Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(304)

Side by Side Diff: webrtc/modules/video_coding/main/source/media_opt_util.cc

Issue 1417283007: modules/video_coding refactorings (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Fix the other copy of the mock include header Created 5 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/video_coding/main/source/media_opt_util.h"
12
13 #include <algorithm>
14 #include <float.h>
15 #include <limits.h>
16 #include <math.h>
17
18 #include "webrtc/modules/include/module_common_types.h"
19 #include "webrtc/modules/video_coding/codecs/vp8/include/vp8_common_types.h"
20 #include "webrtc/modules/video_coding/main/interface/video_coding_defines.h"
21 #include "webrtc/modules/video_coding/main/source/fec_tables_xor.h"
22 #include "webrtc/modules/video_coding/main/source/nack_fec_tables.h"
23
24 namespace webrtc {
25 // Max value of loss rates in off-line model
26 static const int kPacketLossMax = 129;
27
28 namespace media_optimization {
29
30 VCMProtectionMethod::VCMProtectionMethod()
31 : _effectivePacketLoss(0),
32 _protectionFactorK(0),
33 _protectionFactorD(0),
34 _scaleProtKey(2.0f),
35 _maxPayloadSize(1460),
36 _qmRobustness(new VCMQmRobustness()),
37 _useUepProtectionK(false),
38 _useUepProtectionD(true),
39 _corrFecCost(1.0),
40 _type(kNone) {
41 }
42
43 VCMProtectionMethod::~VCMProtectionMethod()
44 {
45 delete _qmRobustness;
46 }
47 void
48 VCMProtectionMethod::UpdateContentMetrics(const
49 VideoContentMetrics* contentMetrics)
50 {
51 _qmRobustness->UpdateContent(contentMetrics);
52 }
53
54 VCMNackFecMethod::VCMNackFecMethod(int64_t lowRttNackThresholdMs,
55 int64_t highRttNackThresholdMs)
56 : VCMFecMethod(),
57 _lowRttNackMs(lowRttNackThresholdMs),
58 _highRttNackMs(highRttNackThresholdMs),
59 _maxFramesFec(1) {
60 assert(lowRttNackThresholdMs >= -1 && highRttNackThresholdMs >= -1);
61 assert(highRttNackThresholdMs == -1 ||
62 lowRttNackThresholdMs <= highRttNackThresholdMs);
63 assert(lowRttNackThresholdMs > -1 || highRttNackThresholdMs == -1);
64 _type = kNackFec;
65 }
66
67 VCMNackFecMethod::~VCMNackFecMethod()
68 {
69 //
70 }
71 bool
72 VCMNackFecMethod::ProtectionFactor(const VCMProtectionParameters* parameters)
73 {
74 // Hybrid Nack FEC has three operational modes:
75 // 1. Low RTT (below kLowRttNackMs) - Nack only: Set FEC rate
76 // (_protectionFactorD) to zero. -1 means no FEC.
77 // 2. High RTT (above _highRttNackMs) - FEC Only: Keep FEC factors.
78 // -1 means always allow NACK.
79 // 3. Medium RTT values - Hybrid mode: We will only nack the
80 // residual following the decoding of the FEC (refer to JB logic). FEC
81 // delta protection factor will be adjusted based on the RTT.
82
83 // Otherwise: we count on FEC; if the RTT is below a threshold, then we
84 // nack the residual, based on a decision made in the JB.
85
86 // Compute the protection factors
87 VCMFecMethod::ProtectionFactor(parameters);
88 if (_lowRttNackMs == -1 || parameters->rtt < _lowRttNackMs)
89 {
90 _protectionFactorD = 0;
91 VCMFecMethod::UpdateProtectionFactorD(_protectionFactorD);
92 }
93
94 // When in Hybrid mode (RTT range), adjust FEC rates based on the
95 // RTT (NACK effectiveness) - adjustment factor is in the range [0,1].
96 else if (_highRttNackMs == -1 || parameters->rtt < _highRttNackMs)
97 {
98 // TODO(mikhal): Disabling adjustment temporarily.
