Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(74)

Side by Side Diff: webrtc/modules/audio_processing/aec/aec_core_neon.c

Issue 1456123003: Ducking fix #3: Removed the state as an input to the FilterAdaptation function (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@Aec_Code_Cleanup2_CL
Patch Set: Removed gcc build-breaking method argument specifiers Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
(...skipping 16 matching lines...) Expand all
27 enum { kFloatExponentShift = 23 }; 27 enum { kFloatExponentShift = 23 };
28 28
29 __inline static float MulRe(float aRe, float aIm, float bRe, float bIm) { 29 __inline static float MulRe(float aRe, float aIm, float bRe, float bIm) {
30 return aRe * bRe - aIm * bIm; 30 return aRe * bRe - aIm * bIm;
31 } 31 }
32 32
33 __inline static float MulIm(float aRe, float aIm, float bRe, float bIm) { 33 __inline static float MulIm(float aRe, float aIm, float bRe, float bIm) {
34 return aRe * bIm + aIm * bRe; 34 return aRe * bIm + aIm * bRe;
35 } 35 }
36 36
37 static void FilterFarNEON(int num_partitions, 37 static void FilterFarNEON(
38 int xfBufBlockPos, 38 int num_partitions,
39 float xfBuf[2][kExtendedNumPartitions * PART_LEN1], 39 int x_fft_buf_block_pos,
40 float wfBuf[2][kExtendedNumPartitions * PART_LEN1], 40 float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
41 float yf[2][PART_LEN1]) { 41 float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
42 float y_fft[2][PART_LEN1]) {
42 int i; 43 int i;
43 for (i = 0; i < num_partitions; i++) { 44 for (i = 0; i < num_partitions; i++) {
44 int j; 45 int j;
45 int xPos = (i + xfBufBlockPos) * PART_LEN1; 46 int xPos = (i + x_fft_buf_block_pos) * PART_LEN1;
46 int pos = i * PART_LEN1; 47 int pos = i * PART_LEN1;
47 // Check for wrap 48 // Check for wrap
48 if (i + xfBufBlockPos >= num_partitions) { 49 if (i + x_fft_buf_block_pos >= num_partitions) {
49 xPos -= num_partitions * PART_LEN1; 50 xPos -= num_partitions * PART_LEN1;
50 } 51 }
51 52
52 // vectorized code (four at once) 53 // vectorized code (four at once)
53 for (j = 0; j + 3 < PART_LEN1; j += 4) { 54 for (j = 0; j + 3 < PART_LEN1; j += 4) {
54 const float32x4_t xfBuf_re = vld1q_f32(&xfBuf[0][xPos + j]); 55 const float32x4_t x_fft_buf_re = vld1q_f32(&x_fft_buf[0][xPos + j]);
55 const float32x4_t xfBuf_im = vld1q_f32(&xfBuf[1][xPos + j]); 56 const float32x4_t x_fft_buf_im = vld1q_f32(&x_fft_buf[1][xPos + j]);
56 const float32x4_t wfBuf_re = vld1q_f32(&wfBuf[0][pos + j]); 57 const float32x4_t h_fft_buf_re = vld1q_f32(&h_fft_buf[0][pos + j]);
57 const float32x4_t wfBuf_im = vld1q_f32(&wfBuf[1][pos + j]); 58 const float32x4_t h_fft_buf_im = vld1q_f32(&h_fft_buf[1][pos + j]);
58 const float32x4_t yf_re = vld1q_f32(&yf[0][j]); 59 const float32x4_t y_fft_re = vld1q_f32(&y_fft[0][j]);
59 const float32x4_t yf_im = vld1q_f32(&yf[1][j]); 60 const float32x4_t y_fft_im = vld1q_f32(&y_fft[1][j]);
60 const float32x4_t a = vmulq_f32(xfBuf_re, wfBuf_re); 61 const float32x4_t a = vmulq_f32(x_fft_buf_re, h_fft_buf_re);
61 const float32x4_t e = vmlsq_f32(a, xfBuf_im, wfBuf_im); 62 const float32x4_t e = vmlsq_f32(a, x_fft_buf_im, h_fft_buf_im);
62 const float32x4_t c = vmulq_f32(xfBuf_re, wfBuf_im); 63 const float32x4_t c = vmulq_f32(x_fft_buf_re, h_fft_buf_im);
63 const float32x4_t f = vmlaq_f32(c, xfBuf_im, wfBuf_re); 64 const float32x4_t f = vmlaq_f32(c, x_fft_buf_im, h_fft_buf_re);
64 const float32x4_t g = vaddq_f32(yf_re, e); 65 const float32x4_t g = vaddq_f32(y_fft_re, e);
65 const float32x4_t h = vaddq_f32(yf_im, f); 66 const float32x4_t h = vaddq_f32(y_fft_im, f);
66 vst1q_f32(&yf[0][j], g); 67 vst1q_f32(&y_fft[0][j], g);
67 vst1q_f32(&yf[1][j], h); 68 vst1q_f32(&y_fft[1][j], h);
68 } 69 }
69 // scalar code for the remaining items. 70 // scalar code for the remaining items.
