_f32(a, xfBuf_im, ef_im); 218 const float32x4_t e = vmlaq_f32(a, x_fft_buf_im, e_fft_im);
215 const float32x4_t c = vmulq_f32(xfBuf_re, ef_im); 219 const float32x4_t c = vmulq_f32(x_fft_buf_re, e_fft_im);
216 const float32x4_t f = vmlsq_f32(c, xfBuf_im, ef_re); 220 const float32x4_t f = vmlsq_f32(c, x_fft_buf_im, e_fft_re);
217 // Interleave real and imaginary parts. 221 // Interleave real and imaginary parts.
218 const float32x4x2_t g_n_h = vzipq_f32(e, f); 222 const float32x4x2_t g_n_h = vzipq_f32(e, f);
219 // Store 223 // Store
220 vst1q_f32(&fft[2 * j + 0], g_n_h.val[0]); 224 vst1q_f32(&fft[2 * j + 0], g_n_h.val[0]);
221 vst1q_f32(&fft[2 * j + 4], g_n_h.val[1]); 225 vst1q_f32(&fft[2 * j + 4], g_n_h.val[1]);
222 } 226 }
223 // ... and fixup the first imaginary entry. 227 // ... and fixup the first imaginary entry.
224 fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN], 228 fft[1] = MulRe(x_fft_buf[0][xPos + PART_LEN],
225 -aec->xfBuf[1][xPos + PART_LEN], 229 -x_fft_buf[1][xPos + PART_LEN],
226 ef[0][PART_LEN], 230 e_fft[0][PART_LEN],
227 ef[1][PART_LEN]); 231 e_fft[1][PART_LEN]);
228 232
229 aec_rdft_inverse_128(fft); 233 aec_rdft_inverse_128(fft);
230 memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); 234 memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);
231 235
232 // fft scaling 236 // fft scaling
233 { 237 {
234 const float scale = 2.0f / PART_LEN2; 238 const float scale = 2.0f / PART_LEN2;
235 const float32x4_t scale_ps = vmovq_n_f32(scale); 239 const float32x4_t scale_ps = vmovq_n_f32(scale);
236 for (j = 0; j < PART_LEN; j += 4) { 240 for (j = 0; j < PART_LEN; j += 4) {
237 const float32x4_t fft_ps = vld1q_f32(&fft[j]); 241 const float32x4_t fft_ps = vld1q_f32(&fft[j]);
238 const float32x4_t fft_scale = vmulq_f32(fft_ps, scale_ps); 242 const float32x4_t fft_scale = vmulq_f32(fft_ps, scale_ps);
239 vst1q_f32(&fft[j], fft_scale); 243 vst1q_f32(&fft[j], fft_scale);
240 } 244 }
241 } 245 }
242 aec_rdft_forward_128(fft); 246 aec_rdft_forward_128(fft);
243 247
244 { 248 {
245 const float wt1 = aec->wfBuf[1][pos]; 249 const float wt1 = h_fft_buf[1][pos];
246 aec->wfBuf[0][pos + PART_LEN] += fft[1]; 250 h_fft_buf[0][pos + PART_LEN] += fft[1];
247 for (j = 0; j < PART_LEN; j += 4) { 251 for (j = 0; j < PART_LEN; j += 4) {
248 float32x4_t wtBuf_re = vld1q_f32(&aec->wfBuf[0][pos + j]); 252 float32x4_t wtBuf_re = vld1q_f32(&h_fft_buf[0][pos + j]);
249 float32x4_t wtBuf_im = vld1q_f32(&aec->wfBuf[1][pos + j]); 253 float32x4_t wtBuf_im = vld1q_f32(&h_fft_buf[1][pos + j]);
250 const float32x4_t fft0 = vld1q_f32(&fft[2 * j + 0]); 254 const float32x4_t fft0 = vld1q_f32(&fft[2 * j + 0]);
251 const float32x4_t fft4 = vld1q_f32(&fft[2 * j + 4]); 255 const float32x4_t fft4 = vld1q_f32(&fft[2 * j + 4]);
252 const float32x4x2_t fft_re_im = vuzpq_f32(fft0, fft4); 256 const float32x4x2_t fft_re_im = vuzpq_f32(fft0, fft4);
253 wtBuf_re = vaddq_f32(wtBuf_re, fft_re_im.val[0]); 257 wtBuf_re = vaddq_f32(wtBuf_re, fft_re_im.val[0]);
254 wtBuf_im = vaddq_f32(wtBuf_im, fft_re_im.val[1]); 258 wtBuf_im = vaddq_f32(wtBuf_im, fft_re_im.val[1]);
255 259
256 vst1q_f32(&aec->wfBuf[0][pos + j], wtBuf_re); 260 vst1q_f32(&h_fft_buf[0][pos + j], wtBuf_re);
257 vst1q_f32(&aec->wfBuf[1][pos + j], wtBuf_im); 261 vst1q_f32(&h_fft_buf[1][pos + j], wtBuf_im);
258 } 262 }
259 aec->wfBuf[1][pos] = wt1; 263 h_fft_buf[1][pos] = wt1;
260 } 264 }
261 } 265 }
262 } 266 }
263 267
264 static float32x4_t vpowq_f32(float32x4_t a, float32x4_t b) { 268 static float32x4_t vpowq_f32(float32x4_t a, float32x4_t b) {
265 // a^b = exp2(b * log2(a)) 269 // a^b = exp2(b * log2(a))
266 // exp2(x) and log2(x) are calculated using polynomial approximations. 270 // exp2(x) and log2(x) are calculated using polynomial approximations.
267 float32x4_t log2_a, b_log2_a, a_exp_b; 271 float32x4_t log2_a, b_log2_a, a_exp_b;
268 272
269 // Calculate log2(x), x = a. 273 // Calculate log2(x), x = a.
(...skipping 464 matching lines...) Expand 10 before | Expand all | Expand 10 after
734 } 738 }
735 } 739 }
736 740
737 void WebRtcAec_InitAec_neon(void) { 741 void WebRtcAec_InitAec_neon(void) {
738 WebRtcAec_FilterFar = FilterFarNEON; 742 WebRtcAec_FilterFar = FilterFarNEON;
739 WebRtcAec_ScaleErrorSignal = ScaleErrorSignalNEON; 743 WebRtcAec_ScaleErrorSignal = ScaleErrorSignalNEON;
740 WebRtcAec_FilterAdaptation = FilterAdaptationNEON; 744 WebRtcAec_FilterAdaptation = FilterAdaptationNEON;
741 WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressNEON; 745 WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressNEON;
742 WebRtcAec_SubbandCoherence = SubbandCoherenceNEON; 746 WebRtcAec_SubbandCoherence = SubbandCoherenceNEON;
743 } 747 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698