99 // uint16_t rttIndex = (uint16_t) parameters->rtt;
100 float adjustRtt = 1.0f;// (float)VCMNackFecTable[rttIndex] / 100.0f;
101
102 // Adjust FEC with NACK on (for delta frame only)
103 // table depends on RTT relative to rttMax (NACK Threshold)
104 _protectionFactorD = static_cast<uint8_t>
105 (adjustRtt *
106 static_cast<float>(_protectionFactorD));
107 // update FEC rates after applying adjustment
108 VCMFecMethod::UpdateProtectionFactorD(_protectionFactorD);
109 }
110
111 return true;
112 }
113
114 int VCMNackFecMethod::ComputeMaxFramesFec(
115 const VCMProtectionParameters* parameters) {
116 if (parameters->numLayers > 2) {
117 // For more than 2 temporal layers we will only have FEC on the base layer,
118 // and the base layers will be pretty far apart. Therefore we force one
119 // frame FEC.
120 return 1;
121 }
122 // We set the max number of frames to base the FEC on so that on average
123 // we will have complete frames in one RTT. Note that this is an upper
124 // bound, and that the actual number of frames used for FEC is decided by the
125 // RTP module based on the actual number of packets and the protection factor.
126 float base_layer_framerate = parameters->frameRate /
127 static_cast<float>(1 << (parameters->numLayers - 1));
128 int max_frames_fec = std::max(static_cast<int>(
129 2.0f * base_layer_framerate * parameters->rtt /
130 1000.0f + 0.5f), 1);
131 // |kUpperLimitFramesFec| is the upper limit on how many frames we
132 // allow any FEC to be based on.
133 if (max_frames_fec > kUpperLimitFramesFec) {
134 max_frames_fec = kUpperLimitFramesFec;
135 }
136 return max_frames_fec;
137 }
138
139 int VCMNackFecMethod::MaxFramesFec() const {
140 return _maxFramesFec;
141 }
142
143 bool VCMNackFecMethod::BitRateTooLowForFec(
144 const VCMProtectionParameters* parameters) {
145 // Bitrate below which we turn off FEC, regardless of reported packet loss.
146 // The condition should depend on resolution and content. For now, use
147 // threshold on bytes per frame, with some effect for the frame size.
148 // The condition for turning off FEC is also based on other factors,
149 // such as |_numLayers|, |_maxFramesFec|, and |_rtt|.
150 int estimate_bytes_per_frame = 1000 * BitsPerFrame(parameters) / 8;
151 int max_bytes_per_frame = kMaxBytesPerFrameForFec;
152 int num_pixels = parameters->codecWidth * parameters->codecHeight;
153 if (num_pixels <= 352 * 288) {
154 max_bytes_per_frame = kMaxBytesPerFrameForFecLow;
155 } else if (num_pixels > 640 * 480) {
156 max_bytes_per_frame = kMaxBytesPerFrameForFecHigh;
157 }
158 // TODO (marpan): add condition based on maximum frames used for FEC,
159 // and expand condition based on frame size.
160 // Max round trip time threshold in ms.
161 const int64_t kMaxRttTurnOffFec = 200;
162 if (estimate_bytes_per_frame < max_bytes_per_frame &&
163 parameters->numLayers < 3 &&
164 parameters->rtt < kMaxRttTurnOffFec) {
165 return true;
166 }
167 return false;
168 }
169
170 bool
171 VCMNackFecMethod::EffectivePacketLoss(const VCMProtectionParameters* parameters)
172 {
173 // Set the effective packet loss for encoder (based on FEC code).
174 // Compute the effective packet loss and residual packet loss due to FEC.
175 VCMFecMethod::EffectivePacketLoss(parameters);
176 return true;
177 }
178
179 bool
180 VCMNackFecMethod::UpdateParameters(const VCMProtectionParameters* parameters)
181 {
182 ProtectionFactor(parameters);
183 EffectivePacketLoss(parameters);
184 _maxFramesFec = ComputeMaxFramesFec(parameters);
185 if (BitRateTooLowForFec(parameters)) {
186 _protectionFactorK = 0;
187 _protectionFactorD = 0;
188 }
189
190 // Protection/fec rates obtained above are defined relative to total number
191 // of packets (total rate: source + fec) FEC in RTP module assumes
192 // protection factor is defined relative to source number of packets so we
193 // should convert the factor to reduce mismatch between mediaOpt's rate and
194 // the actual one
195 _protectionFactorK = VCMFecMethod::ConvertFECRate(_protectionFactorK);
196 _protectionFactorD = VCMFecMethod::ConvertFECRate(_protectionFactorD);
197
198 return true;
199 }
200
201 VCMNackMethod::VCMNackMethod():
202 VCMProtectionMethod()
203 {
204 _type = kNack;
205 }
206
207 VCMNackMethod::~VCMNackMethod()
208 {
209 //
210 }
211
212 bool
213 VCMNackMethod::EffectivePacketLoss(const VCMProtectionParameters* parameter)
214 {
215 // Effective Packet Loss, NA in current version.