70 for (; j < PART_LEN1; j++) { 71 for (; j < PART_LEN1; j++) {
71 yf[0][j] += MulRe(xfBuf[0][xPos + j], 72 y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j],
72 xfBuf[1][xPos + j], 73 x_fft_buf[1][xPos + j],
73 wfBuf[0][pos + j], 74 h_fft_buf[0][pos + j],
74 wfBuf[1][pos + j]); 75 h_fft_buf[1][pos + j]);
75 yf[1][j] += MulIm(xfBuf[0][xPos + j], 76 y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j],
76 xfBuf[1][xPos + j], 77 x_fft_buf[1][xPos + j],
77 wfBuf[0][pos + j], 78 h_fft_buf[0][pos + j],
78 wfBuf[1][pos + j]); 79 h_fft_buf[1][pos + j]);
79 } 80 }
80 } 81 }
81 } 82 }
82 83
83 // ARM64's arm_neon.h has already defined vdivq_f32 vsqrtq_f32. 84 // ARM64's arm_neon.h has already defined vdivq_f32 vsqrtq_f32.
84 #if !defined (WEBRTC_ARCH_ARM64) 85 #if !defined (WEBRTC_ARCH_ARM64)
85 static float32x4_t vdivq_f32(float32x4_t a, float32x4_t b) { 86 static float32x4_t vdivq_f32(float32x4_t a, float32x4_t b) {
86 int i; 87 int i;
87 float32x4_t x = vrecpeq_f32(b); 88 float32x4_t x = vrecpeq_f32(b);
88 // from arm documentation 89 // from arm documentation
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after
121 x = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, x), s), x); 122 x = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, x), s), x);
122 } 123 }
123 // sqrt(s) = s * 1/sqrt(s) 124 // sqrt(s) = s * 1/sqrt(s)
124 return vmulq_f32(s, x);; 125 return vmulq_f32(s, x);;
125 } 126 }
126 #endif // WEBRTC_ARCH_ARM64 127 #endif // WEBRTC_ARCH_ARM64
127 128
128 static void ScaleErrorSignalNEON(int extended_filter_enabled, 129 static void ScaleErrorSignalNEON(int extended_filter_enabled,
129 float normal_mu, 130 float normal_mu,
130 float normal_error_threshold, 131 float normal_error_threshold,
131 float *x_pow, 132 float x_pow[PART_LEN1],
132 float ef[2][PART_LEN1]) { 133 float ef[2][PART_LEN1]) {
133 const float mu = extended_filter_enabled ? kExtendedMu : normal_mu; 134 const float mu = extended_filter_enabled ? kExtendedMu : normal_mu;
134 const float error_threshold = extended_filter_enabled ? 135 const float error_threshold = extended_filter_enabled ?
135 kExtendedErrorThreshold : normal_error_threshold; 136 kExtendedErrorThreshold : normal_error_threshold;
136 const float32x4_t k1e_10f = vdupq_n_f32(1e-10f); 137 const float32x4_t k1e_10f = vdupq_n_f32(1e-10f);
137 const float32x4_t kMu = vmovq_n_f32(mu); 138 const float32x4_t kMu = vmovq_n_f32(mu);
138 const float32x4_t kThresh = vmovq_n_f32(error_threshold); 139 const float32x4_t kThresh = vmovq_n_f32(error_threshold);
139 int i; 140 int i;
140 // vectorized code (four at once) 141 // vectorized code (four at once)
141 for (i = 0; i + 3 < PART_LEN1; i += 4) { 142 for (i = 0; i + 3 < PART_LEN1; i += 4) {
(...skipping 36 matching lines...) Expand 10 before | Expand all | Expand 10 after
178 ef[0][i] *= abs_ef; 179 ef[0][i] *= abs_ef;
179 ef[1][i] *= abs_ef; 180 ef[1][i] *= abs_ef;
180 } 181 }
181 182
182 // Stepsize factor 183 // Stepsize factor
183 ef[0][i] *= mu; 184 ef[0][i] *= mu;
184 ef[1][i] *= mu; 185 ef[1][i] *= mu;
185 } 186 }
186 } 187 }
187 188
188 static void FilterAdaptationNEON(AecCore* aec, 189 static void FilterAdaptationNEON(
189 float* fft, 190 int num_partitions,
190 float ef[2][PART_LEN1]) { 191 int x_fft_buf_block_pos,
192 float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
193 float e_fft[2][PART_LEN1],
194 float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) {
195 float fft[PART_LEN2];
191 int i; 196 int i;
192 const int num_partitions = aec->num_partitions;
193 for (i = 0; i < num_partitions; i++) { 197 for (i = 0; i < num_partitions; i++) {
194 int xPos = (i + aec->xfBufBlockPos) * PART_LEN1; 198 int xPos = (i + x_fft_buf_block_pos) * PART_LEN1;
195 int pos = i * PART_LEN1; 199 int pos = i * PART_LEN1;
196 int j; 200 int j;
197 // Check for wrap 201 // Check for wrap
198 if (i + aec->xfBufBlockPos >= num_partitions) { 202 if (i + x_fft_buf_block_pos >= num_partitions) {
199 xPos -= num_partitions * PART_LEN1; 203 xPos -= num_partitions * PART_LEN1;
200 } 204 }
201 205
202 // Process the whole array... 206 // Process the whole array...
