Index: webrtc/modules/video_coding/main/source/jitter_estimator.cc |
diff --git a/webrtc/modules/video_coding/main/source/jitter_estimator.cc b/webrtc/modules/video_coding/main/source/jitter_estimator.cc |
deleted file mode 100644 |
index 5894c88d72a023f5261a55df8cdb3ba25ccf0bb5..0000000000000000000000000000000000000000 |
--- a/webrtc/modules/video_coding/main/source/jitter_estimator.cc |
+++ /dev/null |
@@ -1,482 +0,0 @@ |
-/* |
- * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
- * |
- * Use of this source code is governed by a BSD-style license |
- * that can be found in the LICENSE file in the root of the source |
- * tree. An additional intellectual property rights grant can be found |
- * in the file PATENTS. All contributing project authors may |
- * be found in the AUTHORS file in the root of the source tree. |
- */ |
- |
-#include "webrtc/modules/video_coding/main/source/internal_defines.h" |
-#include "webrtc/modules/video_coding/main/source/jitter_estimator.h" |
-#include "webrtc/modules/video_coding/main/source/rtt_filter.h" |
-#include "webrtc/system_wrappers/include/clock.h" |
-#include "webrtc/system_wrappers/include/field_trial.h" |
- |
-#include <assert.h> |
-#include <math.h> |
-#include <stdlib.h> |
-#include <string.h> |
- |
-namespace webrtc { |
- |
-enum { kStartupDelaySamples = 30 }; |
-enum { kFsAccuStartupSamples = 5 }; |
-enum { kMaxFramerateEstimate = 200 }; |
- |
-VCMJitterEstimator::VCMJitterEstimator(const Clock* clock, |
- int32_t vcmId, |
- int32_t receiverId) |
- : _vcmId(vcmId), |
- _receiverId(receiverId), |
- _phi(0.97), |
- _psi(0.9999), |
- _alphaCountMax(400), |
- _thetaLow(0.000001), |
- _nackLimit(3), |
- _numStdDevDelayOutlier(15), |
- _numStdDevFrameSizeOutlier(3), |
- _noiseStdDevs(2.33), // ~Less than 1% chance |
- // (look up in normal distribution table)... |
- _noiseStdDevOffset(30.0), // ...of getting 30 ms freezes |
- _rttFilter(), |
- fps_counter_(30), // TODO(sprang): Use an estimator with limit based on |
- // time, rather than number of samples. |
- low_rate_experiment_(kInit), |
- clock_(clock) { |
- Reset(); |
-} |
- |
-VCMJitterEstimator::~VCMJitterEstimator() { |
-} |
- |
-VCMJitterEstimator& |
-VCMJitterEstimator::operator=(const VCMJitterEstimator& rhs) |
-{ |
- if (this != &rhs) |
- { |
- memcpy(_thetaCov, rhs._thetaCov, sizeof(_thetaCov)); |
- memcpy(_Qcov, rhs._Qcov, sizeof(_Qcov)); |
- |
- _vcmId = rhs._vcmId; |
- _receiverId = rhs._receiverId; |
- _avgFrameSize = rhs._avgFrameSize; |
- _varFrameSize = rhs._varFrameSize; |
- _maxFrameSize = rhs._maxFrameSize; |
- _fsSum = rhs._fsSum; |
- _fsCount = rhs._fsCount; |
- _lastUpdateT = rhs._lastUpdateT; |
- _prevEstimate = rhs._prevEstimate; |
- _prevFrameSize = rhs._prevFrameSize; |
- _avgNoise = rhs._avgNoise; |
- _alphaCount = rhs._alphaCount; |
- _filterJitterEstimate = rhs._filterJitterEstimate; |
- _startupCount = rhs._startupCount; |
- _latestNackTimestamp = rhs._latestNackTimestamp; |
- _nackCount = rhs._nackCount; |