216 _effectivePacketLoss = 0;
217 return true;
218 }
219
220 bool
221 VCMNackMethod::UpdateParameters(const VCMProtectionParameters* parameters)
222 {
223 // Compute the effective packet loss
224 EffectivePacketLoss(parameters);
225
226 // nackCost = (bitRate - nackCost) * (lossPr)
227 return true;
228 }
229
230 VCMFecMethod::VCMFecMethod():
231 VCMProtectionMethod()
232 {
233 _type = kFec;
234 }
235 VCMFecMethod::~VCMFecMethod()
236 {
237 //
238 }
239
240 uint8_t
241 VCMFecMethod::BoostCodeRateKey(uint8_t packetFrameDelta,
242 uint8_t packetFrameKey) const
243 {
244 uint8_t boostRateKey = 2;
245 // Default: ratio scales the FEC protection up for I frames
246 uint8_t ratio = 1;
247
248 if (packetFrameDelta > 0)
249 {
250 ratio = (int8_t) (packetFrameKey / packetFrameDelta);
251 }
252 ratio = VCM_MAX(boostRateKey, ratio);
253
254 return ratio;
255 }
256
257 uint8_t
258 VCMFecMethod::ConvertFECRate(uint8_t codeRateRTP) const
259 {
260 return static_cast<uint8_t> (VCM_MIN(255,(0.5 + 255.0 * codeRateRTP /
261 (float)(255 - codeRateRTP))));
262 }
263
264 // Update FEC with protectionFactorD
265 void
266 VCMFecMethod::UpdateProtectionFactorD(uint8_t protectionFactorD)
267 {
268 _protectionFactorD = protectionFactorD;
269 }
270
271 // Update FEC with protectionFactorK
272 void
273 VCMFecMethod::UpdateProtectionFactorK(uint8_t protectionFactorK)
274 {
275 _protectionFactorK = protectionFactorK;
276 }
277
278 bool
279 VCMFecMethod::ProtectionFactor(const VCMProtectionParameters* parameters)
280 {
281 // FEC PROTECTION SETTINGS: varies with packet loss and bitrate
282
283 // No protection if (filtered) packetLoss is 0
284 uint8_t packetLoss = (uint8_t) (255 * parameters->lossPr);
285 if (packetLoss == 0)
286 {
287 _protectionFactorK = 0;
288 _protectionFactorD = 0;
289 return true;
290 }
291
292 // Parameters for FEC setting:
293 // first partition size, thresholds, table pars, spatial resoln fac.
294
295 // First partition protection: ~ 20%
296 uint8_t firstPartitionProt = (uint8_t) (255 * 0.20);
297
298 // Minimum protection level needed to generate one FEC packet for one
299 // source packet/frame (in RTP sender)
300 uint8_t minProtLevelFec = 85;
301
302 // Threshold on packetLoss and bitRrate/frameRate (=average #packets),
303 // above which we allocate protection to cover at least first partition.
304 uint8_t lossThr = 0;
305 uint8_t packetNumThr = 1;
306
307 // Parameters for range of rate index of table.
308 const uint8_t ratePar1 = 5;
309 const uint8_t ratePar2 = 49;
310
311 // Spatial resolution size, relative to a reference size.
312 float spatialSizeToRef = static_cast<float>
313 (parameters->codecWidth * parameters->codecHeight) /
314 (static_cast<float>(704 * 576));
315 // resolnFac: This parameter will generally increase/decrease the FEC rate
316 // (for fixed bitRate and packetLoss) based on system size.
317 // Use a smaller exponent (< 1) to control/soften system size effect.
