| Index: webrtc/modules/video_coding/main/source/jitter_estimator.cc
|
| diff --git a/webrtc/modules/video_coding/main/source/jitter_estimator.cc b/webrtc/modules/video_coding/main/source/jitter_estimator.cc
|
| deleted file mode 100644
|
| index 5894c88d72a023f5261a55df8cdb3ba25ccf0bb5..0000000000000000000000000000000000000000
|
| --- a/webrtc/modules/video_coding/main/source/jitter_estimator.cc
|
| +++ /dev/null
|
| @@ -1,482 +0,0 @@
|
| -/*
|
| - * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license
|
| - * that can be found in the LICENSE file in the root of the source
|
| - * tree. An additional intellectual property rights grant can be found
|
| - * in the file PATENTS. All contributing project authors may
|
| - * be found in the AUTHORS file in the root of the source tree.
|
| - */
|
| -
|
| -#include "webrtc/modules/video_coding/main/source/internal_defines.h"
|
| -#include "webrtc/modules/video_coding/main/source/jitter_estimator.h"
|
| -#include "webrtc/modules/video_coding/main/source/rtt_filter.h"
|
| -#include "webrtc/system_wrappers/include/clock.h"
|
| -#include "webrtc/system_wrappers/include/field_trial.h"
|
| -
|
| -#include <assert.h>
|
| -#include <math.h>
|
| -#include <stdlib.h>
|
| -#include <string.h>
|
| -
|
| -namespace webrtc {
|
| -
|
| -enum { kStartupDelaySamples = 30 };
|
| -enum { kFsAccuStartupSamples = 5 };
|
| -enum { kMaxFramerateEstimate = 200 };
|
| -
|
| -VCMJitterEstimator::VCMJitterEstimator(const Clock* clock,
|
| - int32_t vcmId,
|
| - int32_t receiverId)
|
| - : _vcmId(vcmId),
|
| - _receiverId(receiverId),
|
| - _phi(0.97),
|
| - _psi(0.9999),
|
| - _alphaCountMax(400),
|
| - _thetaLow(0.000001),
|
| - _nackLimit(3),
|
| - _numStdDevDelayOutlier(15),
|
| - _numStdDevFrameSizeOutlier(3),
|
| - _noiseStdDevs(2.33), // ~Less than 1% chance
|
| - // (look up in normal distribution table)...
|
| - _noiseStdDevOffset(30.0), // ...of getting 30 ms freezes
|
| - _rttFilter(),
|
| - fps_counter_(30), // TODO(sprang): Use an estimator with limit based on
|
| - // time, rather than number of samples.
|
| - low_rate_experiment_(kInit),
|
| - clock_(clock) {
|
| - Reset();
|
| -}
|
| -
|
| -VCMJitterEstimator::~VCMJitterEstimator() {
|
| -}
|
| -
|
| -VCMJitterEstimator&
|
| -VCMJitterEstimator::operator=(const VCMJitterEstimator& rhs)
|
| -{
|
| - if (this != &rhs)
|
| - {
|
| - memcpy(_thetaCov, rhs._thetaCov, sizeof(_thetaCov));
|
| - memcpy(_Qcov, rhs._Qcov, sizeof(_Qcov));
|
| -
|
| - _vcmId = rhs._vcmId;
|
| - _receiverId = rhs._receiverId;
|
| - _avgFrameSize = rhs._avgFrameSize;
|
| - _varFrameSize = rhs._varFrameSize;
|
| - _maxFrameSize = rhs._maxFrameSize;
|
| - _fsSum = rhs._fsSum;
|
| - _fsCount = rhs._fsCount;
|
| - _lastUpdateT = rhs._lastUpdateT;
|
| - _prevEstimate = rhs._prevEstimate;
|
| - _prevFrameSize = rhs._prevFrameSize;
|
| - _avgNoise = rhs._avgNoise;
|
| - _alphaCount = rhs._alphaCount;
|
| - _filterJitterEstimate = rhs._filterJitterEstimate;
|
| - _startupCount = rhs._startupCount;
|
| - _latestNackTimestamp = rhs._latestNackTimestamp;
|
| - _nackCount = rhs._nackCount;
|
| - _rttFilter = rhs._rttFilter;
|
| - }
|
| - return *this;
|
| -}
|
| -
|
| -// Resets the JitterEstimate
|
| -void
