| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license | |
| 5 * that can be found in the LICENSE file in the root of the source | |
| 6 * tree. An additional intellectual property rights grant can be found | |
| 7 * in the file PATENTS. All contributing project authors may | |
| 8 * be found in the AUTHORS file in the root of the source tree. | |
| 9 */ | |
| 10 #include "webrtc/modules/video_coding/main/source/jitter_buffer.h" | |
| 11 | |
| 12 #include <assert.h> | |
| 13 | |
| 14 #include <algorithm> | |
| 15 #include <utility> | |
| 16 | |
| 17 #include "webrtc/base/checks.h" | |
| 18 #include "webrtc/base/logging.h" | |
| 19 #include "webrtc/base/trace_event.h" | |
| 20 #include "webrtc/modules/rtp_rtcp/include/rtp_rtcp_defines.h" | |
| 21 #include "webrtc/modules/video_coding/main/interface/video_coding.h" | |
| 22 #include "webrtc/modules/video_coding/main/source/frame_buffer.h" | |
| 23 #include "webrtc/modules/video_coding/main/source/inter_frame_delay.h" | |
| 24 #include "webrtc/modules/video_coding/main/source/internal_defines.h" | |
| 25 #include "webrtc/modules/video_coding/main/source/jitter_buffer_common.h" | |
| 26 #include "webrtc/modules/video_coding/main/source/jitter_estimator.h" | |
| 27 #include "webrtc/modules/video_coding/main/source/packet.h" | |
| 28 #include "webrtc/system_wrappers/include/clock.h" | |
| 29 #include "webrtc/system_wrappers/include/critical_section_wrapper.h" | |
| 30 #include "webrtc/system_wrappers/include/event_wrapper.h" | |
| 31 #include "webrtc/system_wrappers/include/metrics.h" | |
| 32 | |
| 33 namespace webrtc { | |
| 34 | |
| 35 // Interval for updating SS data. | |
| 36 static const uint32_t kSsCleanupIntervalSec = 60; | |
| 37 | |
| 38 // Use this rtt if no value has been reported. | |
| 39 static const int64_t kDefaultRtt = 200; | |
| 40 | |
| 41 typedef std::pair<uint32_t, VCMFrameBuffer*> FrameListPair; | |
| 42 | |
| 43 bool IsKeyFrame(FrameListPair pair) { | |
| 44 return pair.second->FrameType() == kVideoFrameKey; | |
| 45 } | |
| 46 | |
| 47 bool HasNonEmptyState(FrameListPair pair) { | |
| 48 return pair.second->GetState() != kStateEmpty; | |
| 49 } | |
| 50 | |
| 51 void FrameList::InsertFrame(VCMFrameBuffer* frame) { | |
| 52 insert(rbegin().base(), FrameListPair(frame->TimeStamp(), frame)); | |
| 53 } | |
| 54 | |
| 55 VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) { | |
| 56 FrameList::iterator it = find(timestamp); | |
| 57 if (it == end()) | |
| 58 return NULL; | |
| 59 VCMFrameBuffer* frame = it->second; | |
| 60 erase(it); | |
| 61 return frame; | |
| 62 } | |
| 63 | |
| 64 VCMFrameBuffer* FrameList::Front() const { | |
| 65 return begin()->second; | |
| 66 } | |
| 67 | |
| 68 VCMFrameBuffer* FrameList::Back() const { | |
| 69 return rbegin()->second; | |
| 70 } | |
| 71 | |
| 72 int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it, | |
| 73 UnorderedFrameList* free_frames) { | |
| 74 int drop_count = 0; | |
| 75 FrameList::iterator it = begin(); | |
| 76 while (!empty()) { | |
| 77 // Throw at least one frame. | |
| 78 it->second->Reset(); | |
| 79 free_frames->push_back(it->second); | |
| 80 erase(it++); | |
| 81 ++drop_count; | |
| 82 if (it != end() && it->second->FrameType() == kVideoFrameKey) { | |
| 83 *key_frame_it = it; | |
| 84 return drop_count; | |
| 85 } | |
| 86 } | |
| 87 *key_frame_it = end(); | |
| 88 return drop_count; | |
| 89 } | |
| 90 | |
| 91 void FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state, | |
| 92 UnorderedFrameList* free_frames) { | |
| 93 while (!empty()) { | |
| 94 VCMFrameBuffer* oldest_frame = Front(); | |
| 95 bool remove_frame = false; | |
| 96 if (oldest_frame->GetState() == kStateEmpty && size() > 1) { | |
| 97 // This frame is empty, try to update the last decoded state and drop it | |
| 98 // if successful. | |
| 99 remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame); | |
| 100 } else { | |
| 101 remove_frame = decoding_state->IsOldFrame(oldest_frame); | |
| 102 } | |
| 103 if (!remove_frame) { | |
| 104 break; | |
| 105 } | |
| 106 free_frames->push_back(oldest_frame); | |
| 107 TRACE_EVENT_INSTANT1("webrtc", "JB::OldOrEmptyFrameDropped", "timestamp", | |
| 108 oldest_frame->TimeStamp()); | |
| 109 erase(begin()); | |
| 110 } | |
| 111 } | |
| 112 | |
| 113 void FrameList::Reset(UnorderedFrameList* free_frames) { | |