318 const float resolnFac = 1.0 / powf(spatialSizeToRef, 0.3f);
319
320 const int bitRatePerFrame = BitsPerFrame(parameters);
321
322
323 // Average number of packets per frame (source and fec):
324 const uint8_t avgTotPackets = 1 + (uint8_t)
325 ((float) bitRatePerFrame * 1000.0
326 / (float) (8.0 * _maxPayloadSize) + 0.5);
327
328 // FEC rate parameters: for P and I frame
329 uint8_t codeRateDelta = 0;
330 uint8_t codeRateKey = 0;
331
332 // Get index for table: the FEC protection depends on an effective rate.
333 // The range on the rate index corresponds to rates (bps)
334 // from ~200k to ~8000k, for 30fps
335 const uint16_t effRateFecTable = static_cast<uint16_t>
336 (resolnFac * bitRatePerFrame);
337 uint8_t rateIndexTable =
338 (uint8_t) VCM_MAX(VCM_MIN((effRateFecTable - ratePar1) /
339 ratePar1, ratePar2), 0);
340
341 // Restrict packet loss range to 50:
342 // current tables defined only up to 50%
343 if (packetLoss >= kPacketLossMax)
344 {
345 packetLoss = kPacketLossMax - 1;
346 }
347 uint16_t indexTable = rateIndexTable * kPacketLossMax + packetLoss;
348
349 // Check on table index
350 assert(indexTable < kSizeCodeRateXORTable);
351
352 // Protection factor for P frame
353 codeRateDelta = kCodeRateXORTable[indexTable];
354
355 if (packetLoss > lossThr && avgTotPackets > packetNumThr)
356 {
357 // Set a minimum based on first partition size.
358 if (codeRateDelta < firstPartitionProt)
359 {
360 codeRateDelta = firstPartitionProt;
361 }
362 }
363
364 // Check limit on amount of protection for P frame; 50% is max.
365 if (codeRateDelta >= kPacketLossMax)
366 {
367 codeRateDelta = kPacketLossMax - 1;
368 }
369
370 float adjustFec = 1.0f;
371 // Avoid additional adjustments when layers are active.
372 // TODO(mikhal/marco): Update adjusmtent based on layer info.
373 if (parameters->numLayers == 1)
374 {
375 adjustFec = _qmRobustness->AdjustFecFactor(codeRateDelta,
376 parameters->bitRate,
377 parameters->frameRate,
378 parameters->rtt,
379 packetLoss);
380 }
381
382 codeRateDelta = static_cast<uint8_t>(codeRateDelta * adjustFec);
383
384 // For Key frame:
385 // Effectively at a higher rate, so we scale/boost the rate
386 // The boost factor may depend on several factors: ratio of packet
387 // number of I to P frames, how much protection placed on P frames, etc.
388 const uint8_t packetFrameDelta = (uint8_t)
389 (0.5 + parameters->packetsPerFrame);
390 const uint8_t packetFrameKey = (uint8_t)
391 (0.5 + parameters->packetsPerFrameKey);
392 const uint8_t boostKey = BoostCodeRateKey(packetFrameDelta,
393 packetFrameKey);
394
395 rateIndexTable = (uint8_t) VCM_MAX(VCM_MIN(
396 1 + (boostKey * effRateFecTable - ratePar1) /
397 ratePar1,ratePar2),0);
398 uint16_t indexTableKey = rateIndexTable * kPacketLossMax + packetLoss;
399
400 indexTableKey = VCM_MIN(indexTableKey, kSizeCodeRateXORTable);
401
402 // Check on table index
403 assert(indexTableKey < kSizeCodeRateXORTable);
404
405 // Protection factor for I frame
406 codeRateKey = kCodeRateXORTable[indexTableKey];
407
408 // Boosting for Key frame.
409 int boostKeyProt = _scaleProtKey * codeRateDelta;
410 if (boostKeyProt >= kPacketLossMax)
411 {
412 boostKeyProt = kPacketLossMax - 1;
413 }
414
415 // Make sure I frame protection is at least larger than P frame protection,
416 // and at least as high as filtered packet loss.
417 codeRateKey = static_cast<uint8_t> (VCM_MAX(packetLoss,
418 VCM_MAX(boostKeyProt, codeRateKey)));
419
420 // Check limit on amount of protection for I frame: 50% is max.
421 if (codeRateKey >= kPacketLossMax)
422 {
423 codeRateKey = kPacketLossMax - 1;
424 }
425
426 _protectionFactorK = codeRateKey;
427 _protectionFactorD = codeRateDelta;
428
429 // Generally there is a rate mis-match between the FEC cost estimated
430 // in mediaOpt and the actual FEC cost sent out in RTP module.