|
| -VCMJitterEstimator::Reset()
|
| -{
|
| - _theta[0] = 1/(512e3/8);
|
| - _theta[1] = 0;
|
| - _varNoise = 4.0;
|
| -
|
| - _thetaCov[0][0] = 1e-4;
|
| - _thetaCov[1][1] = 1e2;
|
| - _thetaCov[0][1] = _thetaCov[1][0] = 0;
|
| - _Qcov[0][0] = 2.5e-10;
|
| - _Qcov[1][1] = 1e-10;
|
| - _Qcov[0][1] = _Qcov[1][0] = 0;
|
| - _avgFrameSize = 500;
|
| - _maxFrameSize = 500;
|
| - _varFrameSize = 100;
|
| - _lastUpdateT = -1;
|
| - _prevEstimate = -1.0;
|
| - _prevFrameSize = 0;
|
| - _avgNoise = 0.0;
|
| - _alphaCount = 1;
|
| - _filterJitterEstimate = 0.0;
|
| - _latestNackTimestamp = 0;
|
| - _nackCount = 0;
|
| - _fsSum = 0;
|
| - _fsCount = 0;
|
| - _startupCount = 0;
|
| - _rttFilter.Reset();
|
| - fps_counter_.Reset();
|
| -}
|
| -
|
| -void
|
| -VCMJitterEstimator::ResetNackCount()
|
| -{
|
| - _nackCount = 0;
|
| -}
|
| -
|
| -// Updates the estimates with the new measurements
|
| -void
|
| -VCMJitterEstimator::UpdateEstimate(int64_t frameDelayMS, uint32_t frameSizeBytes,
|
| - bool incompleteFrame /* = false */)
|
| -{
|
| - if (frameSizeBytes == 0)
|
| - {
|
| - return;
|
| - }
|
| - int deltaFS = frameSizeBytes - _prevFrameSize;
|
| - if (_fsCount < kFsAccuStartupSamples)
|
| - {
|
| - _fsSum += frameSizeBytes;
|
| - _fsCount++;
|
| - }
|
| - else if (_fsCount == kFsAccuStartupSamples)
|
| - {
|
| - // Give the frame size filter
|
| - _avgFrameSize = static_cast<double>(_fsSum) /
|
| - static_cast<double>(_fsCount);
|
| - _fsCount++;
|
| - }
|
| - if (!incompleteFrame || frameSizeBytes > _avgFrameSize)
|
| - {
|
| - double avgFrameSize = _phi * _avgFrameSize +
|
| - (1 - _phi) * frameSizeBytes;
|
| - if (frameSizeBytes < _avgFrameSize + 2 * sqrt(_varFrameSize))
|
| - {
|
| - // Only update the average frame size if this sample wasn't a
|
| - // key frame
|
| - _avgFrameSize = avgFrameSize;
|
| - }
|
| - // Update the variance anyway since we want to capture cases where we only get
|
| - // key frames.
|
| - _varFrameSize = VCM_MAX(_phi * _varFrameSize + (1 - _phi) *
|
| - (frameSizeBytes - avgFrameSize) *
|
| - (frameSizeBytes - avgFrameSize), 1.0);
|
| - }
|
| -
|
| - // Update max frameSize estimate
|
| - _maxFrameSize = VCM_MAX(_psi * _maxFrameSize, static_cast<double>(frameSizeBytes));
|
| -
|
| - if (_prevFrameSize == 0)
|
| - {
|
| - _prevFrameSize = frameSizeBytes;
|
| - return;
|
| - }
|
| - _prevFrameSize = frameSizeBytes;
|
| -
|
| - // Only update the Kalman filter if the sample is not considered
|
| - // an extreme outlier. Even if it is an extreme outlier from a
|
| - // delay point of view, if the frame size also is large the
|
| - // deviation is probably due to an incorrect line slope.
|
| - double deviation = DeviationFromExpectedDelay(frameDelayMS, deltaFS);
|
| -
|
| - if (fabs(deviation) < _numStdDevDelayOutlier * sqrt(_varNoise) ||
|
| - frameSizeBytes > _avgFrameSize + _numStdDevFrameSizeOutlier * sqrt(_varFrameSize))
|
| - {
|
| - // Update the variance of the deviation from the
|
| - // line given by the Kalman filter
|
| - EstimateRandomJitter(deviation, incompleteFrame);
|
| - // Prevent updating with frames which have been congested by a large
|
| - // frame, and therefore arrives almost at the same time as that frame.