- _rttFilter = rhs._rttFilter; |
- } |
- return *this; |
-} |
- |
-// Resets the JitterEstimate |
-void |
-VCMJitterEstimator::Reset() |
-{ |
- _theta[0] = 1/(512e3/8); |
- _theta[1] = 0; |
- _varNoise = 4.0; |
- |
- _thetaCov[0][0] = 1e-4; |
- _thetaCov[1][1] = 1e2; |
- _thetaCov[0][1] = _thetaCov[1][0] = 0; |
- _Qcov[0][0] = 2.5e-10; |
- _Qcov[1][1] = 1e-10; |
- _Qcov[0][1] = _Qcov[1][0] = 0; |
- _avgFrameSize = 500; |
- _maxFrameSize = 500; |
- _varFrameSize = 100; |
- _lastUpdateT = -1; |
- _prevEstimate = -1.0; |
- _prevFrameSize = 0; |
- _avgNoise = 0.0; |
- _alphaCount = 1; |
- _filterJitterEstimate = 0.0; |
- _latestNackTimestamp = 0; |
- _nackCount = 0; |
- _fsSum = 0; |
- _fsCount = 0; |
- _startupCount = 0; |
- _rttFilter.Reset(); |
- fps_counter_.Reset(); |
-} |
- |
-void |
-VCMJitterEstimator::ResetNackCount() |
-{ |
- _nackCount = 0; |
-} |
- |
-// Updates the estimates with the new measurements |
-void |
-VCMJitterEstimator::UpdateEstimate(int64_t frameDelayMS, uint32_t frameSizeBytes, |
- bool incompleteFrame /* = false */) |
-{ |
- if (frameSizeBytes == 0) |
- { |
- return; |
- } |
- int deltaFS = frameSizeBytes - _prevFrameSize; |
- if (_fsCount < kFsAccuStartupSamples) |
- { |
- _fsSum += frameSizeBytes; |
- _fsCount++; |
- } |
- else if (_fsCount == kFsAccuStartupSamples) |
- { |
- // Give the frame size filter |
- _avgFrameSize = static_cast<double>(_fsSum) / |
- static_cast<double>(_fsCount); |
- _fsCount++; |
- } |
- if (!incompleteFrame || frameSizeBytes > _avgFrameSize) |
- { |
- double avgFrameSize = _phi * _avgFrameSize + |
- (1 - _phi) * frameSizeBytes; |
- if (frameSizeBytes < _avgFrameSize + 2 * sqrt(_varFrameSize)) |
- { |
- // Only update the average frame size if this sample wasn't a |
- // key frame |
- _avgFrameSize = avgFrameSize; |
- } |
- // Update the variance anyway since we want to capture cases where we only get |
- // key frames. |
- _varFrameSize = VCM_MAX(_phi * _varFrameSize + (1 - _phi) * |
- (frameSizeBytes - avgFrameSize) * |
- (frameSizeBytes - avgFrameSize), 1.0); |
- } |
- |
- // Update max frameSize estimate |
- _maxFrameSize = VCM_MAX(_psi * _maxFrameSize, static_cast<double>(frameSizeBytes)); |
- |
- if (_prevFrameSize == 0) |
- { |
- _prevFrameSize = frameSizeBytes; |
- return; |
- } |
- _prevFrameSize = frameSizeBytes; |
- |
- // Only update the Kalman filter if the sample is not considered |
- // an extreme outlier. Even if it is an extreme outlier from a |
- // delay point of view, if the frame size also is large the |
- // deviation is probably due to an incorrect line slope. |
- double deviation = DeviationFromExpectedDelay(frameDelayMS, deltaFS); |
- |
- if (fabs(deviation) < _numStdDevDelayOutlier * sqrt(_varNoise) || |
- frameSizeBytes > _avgFrameSize + _numStdDevFrameSizeOutlier * sqrt(_varFrameSize)) |
- { |
- // Update the variance of the deviation from the |
- // line given by the Kalman filter |
- EstimateRandomJitter(deviation, incompleteFrame); |