431 // This is more significant at low rates (small # of source packets), where
432 // the granularity of the FEC decreases. In this case, non-zero protection
433 // in mediaOpt may generate 0 FEC packets in RTP sender (since actual #FEC
434 // is based on rounding off protectionFactor on actual source packet number) .
435 // The correction factor (_corrFecCost) attempts to corrects this, at least
436 // for cases of low rates (small #packets) and low protection levels.
437
438 float numPacketsFl = 1.0f + ((float) bitRatePerFrame * 1000.0
439 / (float) (8.0 * _maxPayloadSize) + 0.5);
440
441 const float estNumFecGen = 0.5f + static_cast<float> (_protectionFactorD *
442 numPacketsFl / 255.0f);
443
444
445 // We reduce cost factor (which will reduce overhead for FEC and
446 // hybrid method) and not the protectionFactor.
447 _corrFecCost = 1.0f;
448 if (estNumFecGen < 1.1f && _protectionFactorD < minProtLevelFec)
449 {
450 _corrFecCost = 0.5f;
451 }
452 if (estNumFecGen < 0.9f && _protectionFactorD < minProtLevelFec)
453 {
454 _corrFecCost = 0.0f;
455 }
456
457 // TODO (marpan): Set the UEP protection on/off for Key and Delta frames
458 _useUepProtectionK = _qmRobustness->SetUepProtection(codeRateKey,
459 parameters->bitRate,
460 packetLoss,
461 0);
462
463 _useUepProtectionD = _qmRobustness->SetUepProtection(codeRateDelta,
464 parameters->bitRate,
465 packetLoss,
466 1);
467
468 // DONE WITH FEC PROTECTION SETTINGS
469 return true;
470 }
471
472 int VCMFecMethod::BitsPerFrame(const VCMProtectionParameters* parameters) {
473 // When temporal layers are available FEC will only be applied on the base
474 // layer.
475 const float bitRateRatio =
476 kVp8LayerRateAlloction[parameters->numLayers - 1][0];
477 float frameRateRatio = powf(1 / 2.0, parameters->numLayers - 1);
478 float bitRate = parameters->bitRate * bitRateRatio;
479 float frameRate = parameters->frameRate * frameRateRatio;
480
481 // TODO(mikhal): Update factor following testing.
482 float adjustmentFactor = 1;
483
484 // Average bits per frame (units of kbits)
485 return static_cast<int>(adjustmentFactor * bitRate / frameRate);
486 }
487
488 bool
489 VCMFecMethod::EffectivePacketLoss(const VCMProtectionParameters* parameters)
490 {
491 // Effective packet loss to encoder is based on RPL (residual packet loss)
492 // this is a soft setting based on degree of FEC protection
493 // RPL = received/input packet loss - average_FEC_recovery
494 // note: received/input packet loss may be filtered based on FilteredLoss
495
496 // Effective Packet Loss, NA in current version.