| 114 while (!empty()) { | |
| 115 begin()->second->Reset(); | |
| 116 free_frames->push_back(begin()->second); | |
| 117 erase(begin()); | |
| 118 } | |
| 119 } | |
| 120 | |
| 121 bool Vp9SsMap::Insert(const VCMPacket& packet) { | |
| 122 if (!packet.codecSpecificHeader.codecHeader.VP9.ss_data_available) | |
| 123 return false; | |
| 124 | |
| 125 ss_map_[packet.timestamp] = packet.codecSpecificHeader.codecHeader.VP9.gof; | |
| 126 return true; | |
| 127 } | |
| 128 | |
| 129 void Vp9SsMap::Reset() { | |
| 130 ss_map_.clear(); | |
| 131 } | |
| 132 | |
| 133 bool Vp9SsMap::Find(uint32_t timestamp, SsMap::iterator* it_out) { | |
| 134 bool found = false; | |
| 135 for (SsMap::iterator it = ss_map_.begin(); it != ss_map_.end(); ++it) { | |
| 136 if (it->first == timestamp || IsNewerTimestamp(timestamp, it->first)) { | |
| 137 *it_out = it; | |
| 138 found = true; | |
| 139 } | |
| 140 } | |
| 141 return found; | |
| 142 } | |
| 143 | |
| 144 void Vp9SsMap::RemoveOld(uint32_t timestamp) { | |
| 145 if (!TimeForCleanup(timestamp)) | |
| 146 return; | |
| 147 | |
| 148 SsMap::iterator it; | |
| 149 if (!Find(timestamp, &it)) | |
| 150 return; | |
| 151 | |
| 152 ss_map_.erase(ss_map_.begin(), it); | |
| 153 AdvanceFront(timestamp); | |
| 154 } | |
| 155 | |
| 156 bool Vp9SsMap::TimeForCleanup(uint32_t timestamp) const { | |
| 157 if (ss_map_.empty() || !IsNewerTimestamp(timestamp, ss_map_.begin()->first)) | |
| 158 return false; | |
| 159 | |
| 160 uint32_t diff = timestamp - ss_map_.begin()->first; | |
| 161 return diff / kVideoPayloadTypeFrequency >= kSsCleanupIntervalSec; | |
| 162 } | |
| 163 | |
| 164 void Vp9SsMap::AdvanceFront(uint32_t timestamp) { | |
| 165 RTC_DCHECK(!ss_map_.empty()); | |
| 166 GofInfoVP9 gof = ss_map_.begin()->second; | |
| 167 ss_map_.erase(ss_map_.begin()); | |
| 168 ss_map_[timestamp] = gof; | |
| 169 } | |
| 170 | |
| 171 // TODO(asapersson): Update according to updates in RTP payload profile. | |
| 172 bool Vp9SsMap::UpdatePacket(VCMPacket* packet) { | |
| 173 uint8_t gof_idx = packet->codecSpecificHeader.codecHeader.VP9.gof_idx; | |
| 174 if (gof_idx == kNoGofIdx) | |
| 175 return false; // No update needed. | |
| 176 | |
| 177 SsMap::iterator it; | |
| 178 if (!Find(packet->timestamp, &it)) | |
| 179 return false; // Corresponding SS not yet received. | |
| 180 | |
| 181 if (gof_idx >= it->second.num_frames_in_gof) | |
| 182 return false; // Assume corresponding SS not yet received. | |
| 183 | |
| 184 RTPVideoHeaderVP9* vp9 = &packet->codecSpecificHeader.codecHeader.VP9; | |
| 185 vp9->temporal_idx = it->second.temporal_idx[gof_idx]; | |
| 186 vp9->temporal_up_switch = it->second.temporal_up_switch[gof_idx]; | |
| 187 | |
| 188 // TODO(asapersson): Set vp9.ref_picture_id[i] and add usage. | |
| 189 vp9->num_ref_pics = it->second.num_ref_pics[gof_idx]; | |
| 190 for (uint8_t i = 0; i < it->second.num_ref_pics[gof_idx]; ++i) { | |
| 191 vp9->pid_diff[i] = it->second.pid_diff[gof_idx][i]; | |
| 192 } | |
| 193 return true; | |
| 194 } | |
| 195 | |
| 196 void Vp9SsMap::UpdateFrames(FrameList* frames) { | |
| 197 for (const auto& frame_it : *frames) { | |
| 198 uint8_t gof_idx = | |
| 199 frame_it.second->CodecSpecific()->codecSpecific.VP9.gof_idx; | |
| 200 if (gof_idx == kNoGofIdx) { | |
| 201 continue; | |
| 202 } | |
| 203 SsMap::iterator ss_it; | |
| 204 if (Find(frame_it.second->TimeStamp(), &ss_it)) { | |
| 205 if (gof_idx >= ss_it->second.num_frames_in_gof) { | |
| 206 continue; // Assume corresponding SS not yet received. | |
| 207 } | |
| 208 frame_it.second->SetGofInfo(ss_it->second, gof_idx); | |
| 209 } | |
| 210 } | |
| 211 } | |
| 212 | |
| 213 VCMJitterBuffer::VCMJitterBuffer(Clock* clock, | |
| 214 rtc::scoped_ptr<EventWrapper> event) | |
| 215 : clock_(clock), | |
| 216 running_(false), | |
| 217 crit_sect_(CriticalSectionWrapper::CreateCriticalSection()), | |
| 218 frame_event_(event.Pass()), | |
| 219 max_number_of_frames_(kStartNumberOfFrames), | |
| 220 free_frames_(), | |
| 221 decodable_frames_(), | |
| 222 incomplete_frames_(), | |
| 223 last_decoded_state_(), | |
| 224 first_packet_since_reset_(true), | |
| 225 stats_callback_(NULL), | |
| 226 incoming_frame_rate_(0), | |
| 227 incoming_frame_count_(0), | |
| 228 time_last_incoming_frame_count_(0), | |