- // Prevent updating with frames which have been congested by a large |
- // frame, and therefore arrives almost at the same time as that frame. |
- // This can occur when we receive a large frame (key frame) which |
- // has been delayed. The next frame is of normal size (delta frame), |
- // and thus deltaFS will be << 0. This removes all frame samples |
- // which arrives after a key frame. |
- if ((!incompleteFrame || deviation >= 0.0) && |
- static_cast<double>(deltaFS) > - 0.25 * _maxFrameSize) |
- { |
- // Update the Kalman filter with the new data |
- KalmanEstimateChannel(frameDelayMS, deltaFS); |
- } |
- } |
- else |
- { |
- int nStdDev = (deviation >= 0) ? _numStdDevDelayOutlier : -_numStdDevDelayOutlier; |
- EstimateRandomJitter(nStdDev * sqrt(_varNoise), incompleteFrame); |
- } |
- // Post process the total estimated jitter |
- if (_startupCount >= kStartupDelaySamples) |
- { |
- PostProcessEstimate(); |
- } |
- else |
- { |
- _startupCount++; |
- } |
-} |
- |
-// Updates the nack/packet ratio |
-void |
-VCMJitterEstimator::FrameNacked() |
-{ |
- // Wait until _nackLimit retransmissions has been received, |
- // then always add ~1 RTT delay. |
- // TODO(holmer): Should we ever remove the additional delay if the |
- // the packet losses seem to have stopped? We could for instance scale |
- // the number of RTTs to add with the amount of retransmissions in a given |
- // time interval, or similar. |
- if (_nackCount < _nackLimit) |
- { |
- _nackCount++; |
- } |
-} |
- |
-// Updates Kalman estimate of the channel |
-// The caller is expected to sanity check the inputs. |
-void |
-VCMJitterEstimator::KalmanEstimateChannel(int64_t frameDelayMS, |
- int32_t deltaFSBytes) |
-{ |
- double Mh[2]; |
- double hMh_sigma; |
- double kalmanGain[2]; |
- double measureRes; |
- double t00, t01; |
- |
- // Kalman filtering |
- |
- // Prediction |
- // M = M + Q |
- _thetaCov[0][0] += _Qcov[0][0]; |
- _thetaCov[0][1] += _Qcov[0][1]; |
- _thetaCov[1][0] += _Qcov[1][0]; |
- _thetaCov[1][1] += _Qcov[1][1]; |
- |
- // Kalman gain |
- // K = M*h'/(sigma2n + h*M*h') = M*h'/(1 + h*M*h') |
- // h = [dFS 1] |
- // Mh = M*h' |
- // hMh_sigma = h*M*h' + R |
- Mh[0] = _thetaCov[0][0] * deltaFSBytes + _thetaCov[0][1]; |
- Mh[1] = _thetaCov[1][0] * deltaFSBytes + _thetaCov[1][1]; |
- // sigma weights measurements with a small deltaFS as noisy and |
- // measurements with large deltaFS as good |
- if (_maxFrameSize < 1.0) |
- { |
- return; |
- } |
- double sigma = (300.0 * exp(-fabs(static_cast<double>(deltaFSBytes)) / |
- (1e0 * _maxFrameSize)) + 1) * sqrt(_varNoise); |
- if (sigma < 1.0) |
- { |
- sigma = 1.0; |
- } |
- hMh_sigma = deltaFSBytes * Mh[0] + Mh[1] + sigma; |
- if ((hMh_sigma < 1e-9 && hMh_sigma >= 0) || (hMh_sigma > -1e-9 && hMh_sigma <= 0)) |
- { |
- assert(false); |
- return; |
- } |
- kalmanGain[0] = Mh[0] / hMh_sigma; |
- kalmanGain[1] = Mh[1] / hMh_sigma; |
- |
- // Correction |
- // theta = theta + K*(dT - h*theta) |