203 for (j = 0; j < PART_LEN; j += 4) { 207 for (j = 0; j < PART_LEN; j += 4) {
204 // Load xfBuf and ef. 208 // Load x_fft_buf and e_fft.
205 const float32x4_t xfBuf_re = vld1q_f32(&aec->xfBuf[0][xPos + j]); 209 const float32x4_t x_fft_buf_re = vld1q_f32(&x_fft_buf[0][xPos + j]);
206 const float32x4_t xfBuf_im = vld1q_f32(&aec->xfBuf[1][xPos + j]); 210 const float32x4_t x_fft_buf_im = vld1q_f32(&x_fft_buf[1][xPos + j]);
207 const float32x4_t ef_re = vld1q_f32(&ef[0][j]); 211 const float32x4_t e_fft_re = vld1q_f32(&e_fft[0][j]);
208 const float32x4_t ef_im = vld1q_f32(&ef[1][j]); 212 const float32x4_t e_fft_im = vld1q_f32(&e_fft[1][j]);
209 // Calculate the product of conjugate(xfBuf) by ef. 213 // Calculate the product of conjugate(x_fft_buf) by e_fft.
210 // re(conjugate(a) * b) = aRe * bRe + aIm * bIm 214 // re(conjugate(a) * b) = aRe * bRe + aIm * bIm
211 // im(conjugate(a) * b)= aRe * bIm - aIm * bRe 215 // im(conjugate(a) * b)= aRe * bIm - aIm * bRe
212 const float32x4_t a = vmulq_f32(xfBuf_re, ef_re); 216 const float32x4_t a = vmulq_f32(x_fft_buf_re, e_fft_re);
213 const float32x4_t e = vmlaq_f32(a, xfBuf_im, ef_im); 217 const float32x4_t e = vmlaq_f32(a, x_fft_buf_im, e_fft_im);
214 const float32x4_t c = vmulq_f32(xfBuf_re, ef_im); 218 const float32x4_t c = vmulq_f32(x_fft_buf_re, e_fft_im);
215 const float32x4_t f = vmlsq_f32(c, xfBuf_im, ef_re); 219 const float32x4_t f = vmlsq_f32(c, x_fft_buf_im, e_fft_re);
216 // Interleave real and imaginary parts. 220 // Interleave real and imaginary parts.
217 const float32x4x2_t g_n_h = vzipq_f32(e, f); 221 const float32x4x2_t g_n_h = vzipq_f32(e, f);
218 // Store 222 // Store
219 vst1q_f32(&fft[2 * j + 0], g_n_h.val[0]); 223 vst1q_f32(&fft[2 * j + 0], g_n_h.val[0]);
220 vst1q_f32(&fft[2 * j + 4], g_n_h.val[1]); 224 vst1q_f32(&fft[2 * j + 4], g_n_h.val[1]);
221 } 225 }
222 // ... and fixup the first imaginary entry. 226 // ... and fixup the first imaginary entry.