| 229 incoming_bit_count_(0), | |
| 230 incoming_bit_rate_(0), | |
| 231 num_consecutive_old_packets_(0), | |
| 232 num_packets_(0), | |
| 233 num_duplicated_packets_(0), | |
| 234 num_discarded_packets_(0), | |
| 235 time_first_packet_ms_(0), | |
| 236 jitter_estimate_(clock), | |
| 237 inter_frame_delay_(clock_->TimeInMilliseconds()), | |
| 238 rtt_ms_(kDefaultRtt), | |
| 239 nack_mode_(kNoNack), | |
| 240 low_rtt_nack_threshold_ms_(-1), | |
| 241 high_rtt_nack_threshold_ms_(-1), | |
| 242 missing_sequence_numbers_(SequenceNumberLessThan()), | |
| 243 max_nack_list_size_(0), | |
| 244 max_packet_age_to_nack_(0), | |
| 245 max_incomplete_time_ms_(0), | |
| 246 decode_error_mode_(kNoErrors), | |
| 247 average_packets_per_frame_(0.0f), | |
| 248 frame_counter_(0) { | |
| 249 for (int i = 0; i < kStartNumberOfFrames; i++) | |
| 250 free_frames_.push_back(new VCMFrameBuffer()); | |
| 251 } | |
| 252 | |
| 253 VCMJitterBuffer::~VCMJitterBuffer() { | |
| 254 Stop(); | |
| 255 for (UnorderedFrameList::iterator it = free_frames_.begin(); | |
| 256 it != free_frames_.end(); ++it) { | |
| 257 delete *it; | |
| 258 } | |
| 259 for (FrameList::iterator it = incomplete_frames_.begin(); | |
| 260 it != incomplete_frames_.end(); ++it) { | |
| 261 delete it->second; | |
| 262 } | |
| 263 for (FrameList::iterator it = decodable_frames_.begin(); | |
| 264 it != decodable_frames_.end(); ++it) { | |
| 265 delete it->second; | |
| 266 } | |
| 267 delete crit_sect_; | |
| 268 } | |
| 269 | |
| 270 void VCMJitterBuffer::UpdateHistograms() { | |
| 271 if (num_packets_ <= 0 || !running_) { | |
| 272 return; | |
| 273 } | |
| 274 int64_t elapsed_sec = | |
| 275 (clock_->TimeInMilliseconds() - time_first_packet_ms_) / 1000; | |
| 276 if (elapsed_sec < metrics::kMinRunTimeInSeconds) { | |
| 277 return; | |
| 278 } | |
| 279 | |
| 280 RTC_HISTOGRAM_PERCENTAGE("WebRTC.Video.DiscardedPacketsInPercent", | |
| 281 num_discarded_packets_ * 100 / num_packets_); | |
| 282 RTC_HISTOGRAM_PERCENTAGE("WebRTC.Video.DuplicatedPacketsInPercent", | |
| 283 num_duplicated_packets_ * 100 / num_packets_); | |
| 284 | |
| 285 int total_frames = | |
| 286 receive_statistics_.key_frames + receive_statistics_.delta_frames; | |
| 287 if (total_frames > 0) { | |
| 288 RTC_HISTOGRAM_COUNTS_100("WebRTC.Video.CompleteFramesReceivedPerSecond", | |
| 289 static_cast<int>((total_frames / elapsed_sec) + 0.5f)); | |
| 290 RTC_HISTOGRAM_COUNTS_1000( | |
| 291 "WebRTC.Video.KeyFramesReceivedInPermille", | |
| 292 static_cast<int>( | |
| 293 (receive_statistics_.key_frames * 1000.0f / total_frames) + 0.5f)); | |
| 294 } | |
| 295 } | |
| 296 | |
| 297 void VCMJitterBuffer::Start() { | |
| 298 CriticalSectionScoped cs(crit_sect_); | |
| 299 running_ = true; | |
| 300 incoming_frame_count_ = 0; | |
| 301 incoming_frame_rate_ = 0; | |
| 302 incoming_bit_count_ = 0; | |
| 303 incoming_bit_rate_ = 0; | |
| 304 time_last_incoming_frame_count_ = clock_->TimeInMilliseconds(); | |
| 305 receive_statistics_ = FrameCounts(); | |
| 306 | |
| 307 num_consecutive_old_packets_ = 0; | |
| 308 num_packets_ = 0; | |
| 309 num_duplicated_packets_ = 0; | |
| 310 num_discarded_packets_ = 0; | |
| 311 time_first_packet_ms_ = 0; | |
| 312 | |
| 313 // Start in a non-signaled state. | |
| 314 waiting_for_completion_.frame_size = 0; | |
| 315 waiting_for_completion_.timestamp = 0; | |
| 316 waiting_for_completion_.latest_packet_time = -1; | |
| 317 first_packet_since_reset_ = true; | |
| 318 rtt_ms_ = kDefaultRtt; | |
| 319 last_decoded_state_.Reset(); | |
| 320 } | |
| 321 | |
| 322 void VCMJitterBuffer::Stop() { | |
| 323 crit_sect_->Enter(); | |
| 324 UpdateHistograms(); | |
| 325 running_ = false; | |
| 326 last_decoded_state_.Reset(); | |
| 327 | |
| 328 // Make sure all frames are free and reset. | |
| 329 for (FrameList::iterator it = decodable_frames_.begin(); | |
| 330 it != decodable_frames_.end(); ++it) { | |
| 331 free_frames_.push_back(it->second); | |
| 332 } | |
| 333 for (FrameList::iterator it = incomplete_frames_.begin(); | |
| 334 it != incomplete_frames_.end(); ++it) { | |
| 335 free_frames_.push_back(it->second); | |
| 336 } | |
| 337 for (UnorderedFrameList::iterator it = free_frames_.begin(); | |
| 338 it != free_frames_.end(); ++it) { | |
| 339 (*it)->Reset(); | |
| 340 } | |
| 341 decodable_frames_.clear(); | |