- measureRes = frameDelayMS - (deltaFSBytes * _theta[0] + _theta[1]); |
- _theta[0] += kalmanGain[0] * measureRes; |
- _theta[1] += kalmanGain[1] * measureRes; |
- |
- if (_theta[0] < _thetaLow) |
- { |
- _theta[0] = _thetaLow; |
- } |
- |
- // M = (I - K*h)*M |
- t00 = _thetaCov[0][0]; |
- t01 = _thetaCov[0][1]; |
- _thetaCov[0][0] = (1 - kalmanGain[0] * deltaFSBytes) * t00 - |
- kalmanGain[0] * _thetaCov[1][0]; |
- _thetaCov[0][1] = (1 - kalmanGain[0] * deltaFSBytes) * t01 - |
- kalmanGain[0] * _thetaCov[1][1]; |
- _thetaCov[1][0] = _thetaCov[1][0] * (1 - kalmanGain[1]) - |
- kalmanGain[1] * deltaFSBytes * t00; |
- _thetaCov[1][1] = _thetaCov[1][1] * (1 - kalmanGain[1]) - |
- kalmanGain[1] * deltaFSBytes * t01; |
- |
- // Covariance matrix, must be positive semi-definite |
- assert(_thetaCov[0][0] + _thetaCov[1][1] >= 0 && |
- _thetaCov[0][0] * _thetaCov[1][1] - _thetaCov[0][1] * _thetaCov[1][0] >= 0 && |
- _thetaCov[0][0] >= 0); |
-} |
- |
-// Calculate difference in delay between a sample and the |
-// expected delay estimated by the Kalman filter |
-double |
-VCMJitterEstimator::DeviationFromExpectedDelay(int64_t frameDelayMS, |
- int32_t deltaFSBytes) const |
-{ |
- return frameDelayMS - (_theta[0] * deltaFSBytes + _theta[1]); |
-} |
- |
-// Estimates the random jitter by calculating the variance of the |
-// sample distance from the line given by theta. |
-void VCMJitterEstimator::EstimateRandomJitter(double d_dT, |
- bool incompleteFrame) { |
- uint64_t now = clock_->TimeInMicroseconds(); |
- if (_lastUpdateT != -1) { |
- fps_counter_.AddSample(now - _lastUpdateT); |
- } |
- _lastUpdateT = now; |
- |
- if (_alphaCount == 0) { |
- assert(false); |
- return; |
- } |
- double alpha = |
- static_cast<double>(_alphaCount - 1) / static_cast<double>(_alphaCount); |
- _alphaCount++; |
- if (_alphaCount > _alphaCountMax) |
- _alphaCount = _alphaCountMax; |
- |
- if (LowRateExperimentEnabled()) { |
- // In order to avoid a low frame rate stream to react slower to changes, |
- // scale the alpha weight relative a 30 fps stream. |
- double fps = GetFrameRate(); |
- if (fps > 0.0) { |
- double rate_scale = 30.0 / fps; |
- // At startup, there can be a lot of noise in the fps estimate. |
- // Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps |
- // at sample #kStartupDelaySamples. |
- if (_alphaCount < kStartupDelaySamples) { |
- rate_scale = |
- (_alphaCount * rate_scale + (kStartupDelaySamples - _alphaCount)) / |
- kStartupDelaySamples; |
- } |
- alpha = pow(alpha, rate_scale); |
- } |
- } |
- |
- double avgNoise = alpha * _avgNoise + (1 - alpha) * d_dT; |
- double varNoise = |
- alpha * _varNoise + (1 - alpha) * (d_dT - _avgNoise) * (d_dT - _avgNoise); |
- if (!incompleteFrame || varNoise > _varNoise) { |
- _avgNoise = avgNoise; |
- _varNoise = varNoise; |
- } |
- if (_varNoise < 1.0) { |
- // The variance should never be zero, since we might get |
- // stuck and consider all samples as outliers. |
- _varNoise = 1.0; |
- } |
-} |
- |
-double |