|
| - // This can occur when we receive a large frame (key frame) which
|
| - // has been delayed. The next frame is of normal size (delta frame),
|
| - // and thus deltaFS will be << 0. This removes all frame samples
|
| - // which arrives after a key frame.
|
| - if ((!incompleteFrame || deviation >= 0.0) &&
|
| - static_cast<double>(deltaFS) > - 0.25 * _maxFrameSize)
|
| - {
|
| - // Update the Kalman filter with the new data
|
| - KalmanEstimateChannel(frameDelayMS, deltaFS);
|
| - }
|
| - }
|
| - else
|
| - {
|
| - int nStdDev = (deviation >= 0) ? _numStdDevDelayOutlier : -_numStdDevDelayOutlier;
|
| - EstimateRandomJitter(nStdDev * sqrt(_varNoise), incompleteFrame);
|
| - }
|
| - // Post process the total estimated jitter
|
| - if (_startupCount >= kStartupDelaySamples)
|
| - {
|
| - PostProcessEstimate();
|
| - }
|
| - else
|
| - {
|
| - _startupCount++;
|
| - }
|
| -}
|
| -
|
| -// Updates the nack/packet ratio
|
| -void
|
| -VCMJitterEstimator::FrameNacked()
|
| -{
|
| - // Wait until _nackLimit retransmissions has been received,
|
| - // then always add ~1 RTT delay.
|
| - // TODO(holmer): Should we ever remove the additional delay if the
|
| - // the packet losses seem to have stopped? We could for instance scale
|
| - // the number of RTTs to add with the amount of retransmissions in a given
|
| - // time interval, or similar.
|
| - if (_nackCount < _nackLimit)
|
| - {
|
| - _nackCount++;
|
| - }
|
| -}
|
| -
|
| -// Updates Kalman estimate of the channel
|
| -// The caller is expected to sanity check the inputs.
|
| -void
|
| -VCMJitterEstimator::KalmanEstimateChannel(int64_t frameDelayMS,
|
| - int32_t deltaFSBytes)
|
| -{
|
| - double Mh[2];
|
| - double hMh_sigma;
|
| - double kalmanGain[2];
|
| - double measureRes;
|
| - double t00, t01;
|
| -
|
| - // Kalman filtering
|
| -
|
| - // Prediction
|
| - // M = M + Q
|
| - _thetaCov[0][0] += _Qcov[0][0];
|
| - _thetaCov[0][1] += _Qcov[0][1];
|
| - _thetaCov[1][0] += _Qcov[1][0];
|
| - _thetaCov[1][1] += _Qcov[1][1];
|
| -
|
| - // Kalman gain
|
| - // K = M*h'/(sigma2n + h*M*h') = M*h'/(1 + h*M*h')
|
| - // h = [dFS 1]
|
| - // Mh = M*h'
|
| - // hMh_sigma = h*M*h' + R
|
| - Mh[0] = _thetaCov[0][0] * deltaFSBytes + _thetaCov[0][1];
|
| - Mh[1] = _thetaCov[1][0] * deltaFSBytes + _thetaCov[1][1];
|
| - // sigma weights measurements with a small deltaFS as noisy and
|
| - // measurements with large deltaFS as good
|
| - if (_maxFrameSize < 1.0)
|
| - {
|
| - return;
|
| - }
|
| - double sigma = (300.0 * exp(-fabs(static_cast<double>(deltaFSBytes)) /
|
| - (1e0 * _maxFrameSize)) + 1) * sqrt(_varNoise);
|
| - if (sigma < 1.0)
|
| - {
|
| - sigma = 1.0;
|
| - }
|
| - hMh_sigma = deltaFSBytes * Mh[0] + Mh[1] + sigma;
|
| - if ((hMh_sigma < 1e-9 && hMh_sigma >= 0) || (hMh_sigma > -1e-9 && hMh_sigma <= 0))
|
| - {
|
| - assert(false);
|
| - return;
|
| - }
|
| - kalmanGain[0] = Mh[0] / hMh_sigma;
|
| - kalmanGain[1] = Mh[1] / hMh_sigma;
|
| -
|
| - // Correction
|
| - // theta = theta + K*(dT - h*theta)
|
| - measureRes = frameDelayMS - (deltaFSBytes * _theta[0] + _theta[1]);