| 342 incomplete_frames_.clear(); | |
| 343 crit_sect_->Leave(); | |
| 344 // Make sure we wake up any threads waiting on these events. | |
| 345 frame_event_->Set(); | |
| 346 } | |
| 347 | |
| 348 bool VCMJitterBuffer::Running() const { | |
| 349 CriticalSectionScoped cs(crit_sect_); | |
| 350 return running_; | |
| 351 } | |
| 352 | |
| 353 void VCMJitterBuffer::Flush() { | |
| 354 CriticalSectionScoped cs(crit_sect_); | |
| 355 decodable_frames_.Reset(&free_frames_); | |
| 356 incomplete_frames_.Reset(&free_frames_); | |
| 357 last_decoded_state_.Reset(); // TODO(mikhal): sync reset. | |
| 358 num_consecutive_old_packets_ = 0; | |
| 359 // Also reset the jitter and delay estimates | |
| 360 jitter_estimate_.Reset(); | |
| 361 inter_frame_delay_.Reset(clock_->TimeInMilliseconds()); | |
| 362 waiting_for_completion_.frame_size = 0; | |
| 363 waiting_for_completion_.timestamp = 0; | |
| 364 waiting_for_completion_.latest_packet_time = -1; | |
| 365 first_packet_since_reset_ = true; | |
| 366 missing_sequence_numbers_.clear(); | |
| 367 } | |
| 368 | |
| 369 // Get received key and delta frames | |
| 370 FrameCounts VCMJitterBuffer::FrameStatistics() const { | |
| 371 CriticalSectionScoped cs(crit_sect_); | |
| 372 return receive_statistics_; | |
| 373 } | |
| 374 | |
| 375 int VCMJitterBuffer::num_packets() const { | |
| 376 CriticalSectionScoped cs(crit_sect_); | |
| 377 return num_packets_; | |
| 378 } | |
| 379 | |
| 380 int VCMJitterBuffer::num_duplicated_packets() const { | |
| 381 CriticalSectionScoped cs(crit_sect_); | |
| 382 return num_duplicated_packets_; | |
| 383 } | |
| 384 | |
| 385 int VCMJitterBuffer::num_discarded_packets() const { | |
| 386 CriticalSectionScoped cs(crit_sect_); | |
| 387 return num_discarded_packets_; | |
| 388 } | |
| 389 | |
| 390 // Calculate framerate and bitrate. | |
| 391 void VCMJitterBuffer::IncomingRateStatistics(unsigned int* framerate, | |
| 392 unsigned int* bitrate) { | |
| 393 assert(framerate); | |
| 394 assert(bitrate); | |
| 395 CriticalSectionScoped cs(crit_sect_); | |
| 396 const int64_t now = clock_->TimeInMilliseconds(); | |
| 397 int64_t diff = now - time_last_incoming_frame_count_; | |
| 398 if (diff < 1000 && incoming_frame_rate_ > 0 && incoming_bit_rate_ > 0) { | |
| 399 // Make sure we report something even though less than | |
| 400 // 1 second has passed since last update. | |
| 401 *framerate = incoming_frame_rate_; | |
| 402 *bitrate = incoming_bit_rate_; | |
| 403 } else if (incoming_frame_count_ != 0) { | |
| 404 // We have received frame(s) since last call to this function | |
| 405 | |
| 406 // Prepare calculations | |
| 407 if (diff <= 0) { | |
| 408 diff = 1; | |
| 409 } | |
| 410 // we add 0.5f for rounding | |
| 411 float rate = 0.5f + ((incoming_frame_count_ * 1000.0f) / diff); | |
| 412 if (rate < 1.0f) { | |
| 413 rate = 1.0f; | |
| 414 } | |
| 415 | |
| 416 // Calculate frame rate | |
| 417 // Let r be rate. | |
| 418 // r(0) = 1000*framecount/delta_time. | |
| 419 // (I.e. frames per second since last calculation.) | |
| 420 // frame_rate = r(0)/2 + r(-1)/2 | |
| 421 // (I.e. fr/s average this and the previous calculation.) | |
| 422 *framerate = (incoming_frame_rate_ + static_cast<unsigned int>(rate)) / 2; | |
| 423 incoming_frame_rate_ = static_cast<unsigned int>(rate); | |
| 424 | |
| 425 // Calculate bit rate | |
| 426 if (incoming_bit_count_ == 0) { | |
| 427 *bitrate = 0; | |
| 428 } else { | |
| 429 *bitrate = 10 * ((100 * incoming_bit_count_) / | |
| 430 static_cast<unsigned int>(diff)); | |
| 431 } | |
| 432 incoming_bit_rate_ = *bitrate; | |
| 433 | |
| 434 // Reset count | |
| 435 incoming_frame_count_ = 0; | |
| 436 incoming_bit_count_ = 0; | |
| 437 time_last_incoming_frame_count_ = now; | |
| 438 | |
| 439 } else { | |
| 440 // No frames since last call | |
| 441 time_last_incoming_frame_count_ = clock_->TimeInMilliseconds(); | |
| 442 *framerate = 0; | |
| 443 *bitrate = 0; | |
| 444 incoming_frame_rate_ = 0; | |
| 445 incoming_bit_rate_ = 0; | |
| 446 } | |
| 447 } | |
| 448 | |
| 449 // Answers the question: | |
| 450 // Will the packet sequence be complete if the next frame is grabbed for | |
| 451 // decoding right now? That is, have we lost a frame between the last decoded | |
| 452 // frame and the next, or is the next | |
| 453 // frame missing one or more packets? | |