497 _effectivePacketLoss = 0;
498
499 return true;
500 }
501
502 bool
503 VCMFecMethod::UpdateParameters(const VCMProtectionParameters* parameters)
504 {
505 // Compute the protection factor
506 ProtectionFactor(parameters);
507
508 // Compute the effective packet loss
509 EffectivePacketLoss(parameters);
510
511 // Protection/fec rates obtained above is defined relative to total number
512 // of packets (total rate: source+fec) FEC in RTP module assumes protection
513 // factor is defined relative to source number of packets so we should
514 // convert the factor to reduce mismatch between mediaOpt suggested rate and
515 // the actual rate
516 _protectionFactorK = ConvertFECRate(_protectionFactorK);
517 _protectionFactorD = ConvertFECRate(_protectionFactorD);
518
519 return true;
520 }
521 VCMLossProtectionLogic::VCMLossProtectionLogic(int64_t nowMs):
522 _currentParameters(),
523 _rtt(0),
524 _lossPr(0.0f),
525 _bitRate(0.0f),
526 _frameRate(0.0f),
527 _keyFrameSize(0.0f),
528 _fecRateKey(0),
529 _fecRateDelta(0),
530 _lastPrUpdateT(0),
531 _lossPr255(0.9999f),
532 _lossPrHistory(),
533 _shortMaxLossPr255(0),
534 _packetsPerFrame(0.9999f),
535 _packetsPerFrameKey(0.9999f),
536 _codecWidth(0),
537 _codecHeight(0),
538 _numLayers(1)
539 {
540 Reset(nowMs);
541 }
542
543 VCMLossProtectionLogic::~VCMLossProtectionLogic()
544 {
545 Release();
546 }
547
548 void VCMLossProtectionLogic::SetMethod(
549 enum VCMProtectionMethodEnum newMethodType) {
550 if (_selectedMethod && _selectedMethod->Type() == newMethodType)
551 return;
552
553 switch(newMethodType) {
554 case kNack:
555 _selectedMethod.reset(new VCMNackMethod());
556 break;
557 case kFec:
558 _selectedMethod.reset(new VCMFecMethod());
559 break;
560 case kNackFec:
561 _selectedMethod.reset(new VCMNackFecMethod(kLowRttNackMs, -1));
562 break;
563 case kNone:
564 _selectedMethod.reset();
565 break;
566 }
567 UpdateMethod();
568 }
569
570 void
571 VCMLossProtectionLogic::UpdateRtt(int64_t rtt)
572 {
573 _rtt = rtt;
574 }
575
576 void
577 VCMLossProtectionLogic::UpdateMaxLossHistory(uint8_t lossPr255,
578 int64_t now)
579 {
580 if (_lossPrHistory[0].timeMs >= 0 &&
581 now - _lossPrHistory[0].timeMs < kLossPrShortFilterWinMs)
582 {
583 if (lossPr255 > _shortMaxLossPr255)
584 {
585 _shortMaxLossPr255 = lossPr255;
586 }
587 }
588 else
589 {
590 // Only add a new value to the history once a second
591 if (_lossPrHistory[0].timeMs == -1)
592 {
593 // First, no shift
594 _shortMaxLossPr255 = lossPr255;
595 }
596 else
597 {
598 // Shift
599 for (int32_t i = (kLossPrHistorySize - 2); i >= 0; i--)
600 {
601 _lossPrHistory[i + 1].lossPr255 = _lossPrHistory[i].lossPr255;
602 _lossPrHistory[i + 1].timeMs = _lossPrHistory[i].timeMs;
603 }
604 }
605 if (_shortMaxLossPr255 == 0)
606 {
607 _shortMaxLossPr255 = lossPr255;
608 }
609
610 _lossPrHistory[0].lossPr255 = _shortMaxLossPr255;
611 _lossPrHistory[0].timeMs = now;
612 _shortMaxLossPr255 = 0;
613 }
614 }
615
616 uint8_t
617 VCMLossProtectionLogic::MaxFilteredLossPr(int64_t nowMs) const
618 {
619 uint8_t maxFound = _shortMaxLossPr255;
620 if (_lossPrHistory[0].timeMs == -1)
621 {
622 return maxFound;
623 }
624 for (int32_t i = 0; i < kLossPrHistorySize; i++)
625 {
626 if (_lossPrHistory[i].timeMs == -1)
627 {
628 break;
629 }
630 if (nowMs - _lossPrHistory[i].timeMs >
631 kLossPrHistorySize * kLossPrShortFilterWinMs)
632 {
633 // This sample (and all samples after this) is too old
634 break;
635 }
636 if (_lossPrHistory[i].lossPr255 > maxFound)
637 {
638 // This sample is the largest one this far into the history
639 maxFound = _lossPrHistory[i].lossPr255;
640 }
641 }
642 return maxFound;
643 }
644
645 uint8_t VCMLossProtectionLogic::FilteredLoss(
646 int64_t nowMs,
647 FilterPacketLossMode filter_mode,
648 uint8_t lossPr255) {
649
650 // Update the max window filter.
651 UpdateMaxLossHistory(lossPr255, nowMs);
652
653 // Update the recursive average filter.
654 _lossPr255.Apply(static_cast<float> (nowMs - _lastPrUpdateT),
655 static_cast<float> (lossPr255));
656 _lastPrUpdateT = nowMs;
657
658 // Filtered loss: default is received loss (no filtering).