|
| - _theta[0] += kalmanGain[0] * measureRes;
|
| - _theta[1] += kalmanGain[1] * measureRes;
|
| -
|
| - if (_theta[0] < _thetaLow)
|
| - {
|
| - _theta[0] = _thetaLow;
|
| - }
|
| -
|
| - // M = (I - K*h)*M
|
| - t00 = _thetaCov[0][0];
|
| - t01 = _thetaCov[0][1];
|
| - _thetaCov[0][0] = (1 - kalmanGain[0] * deltaFSBytes) * t00 -
|
| - kalmanGain[0] * _thetaCov[1][0];
|
| - _thetaCov[0][1] = (1 - kalmanGain[0] * deltaFSBytes) * t01 -
|
| - kalmanGain[0] * _thetaCov[1][1];
|
| - _thetaCov[1][0] = _thetaCov[1][0] * (1 - kalmanGain[1]) -
|
| - kalmanGain[1] * deltaFSBytes * t00;
|
| - _thetaCov[1][1] = _thetaCov[1][1] * (1 - kalmanGain[1]) -
|
| - kalmanGain[1] * deltaFSBytes * t01;
|
| -
|
| - // Covariance matrix, must be positive semi-definite
|
| - assert(_thetaCov[0][0] + _thetaCov[1][1] >= 0 &&
|
| - _thetaCov[0][0] * _thetaCov[1][1] - _thetaCov[0][1] * _thetaCov[1][0] >= 0 &&
|
| - _thetaCov[0][0] >= 0);
|
| -}
|
| -
|
| -// Calculate difference in delay between a sample and the
|
| -// expected delay estimated by the Kalman filter
|
| -double
|
| -VCMJitterEstimator::DeviationFromExpectedDelay(int64_t frameDelayMS,
|
| - int32_t deltaFSBytes) const
|
| -{
|
| - return frameDelayMS - (_theta[0] * deltaFSBytes + _theta[1]);
|
| -}
|
| -
|
| -// Estimates the random jitter by calculating the variance of the
|
| -// sample distance from the line given by theta.
|
| -void VCMJitterEstimator::EstimateRandomJitter(double d_dT,
|
| - bool incompleteFrame) {
|
| - uint64_t now = clock_->TimeInMicroseconds();
|
| - if (_lastUpdateT != -1) {
|
| - fps_counter_.AddSample(now - _lastUpdateT);
|
| - }
|
| - _lastUpdateT = now;
|
| -
|
| - if (_alphaCount == 0) {
|
| - assert(false);
|
| - return;
|
| - }
|
| - double alpha =
|
| - static_cast<double>(_alphaCount - 1) / static_cast<double>(_alphaCount);
|
| - _alphaCount++;
|
| - if (_alphaCount > _alphaCountMax)
|
| - _alphaCount = _alphaCountMax;
|
| -
|
| - if (LowRateExperimentEnabled()) {
|
| - // In order to avoid a low frame rate stream to react slower to changes,
|
| - // scale the alpha weight relative a 30 fps stream.
|
| - double fps = GetFrameRate();
|
| - if (fps > 0.0) {
|
| - double rate_scale = 30.0 / fps;
|
| - // At startup, there can be a lot of noise in the fps estimate.
|
| - // Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps
|
| - // at sample #kStartupDelaySamples.
|
| - if (_alphaCount < kStartupDelaySamples) {
|
| - rate_scale =
|
| - (_alphaCount * rate_scale + (kStartupDelaySamples - _alphaCount)) /
|
| - kStartupDelaySamples;
|
| - }
|
| - alpha = pow(alpha, rate_scale);
|
| - }
|
| - }
|
| -
|
| - double avgNoise = alpha * _avgNoise + (1 - alpha) * d_dT;
|
| - double varNoise =
|
| - alpha * _varNoise + (1 - alpha) * (d_dT - _avgNoise) * (d_dT - _avgNoise);
|
| - if (!incompleteFrame || varNoise > _varNoise) {
|
| - _avgNoise = avgNoise;
|
| - _varNoise = varNoise;
|
| - }
|
| - if (_varNoise < 1.0) {
|
| - // The variance should never be zero, since we might get
|
| - // stuck and consider all samples as outliers.