| 454 bool VCMJitterBuffer::CompleteSequenceWithNextFrame() { | |
| 455 CriticalSectionScoped cs(crit_sect_); | |
| 456 // Finding oldest frame ready for decoder, check sequence number and size | |
| 457 CleanUpOldOrEmptyFrames(); | |
| 458 if (!decodable_frames_.empty()) { | |
| 459 if (decodable_frames_.Front()->GetState() == kStateComplete) { | |
| 460 return true; | |
| 461 } | |
| 462 } else if (incomplete_frames_.size() <= 1) { | |
| 463 // Frame not ready to be decoded. | |
| 464 return true; | |
| 465 } | |
| 466 return false; | |
| 467 } | |
| 468 | |
| 469 // Returns immediately or a |max_wait_time_ms| ms event hang waiting for a | |
| 470 // complete frame, |max_wait_time_ms| decided by caller. | |
| 471 bool VCMJitterBuffer::NextCompleteTimestamp( | |
| 472 uint32_t max_wait_time_ms, uint32_t* timestamp) { | |
| 473 crit_sect_->Enter(); | |
| 474 if (!running_) { | |
| 475 crit_sect_->Leave(); | |
| 476 return false; | |
| 477 } | |
| 478 CleanUpOldOrEmptyFrames(); | |
| 479 | |
| 480 if (decodable_frames_.empty() || | |
| 481 decodable_frames_.Front()->GetState() != kStateComplete) { | |
| 482 const int64_t end_wait_time_ms = clock_->TimeInMilliseconds() + | |
| 483 max_wait_time_ms; | |
| 484 int64_t wait_time_ms = max_wait_time_ms; | |
| 485 while (wait_time_ms > 0) { | |
| 486 crit_sect_->Leave(); | |
| 487 const EventTypeWrapper ret = | |
| 488 frame_event_->Wait(static_cast<uint32_t>(wait_time_ms)); | |
| 489 crit_sect_->Enter(); | |
| 490 if (ret == kEventSignaled) { | |
| 491 // Are we shutting down the jitter buffer? | |
| 492 if (!running_) { | |
| 493 crit_sect_->Leave(); | |
| 494 return false; | |
| 495 } | |
| 496 // Finding oldest frame ready for decoder. | |
| 497 CleanUpOldOrEmptyFrames(); | |
| 498 if (decodable_frames_.empty() || | |
| 499 decodable_frames_.Front()->GetState() != kStateComplete) { | |
| 500 wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds(); | |
| 501 } else { | |
| 502 break; | |
| 503 } | |
| 504 } else { | |
| 505 break; | |
| 506 } | |
| 507 } | |
| 508 } | |
| 509 if (decodable_frames_.empty() || | |
| 510 decodable_frames_.Front()->GetState() != kStateComplete) { | |
| 511 crit_sect_->Leave(); | |
| 512 return false; | |
| 513 } | |
| 514 *timestamp = decodable_frames_.Front()->TimeStamp(); | |
| 515 crit_sect_->Leave(); | |
| 516 return true; | |
| 517 } | |
| 518 | |
| 519 bool VCMJitterBuffer::NextMaybeIncompleteTimestamp(uint32_t* timestamp) { | |
| 520 CriticalSectionScoped cs(crit_sect_); | |
| 521 if (!running_) { | |
| 522 return false; | |
| 523 } | |
| 524 if (decode_error_mode_ == kNoErrors) { | |
| 525 // No point to continue, as we are not decoding with errors. | |
| 526 return false; | |
| 527 } | |
| 528 | |
| 529 CleanUpOldOrEmptyFrames(); | |
| 530 | |
| 531 if (decodable_frames_.empty()) { | |
| 532 return false; | |
| 533 } | |
| 534 VCMFrameBuffer* oldest_frame = decodable_frames_.Front(); | |
| 535 // If we have exactly one frame in the buffer, release it only if it is | |
| 536 // complete. We know decodable_frames_ is not empty due to the previous | |
| 537 // check. | |
| 538 if (decodable_frames_.size() == 1 && incomplete_frames_.empty() | |
| 539 && oldest_frame->GetState() != kStateComplete) { | |
| 540 return false; | |
| 541 } | |
| 542 | |
| 543 *timestamp = oldest_frame->TimeStamp(); | |
| 544 return true; | |
| 545 } | |
| 546 | |
| 547 VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) { | |
| 548 CriticalSectionScoped cs(crit_sect_); | |
| 549 if (!running_) { | |
| 550 return NULL; | |
| 551 } | |
| 552 // Extract the frame with the desired timestamp. | |
| 553 VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp); | |
| 554 bool continuous = true; | |
| 555 if (!frame) { | |
| 556 frame = incomplete_frames_.PopFrame(timestamp); | |
| 557 if (frame) | |
| 558 continuous = last_decoded_state_.ContinuousFrame(frame); | |
| 559 else | |
| 560 return NULL; | |
| 561 } | |
| 562 TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", timestamp, "Extract"); | |
| 563 // Frame pulled out from jitter buffer, update the jitter estimate. | |
| 564 const bool retransmitted = (frame->GetNackCount() > 0); | |
| 565 if (retransmitted) { | |
| 566 jitter_estimate_.FrameNacked(); | |
| 567 } else if (frame->Length() > 0) { | |