659 uint8_t filtered_loss = lossPr255;
660
661 switch (filter_mode) {
662 case kNoFilter:
663 break;
664 case kAvgFilter:
665 filtered_loss = static_cast<uint8_t>(_lossPr255.filtered() + 0.5);
666 break;
667 case kMaxFilter:
668 filtered_loss = MaxFilteredLossPr(nowMs);
669 break;
670 }
671
672 return filtered_loss;
673 }
674
675 void
676 VCMLossProtectionLogic::UpdateFilteredLossPr(uint8_t packetLossEnc)
677 {
678 _lossPr = (float) packetLossEnc / (float) 255.0;
679 }
680
681 void
682 VCMLossProtectionLogic::UpdateBitRate(float bitRate)
683 {
684 _bitRate = bitRate;
685 }
686
687 void
688 VCMLossProtectionLogic::UpdatePacketsPerFrame(float nPackets, int64_t nowMs)
689 {
690 _packetsPerFrame.Apply(static_cast<float>(nowMs - _lastPacketPerFrameUpdateT ),
691 nPackets);
692 _lastPacketPerFrameUpdateT = nowMs;
693 }
694
695 void
696 VCMLossProtectionLogic::UpdatePacketsPerFrameKey(float nPackets, int64_t nowMs)
697 {
698 _packetsPerFrameKey.Apply(static_cast<float>(nowMs -
699 _lastPacketPerFrameUpdateTKey), nPackets);
700 _lastPacketPerFrameUpdateTKey = nowMs;
701 }
702
703 void
704 VCMLossProtectionLogic::UpdateKeyFrameSize(float keyFrameSize)
705 {
706 _keyFrameSize = keyFrameSize;
707 }
708
709 void
710 VCMLossProtectionLogic::UpdateFrameSize(uint16_t width,
711 uint16_t height)
712 {
713 _codecWidth = width;
714 _codecHeight = height;
715 }
716
717 void VCMLossProtectionLogic::UpdateNumLayers(int numLayers) {
718 _numLayers = (numLayers == 0) ? 1 : numLayers;
719 }
720
721 bool
722 VCMLossProtectionLogic::UpdateMethod()
723 {
724 if (!_selectedMethod)
725 return false;
726 _currentParameters.rtt = _rtt;
727 _currentParameters.lossPr = _lossPr;
728 _currentParameters.bitRate = _bitRate;
729 _currentParameters.frameRate = _frameRate; // rename actual frame rate?
730 _currentParameters.keyFrameSize = _keyFrameSize;
731 _currentParameters.fecRateDelta = _fecRateDelta;
732 _currentParameters.fecRateKey = _fecRateKey;
733 _currentParameters.packetsPerFrame = _packetsPerFrame.filtered();
734 _currentParameters.packetsPerFrameKey = _packetsPerFrameKey.filtered();
735 _currentParameters.codecWidth = _codecWidth;
736 _currentParameters.codecHeight = _codecHeight;
737 _currentParameters.numLayers = _numLayers;
738 return _selectedMethod->UpdateParameters(&_currentParameters);
739 }
740
741 VCMProtectionMethod*
742 VCMLossProtectionLogic::SelectedMethod() const
743 {
744 return _selectedMethod.get();
745 }
746
747 VCMProtectionMethodEnum VCMLossProtectionLogic::SelectedType() const {
748 return _selectedMethod ? _selectedMethod->Type() : kNone;
749 }
750
751 void
752 VCMLossProtectionLogic::Reset(int64_t nowMs)
753 {
754 _lastPrUpdateT = nowMs;
755 _lastPacketPerFrameUpdateT = nowMs;
756 _lastPacketPerFrameUpdateTKey = nowMs;
757 _lossPr255.Reset(0.9999f);
758 _packetsPerFrame.Reset(0.9999f);
759 _fecRateDelta = _fecRateKey = 0;
760 for (int32_t i = 0; i < kLossPrHistorySize; i++)
761 {
762 _lossPrHistory[i].lossPr255 = 0;
763 _lossPrHistory[i].timeMs = -1;
764 }
765 _shortMaxLossPr255 = 0;
766 Release();
767 }
768
769 void VCMLossProtectionLogic::Release() {
770 _selectedMethod.reset();
771 }
772
773 } // namespace media_optimization
774 } // namespace webrtc
OLDNEW
« no previous file with comments | « webrtc/modules/video_coding/main/source/media_opt_util.h ('k') | webrtc/modules/video_coding/main/source/media_optimization.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698