223 fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN], 227 fft[1] = MulRe(x_fft_buf[0][xPos + PART_LEN],
224 -aec->xfBuf[1][xPos + PART_LEN], 228 -x_fft_buf[1][xPos + PART_LEN],
225 ef[0][PART_LEN], 229 e_fft[0][PART_LEN],
226 ef[1][PART_LEN]); 230 e_fft[1][PART_LEN]);
227 231
228 aec_rdft_inverse_128(fft); 232 aec_rdft_inverse_128(fft);
229 memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); 233 memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);
230 234
231 // fft scaling 235 // fft scaling
232 { 236 {
233 const float scale = 2.0f / PART_LEN2; 237 const float scale = 2.0f / PART_LEN2;
234 const float32x4_t scale_ps = vmovq_n_f32(scale); 238 const float32x4_t scale_ps = vmovq_n_f32(scale);
235 for (j = 0; j < PART_LEN; j += 4) { 239 for (j = 0; j < PART_LEN; j += 4) {
236 const float32x4_t fft_ps = vld1q_f32(&fft[j]); 240 const float32x4_t fft_ps = vld1q_f32(&fft[j]);
237 const float32x4_t fft_scale = vmulq_f32(fft_ps, scale_ps); 241 const float32x4_t fft_scale = vmulq_f32(fft_ps, scale_ps);
238 vst1q_f32(&fft[j], fft_scale); 242 vst1q_f32(&fft[j], fft_scale);
239 } 243 }
240 } 244 }
241 aec_rdft_forward_128(fft); 245 aec_rdft_forward_128(fft);
242 246
243 { 247 {
244 const float wt1 = aec->wfBuf[1][pos]; 248 const float wt1 = h_fft_buf[1][pos];
245 aec->wfBuf[0][pos + PART_LEN] += fft[1]; 249 h_fft_buf[0][pos + PART_LEN] += fft[1];
246 for (j = 0; j < PART_LEN; j += 4) { 250 for (j = 0; j < PART_LEN; j += 4) {
247 float32x4_t wtBuf_re = vld1q_f32(&aec->wfBuf[0][pos + j]); 251 float32x4_t wtBuf_re = vld1q_f32(&h_fft_buf[0][pos + j]);
248 float32x4_t wtBuf_im = vld1q_f32(&aec->wfBuf[1][pos + j]); 252 float32x4_t wtBuf_im = vld1q_f32(&h_fft_buf[1][pos + j]);
249 const float32x4_t fft0 = vld1q_f32(&fft[2 * j + 0]); 253 const float32x4_t fft0 = vld1q_f32(&fft[2 * j + 0]);
250 const float32x4_t fft4 = vld1q_f32(&fft[2 * j + 4]); 254 const float32x4_t fft4 = vld1q_f32(&fft[2 * j + 4]);
251 const float32x4x2_t fft_re_im = vuzpq_f32(fft0, fft4); 255 const float32x4x2_t fft_re_im = vuzpq_f32(fft0, fft4);
252 wtBuf_re = vaddq_f32(wtBuf_re, fft_re_im.val[0]); 256 wtBuf_re = vaddq_f32(wtBuf_re, fft_re_im.val[0]);
253 wtBuf_im = vaddq_f32(wtBuf_im, fft_re_im.val[1]); 257 wtBuf_im = vaddq_f32(wtBuf_im, fft_re_im.val[1]);
254 258
255 vst1q_f32(&aec->wfBuf[0][pos + j], wtBuf_re); 259 vst1q_f32(&h_fft_buf[0][pos + j], wtBuf_re);
256 vst1q_f32(&aec->wfBuf[1][pos + j], wtBuf_im); 260 vst1q_f32(&h_fft_buf[1][pos + j], wtBuf_im);
257 } 261 }
258 aec->wfBuf[1][pos] = wt1; 262 h_fft_buf[1][pos] = wt1;
259 } 263 }
260 } 264 }
261 } 265 }
262 266
263 static float32x4_t vpowq_f32(float32x4_t a, float32x4_t b) { 267 static float32x4_t vpowq_f32(float32x4_t a, float32x4_t b) {
264 // a^b = exp2(b * log2(a)) 268 // a^b = exp2(b * log2(a))
265 // exp2(x) and log2(x) are calculated using polynomial approximations. 269 // exp2(x) and log2(x) are calculated using polynomial approximations.
266 float32x4_t log2_a, b_log2_a, a_exp_b; 270 float32x4_t log2_a, b_log2_a, a_exp_b;
267 271
268 // Calculate log2(x), x = a. 272 // Calculate log2(x), x = a.
(...skipping 464 matching lines...) Expand 10 before | Expand all | Expand 10 after
733 } 737 }
734 } 738 }
735 739
736 void WebRtcAec_InitAec_neon(void) { 740 void WebRtcAec_InitAec_neon(void) {
737 WebRtcAec_FilterFar = FilterFarNEON; 741 WebRtcAec_FilterFar = FilterFarNEON;
738 WebRtcAec_ScaleErrorSignal = ScaleErrorSignalNEON; 742 WebRtcAec_ScaleErrorSignal = ScaleErrorSignalNEON;
739 WebRtcAec_FilterAdaptation = FilterAdaptationNEON; 743 WebRtcAec_FilterAdaptation = FilterAdaptationNEON;
740 WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressNEON; 744 WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressNEON;
741 WebRtcAec_SubbandCoherence = SubbandCoherenceNEON; 745 WebRtcAec_SubbandCoherence = SubbandCoherenceNEON;
742 } 746 }
OLDNEW
« no previous file with comments | « webrtc/modules/audio_processing/aec/aec_core_mips.c ('k') | webrtc/modules/audio_processing/aec/aec_core_sse2.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698