| 568 // Ignore retransmitted and empty frames. | |
| 569 if (waiting_for_completion_.latest_packet_time >= 0) { | |
| 570 UpdateJitterEstimate(waiting_for_completion_, true); | |
| 571 } | |
| 572 if (frame->GetState() == kStateComplete) { | |
| 573 UpdateJitterEstimate(*frame, false); | |
| 574 } else { | |
| 575 // Wait for this one to get complete. | |
| 576 waiting_for_completion_.frame_size = frame->Length(); | |
| 577 waiting_for_completion_.latest_packet_time = | |
| 578 frame->LatestPacketTimeMs(); | |
| 579 waiting_for_completion_.timestamp = frame->TimeStamp(); | |
| 580 } | |
| 581 } | |
| 582 | |
| 583 // The state must be changed to decoding before cleaning up zero sized | |
| 584 // frames to avoid empty frames being cleaned up and then given to the | |
| 585 // decoder. Propagates the missing_frame bit. | |
| 586 frame->PrepareForDecode(continuous); | |
| 587 | |
| 588 // We have a frame - update the last decoded state and nack list. | |
| 589 last_decoded_state_.SetState(frame); | |
| 590 DropPacketsFromNackList(last_decoded_state_.sequence_num()); | |
| 591 | |
| 592 if ((*frame).IsSessionComplete()) | |
| 593 UpdateAveragePacketsPerFrame(frame->NumPackets()); | |
| 594 | |
| 595 return frame; | |
| 596 } | |
| 597 | |
| 598 // Release frame when done with decoding. Should never be used to release | |
| 599 // frames from within the jitter buffer. | |
| 600 void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) { | |
| 601 CriticalSectionScoped cs(crit_sect_); | |
| 602 VCMFrameBuffer* frame_buffer = static_cast<VCMFrameBuffer*>(frame); | |
| 603 if (frame_buffer) { | |
| 604 free_frames_.push_back(frame_buffer); | |
| 605 } | |
| 606 } | |
| 607 | |
| 608 // Gets frame to use for this timestamp. If no match, get empty frame. | |
| 609 VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet, | |
| 610 VCMFrameBuffer** frame, | |
| 611 FrameList** frame_list) { | |
| 612 *frame = incomplete_frames_.PopFrame(packet.timestamp); | |
| 613 if (*frame != NULL) { | |
| 614 *frame_list = &incomplete_frames_; | |
| 615 return kNoError; | |
| 616 } | |
| 617 *frame = decodable_frames_.PopFrame(packet.timestamp); | |
| 618 if (*frame != NULL) { | |
| 619 *frame_list = &decodable_frames_; | |
| 620 return kNoError; | |
| 621 } | |
| 622 | |
| 623 *frame_list = NULL; | |
| 624 // No match, return empty frame. | |
| 625 *frame = GetEmptyFrame(); | |
| 626 if (*frame == NULL) { | |
| 627 // No free frame! Try to reclaim some... | |
| 628 LOG(LS_WARNING) << "Unable to get empty frame; Recycling."; | |
| 629 bool found_key_frame = RecycleFramesUntilKeyFrame(); | |
| 630 *frame = GetEmptyFrame(); | |
| 631 assert(*frame); | |
| 632 if (!found_key_frame) { | |
| 633 free_frames_.push_back(*frame); | |
| 634 return kFlushIndicator; | |
| 635 } | |
| 636 } | |
| 637 (*frame)->Reset(); | |
| 638 return kNoError; | |
| 639 } | |
| 640 | |
| 641 int64_t VCMJitterBuffer::LastPacketTime(const VCMEncodedFrame* frame, | |
| 642 bool* retransmitted) const { | |
| 643 assert(retransmitted); | |
| 644 CriticalSectionScoped cs(crit_sect_); | |
| 645 const VCMFrameBuffer* frame_buffer = | |
| 646 static_cast<const VCMFrameBuffer*>(frame); | |
| 647 *retransmitted = (frame_buffer->GetNackCount() > 0); | |
| 648 return frame_buffer->LatestPacketTimeMs(); | |
| 649 } | |
| 650 | |
| 651 VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet, | |
| 652 bool* retransmitted) { | |
| 653 CriticalSectionScoped cs(crit_sect_); | |
| 654 | |
| 655 ++num_packets_; | |
| 656 if (num_packets_ == 1) { | |
| 657 time_first_packet_ms_ = clock_->TimeInMilliseconds(); | |
| 658 } | |
| 659 // Does this packet belong to an old frame? | |
| 660 if (last_decoded_state_.IsOldPacket(&packet)) { | |
| 661 // Account only for media packets. | |
| 662 if (packet.sizeBytes > 0) { | |
| 663 num_discarded_packets_++; | |
| 664 num_consecutive_old_packets_++; | |
| 665 if (stats_callback_ != NULL) | |
| 666 stats_callback_->OnDiscardedPacketsUpdated(num_discarded_packets_); | |
| 667 } | |
| 668 // Update last decoded sequence number if the packet arrived late and | |
| 669 // belongs to a frame with a timestamp equal to the last decoded | |
| 670 // timestamp. | |
| 671 last_decoded_state_.UpdateOldPacket(&packet); | |
| 672 DropPacketsFromNackList(last_decoded_state_.sequence_num()); | |
| 673 | |