|
| - _varNoise = 1.0;
|
| - }
|
| -}
|
| -
|
| -double
|
| -VCMJitterEstimator::NoiseThreshold() const
|
| -{
|
| - double noiseThreshold = _noiseStdDevs * sqrt(_varNoise) - _noiseStdDevOffset;
|
| - if (noiseThreshold < 1.0)
|
| - {
|
| - noiseThreshold = 1.0;
|
| - }
|
| - return noiseThreshold;
|
| -}
|
| -
|
| -// Calculates the current jitter estimate from the filtered estimates
|
| -double
|
| -VCMJitterEstimator::CalculateEstimate()
|
| -{
|
| - double ret = _theta[0] * (_maxFrameSize - _avgFrameSize) + NoiseThreshold();
|
| -
|
| - // A very low estimate (or negative) is neglected
|
| - if (ret < 1.0) {
|
| - if (_prevEstimate <= 0.01)
|
| - {
|
| - ret = 1.0;
|
| - }
|
| - else
|
| - {
|
| - ret = _prevEstimate;
|
| - }
|
| - }
|
| - if (ret > 10000.0) // Sanity
|
| - {
|
| - ret = 10000.0;
|
| - }
|
| - _prevEstimate = ret;
|
| - return ret;
|
| -}
|
| -
|
| -void
|
| -VCMJitterEstimator::PostProcessEstimate()
|
| -{
|
| - _filterJitterEstimate = CalculateEstimate();
|
| -}
|
| -
|
| -void
|
| -VCMJitterEstimator::UpdateRtt(int64_t rttMs)
|
| -{
|
| - _rttFilter.Update(rttMs);
|
| -}
|
| -
|
| -void
|
| -VCMJitterEstimator::UpdateMaxFrameSize(uint32_t frameSizeBytes)
|
| -{
|
| - if (_maxFrameSize < frameSizeBytes)
|
| - {
|
| - _maxFrameSize = frameSizeBytes;
|
| - }
|
| -}
|
| -
|
| -// Returns the current filtered estimate if available,
|
| -// otherwise tries to calculate an estimate.
|
| -int VCMJitterEstimator::GetJitterEstimate(double rttMultiplier) {
|
| - double jitterMS = CalculateEstimate() + OPERATING_SYSTEM_JITTER;
|
| - if (_filterJitterEstimate > jitterMS)
|
| - jitterMS = _filterJitterEstimate;
|
| - if (_nackCount >= _nackLimit)
|
| - jitterMS += _rttFilter.RttMs() * rttMultiplier;
|
| -
|
| - if (LowRateExperimentEnabled()) {
|
| - static const double kJitterScaleLowThreshold = 5.0;
|
| - static const double kJitterScaleHighThreshold = 10.0;
|
| - double fps = GetFrameRate();
|
| - // Ignore jitter for very low fps streams.
|
| - if (fps < kJitterScaleLowThreshold) {
|
| - if (fps == 0.0) {
|
| - return jitterMS;
|
| - }
|
| - return 0;
|
| - }
|
| -
|
| - // Semi-low frame rate; scale by factor linearly interpolated from 0.0 at
|
| - // kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold.
|
| - if (fps < kJitterScaleHighThreshold) {
|
| - jitterMS =
|
| - (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) *
|
| - (fps - kJitterScaleLowThreshold) * jitterMS;
|
| - }
|
| - }
|
| -
|
| - return static_cast<uint32_t>(jitterMS + 0.5);
|
| -}
|
| -
|
| -bool VCMJitterEstimator::LowRateExperimentEnabled() {
|
| - if (low_rate_experiment_ == kInit) {
|
| - std::string group =
|
| - webrtc::field_trial::FindFullName("WebRTC-ReducedJitterDelay");
|
| - if (group == "Disabled") {
|
| - low_rate_experiment_ = kDisabled;
|
| - } else {
|
| - low_rate_experiment_ = kEnabled;
|
| - }
|
| - }
|
| - return low_rate_experiment_ == kEnabled ? true : false;
|
| -}
|
| -
|
| -double VCMJitterEstimator::GetFrameRate() const {
|
| - if (fps_counter_.count() == 0)
|
| - return 0;
|
| -
|
| - double fps = 1000000.0 / fps_counter_.ComputeMean();
|
| - // Sanity check.
|
| - assert(fps >= 0.0);
|
| - if (fps > kMaxFramerateEstimate) {
|
| - fps = kMaxFramerateEstimate;
|
| - }
|
| - return fps;
|
| -}
|
| -
|
| -}
|
|
|