-VCMJitterEstimator::NoiseThreshold() const |
-{ |
- double noiseThreshold = _noiseStdDevs * sqrt(_varNoise) - _noiseStdDevOffset; |
- if (noiseThreshold < 1.0) |
- { |
- noiseThreshold = 1.0; |
- } |
- return noiseThreshold; |
-} |
- |
-// Calculates the current jitter estimate from the filtered estimates |
-double |
-VCMJitterEstimator::CalculateEstimate() |
-{ |
- double ret = _theta[0] * (_maxFrameSize - _avgFrameSize) + NoiseThreshold(); |
- |
- // A very low estimate (or negative) is neglected |
- if (ret < 1.0) { |
- if (_prevEstimate <= 0.01) |
- { |
- ret = 1.0; |
- } |
- else |
- { |
- ret = _prevEstimate; |
- } |
- } |
- if (ret > 10000.0) // Sanity |
- { |
- ret = 10000.0; |
- } |
- _prevEstimate = ret; |
- return ret; |
-} |
- |
-void |
-VCMJitterEstimator::PostProcessEstimate() |
-{ |
- _filterJitterEstimate = CalculateEstimate(); |
-} |
- |
-void |
-VCMJitterEstimator::UpdateRtt(int64_t rttMs) |
-{ |
- _rttFilter.Update(rttMs); |
-} |
- |
-void |
-VCMJitterEstimator::UpdateMaxFrameSize(uint32_t frameSizeBytes) |
-{ |
- if (_maxFrameSize < frameSizeBytes) |
- { |
- _maxFrameSize = frameSizeBytes; |
- } |
-} |
- |
-// Returns the current filtered estimate if available, |
-// otherwise tries to calculate an estimate. |
-int VCMJitterEstimator::GetJitterEstimate(double rttMultiplier) { |
- double jitterMS = CalculateEstimate() + OPERATING_SYSTEM_JITTER; |
- if (_filterJitterEstimate > jitterMS) |
- jitterMS = _filterJitterEstimate; |
- if (_nackCount >= _nackLimit) |
- jitterMS += _rttFilter.RttMs() * rttMultiplier; |
- |
- if (LowRateExperimentEnabled()) { |
- static const double kJitterScaleLowThreshold = 5.0; |
- static const double kJitterScaleHighThreshold = 10.0; |
- double fps = GetFrameRate(); |
- // Ignore jitter for very low fps streams. |
- if (fps < kJitterScaleLowThreshold) { |
- if (fps == 0.0) { |
- return jitterMS; |
- } |
- return 0; |
- } |
- |
- // Semi-low frame rate; scale by factor linearly interpolated from 0.0 at |
- // kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold. |
- if (fps < kJitterScaleHighThreshold) { |
- jitterMS = |
- (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) * |
- (fps - kJitterScaleLowThreshold) * jitterMS; |
- } |
- } |
- |
- return static_cast<uint32_t>(jitterMS + 0.5); |
-} |
- |
-bool VCMJitterEstimator::LowRateExperimentEnabled() { |
- if (low_rate_experiment_ == kInit) { |
- std::string group = |
- webrtc::field_trial::FindFullName("WebRTC-ReducedJitterDelay"); |
- if (group == "Disabled") { |
- low_rate_experiment_ = kDisabled; |
- } else { |
- low_rate_experiment_ = kEnabled; |
- } |
- } |
- return low_rate_experiment_ == kEnabled ? true : false; |
-} |
- |
-double VCMJitterEstimator::GetFrameRate() const { |
- if (fps_counter_.count() == 0) |
- return 0; |
- |
- double fps = 1000000.0 / fps_counter_.ComputeMean(); |
- // Sanity check. |
- assert(fps >= 0.0); |
- if (fps > kMaxFramerateEstimate) { |
- fps = kMaxFramerateEstimate; |
- } |
- return fps; |
-} |
- |
-} |