| 674 // Also see if this old packet made more incomplete frames continuous. | |
| 675 FindAndInsertContinuousFramesWithState(last_decoded_state_); | |
| 676 | |
| 677 if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) { | |
| 678 LOG(LS_WARNING) | |
| 679 << num_consecutive_old_packets_ | |
| 680 << " consecutive old packets received. Flushing the jitter buffer."; | |
| 681 Flush(); | |
| 682 return kFlushIndicator; | |
| 683 } | |
| 684 return kOldPacket; | |
| 685 } | |
| 686 | |
| 687 num_consecutive_old_packets_ = 0; | |
| 688 | |
| 689 VCMFrameBuffer* frame; | |
| 690 FrameList* frame_list; | |
| 691 const VCMFrameBufferEnum error = GetFrame(packet, &frame, &frame_list); | |
| 692 if (error != kNoError) | |
| 693 return error; | |
| 694 | |
| 695 int64_t now_ms = clock_->TimeInMilliseconds(); | |
| 696 // We are keeping track of the first and latest seq numbers, and | |
| 697 // the number of wraps to be able to calculate how many packets we expect. | |
| 698 if (first_packet_since_reset_) { | |
| 699 // Now it's time to start estimating jitter | |
| 700 // reset the delay estimate. | |
| 701 inter_frame_delay_.Reset(now_ms); | |
| 702 } | |
| 703 | |
| 704 // Empty packets may bias the jitter estimate (lacking size component), | |
| 705 // therefore don't let empty packet trigger the following updates: | |
| 706 if (packet.frameType != kEmptyFrame) { | |
| 707 if (waiting_for_completion_.timestamp == packet.timestamp) { | |
| 708 // This can get bad if we have a lot of duplicate packets, | |
| 709 // we will then count some packet multiple times. | |
| 710 waiting_for_completion_.frame_size += packet.sizeBytes; | |
| 711 waiting_for_completion_.latest_packet_time = now_ms; | |
| 712 } else if (waiting_for_completion_.latest_packet_time >= 0 && | |
| 713 waiting_for_completion_.latest_packet_time + 2000 <= now_ms) { | |
| 714 // A packet should never be more than two seconds late | |
| 715 UpdateJitterEstimate(waiting_for_completion_, true); | |
| 716 waiting_for_completion_.latest_packet_time = -1; | |
| 717 waiting_for_completion_.frame_size = 0; | |
| 718 waiting_for_completion_.timestamp = 0; | |
| 719 } | |
| 720 } | |
| 721 | |
| 722 VCMFrameBufferStateEnum previous_state = frame->GetState(); | |
| 723 // Insert packet. | |
| 724 FrameData frame_data; | |
| 725 frame_data.rtt_ms = rtt_ms_; | |
| 726 frame_data.rolling_average_packets_per_frame = average_packets_per_frame_; | |
| 727 VCMFrameBufferEnum buffer_state = | |
| 728 frame->InsertPacket(packet, now_ms, decode_error_mode_, frame_data); | |
| 729 | |
| 730 if (previous_state != kStateComplete) { | |
| 731 TRACE_EVENT_ASYNC_BEGIN1("webrtc", "Video", frame->TimeStamp(), | |
| 732 "timestamp", frame->TimeStamp()); | |
| 733 } | |
| 734 | |
| 735 if (buffer_state > 0) { | |
| 736 incoming_bit_count_ += packet.sizeBytes << 3; | |
| 737 if (first_packet_since_reset_) { | |
| 738 latest_received_sequence_number_ = packet.seqNum; | |
| 739 first_packet_since_reset_ = false; | |
| 740 } else { | |
| 741 if (IsPacketRetransmitted(packet)) { | |
| 742 frame->IncrementNackCount(); | |
| 743 } | |
| 744 if (!UpdateNackList(packet.seqNum) && | |
| 745 packet.frameType != kVideoFrameKey) { | |
| 746 buffer_state = kFlushIndicator; | |
| 747 } | |
| 748 | |
| 749 latest_received_sequence_number_ = LatestSequenceNumber( | |
| 750 latest_received_sequence_number_, packet.seqNum); | |
| 751 } | |
| 752 } | |
| 753 | |
| 754 // Is the frame already in the decodable list? | |
| 755 bool continuous = IsContinuous(*frame); | |
| 756 switch (buffer_state) { | |
| 757 case kGeneralError: | |
| 758 case kTimeStampError: | |
| 759 case kSizeError: { | |
| 760 free_frames_.push_back(frame); | |
| 761 break; | |
| 762 } | |
| 763 case kCompleteSession: { | |
| 764 if (previous_state != kStateDecodable && | |
| 765 previous_state != kStateComplete) { | |
| 766 CountFrame(*frame); | |
| 767 if (continuous) { | |
| 768 // Signal that we have a complete session. | |
| 769 frame_event_->Set(); | |
| 770 } | |
| 771 } | |
| 772 FALLTHROUGH(); | |
| 773 } | |
| 774 // Note: There is no break here - continuing to kDecodableSession. | |
| 775 case kDecodableSession: { | |
| 776 *retransmitted = (frame->GetNackCount() > 0); | |
| 777 if (continuous) { | |
| 778 decodable_frames_.InsertFrame(frame); | |
| 779 FindAndInsertContinuousFrames(*frame); | |
| 780 } else { | |
| 781 incomplete_frames_.InsertFrame(frame); | |
| 782 } | |
| 783 break; | |
| 784 } | |
| 785 case kIncomplete: { | |
| 786 if (frame->GetState() == kStateEmpty && | |
| 787 last_decoded_state_.UpdateEmptyFrame(frame)) { | |
| 788 free_frames_.push_back(frame); | |
| 789 return kNoError; | |
| 790 } else { | |
| 791 incomplete_frames_.InsertFrame(frame); | |
| 792 } | |
| 793 break; | |
| 794 } | |
| 795 case kNoError: | |
| 796 case kOutOfBoundsPacket: | |
| 797 case kDuplicatePacket: { | |
| 798 // Put back the frame where it came from. | |
| 799 if (frame_list != NULL) { | |
| 800 frame_list->InsertFrame(frame); | |
| 801 } else { | |
| 802 free_frames_.push_back(frame); | |
| 803 } | |
| 804 ++num_duplicated_packets_; | |
| 805 break; | |
| 806 } | |
| 807 case kFlushIndicator: | |
| 808 free_frames_.push_back(frame); | |
| 809 return kFlushIndicator; | |
| 810 default: assert(false); | |
| 811 } | |
| 812 return buffer_state; | |
| 813 } | |
| 814 | |
| 815 bool VCMJitterBuffer::IsContinuousInState(const VCMFrameBuffer& frame, | |
| 816 const VCMDecodingState& decoding_state) const { | |
| 817 if (decode_error_mode_ == kWithErrors) | |
| 818 return true; | |
| 819 // Is this frame (complete or decodable) and continuous? | |
| 820 // kStateDecodable will never be set when decode_error_mode_ is false | |
| 821 // as SessionInfo determines this state based on the error mode (and frame | |
| 822 // completeness). | |
| 823 return (frame.GetState() == kStateComplete || | |
| 824 frame.GetState() == kStateDecodable) && | |
| 825 decoding_state.ContinuousFrame(&frame); | |
| 826 } | |
| 827 | |
| 828 bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const { | |
| 829 if (IsContinuousInState(frame, last_decoded_state_)) { | |
| 830 return true; | |
| 831 } | |
| 832 VCMDecodingState decoding_state; | |
| 833 decoding_state.CopyFrom(last_decoded_state_); | |
| 834 for (FrameList::const_iterator it = decodable_frames_.begin(); | |
| 835 it != decodable_frames_.end(); ++it) { | |
| 836 VCMFrameBuffer* decodable_frame = it->second; | |
| 837 if (IsNewerTimestamp(decodable_frame->TimeStamp(), frame.TimeStamp())) { | |
| 838 break; | |
| 839 } | |
| 840 decoding_state.SetState(decodable_frame); | |
| 841 if (IsContinuousInState(frame, decoding_state)) { | |
| 842 return true; | |
| 843 } | |
| 844 } | |
| 845 return false; | |
| 846 } | |
| 847 | |
| 848 void VCMJitterBuffer::FindAndInsertContinuousFrames( | |
| 849 const VCMFrameBuffer& new_frame) { | |
| 850 VCMDecodingState decoding_state; | |
| 851 decoding_state.CopyFrom(last_decoded_state_); | |
| 852 decoding_state.SetState(&new_frame); | |
| 853 FindAndInsertContinuousFramesWithState(decoding_state); | |
| 854 } | |
| 855 | |
| 856 void VCMJitterBuffer::FindAndInsertContinuousFramesWithState( | |
| 857 const VCMDecodingState& original_decoded_state) { | |
| 858 // Copy original_decoded_state so we can move the state forward with each | |
| 859 // decodable frame we find. | |
| 860 VCMDecodingState decoding_state; | |
| 861 decoding_state.CopyFrom(original_decoded_state); | |
| 862 | |
| 863 // When temporal layers are available, we search for a complete or decodable | |
| 864 // frame until we hit one of the following: | |
| 865 // 1. Continuous base or sync layer. | |
| 866 // 2. The end of the list was reached. | |
| 867 for (FrameList::iterator it = incomplete_frames_.begin(); | |
| 868 it != incomplete_frames_.end();) { | |
| 869 VCMFrameBuffer* frame = it->second; | |
| 870 if (IsNewerTimestamp(original_decoded_state.time_stamp(), | |
| 871 frame->TimeStamp())) { | |
| 872 ++it; | |
| 873 continue; | |
| 874 } | |
| 875 if (IsContinuousInState(*frame, decoding_state)) { | |
| 876 decodable_frames_.InsertFrame(frame); | |
| 877 incomplete_frames_.erase(it++); | |
| 878 decoding_state.SetState(frame); | |
| 879 } else if (frame->TemporalId() <= 0) { | |
| 880 break; | |
| 881 } else { | |
| 882 ++it; | |
| 883 } | |
| 884 } | |
| 885 } | |
| 886 | |
| 887 uint32_t VCMJitterBuffer::EstimatedJitterMs() { | |
| 888 CriticalSectionScoped cs(crit_sect_); | |
| 889 // Compute RTT multiplier for estimation. | |
| 890 // low_rtt_nackThresholdMs_ == -1 means no FEC. | |
| 891 double rtt_mult = 1.0f; | |
| 892 if (low_rtt_nack_threshold_ms_ >= 0 && | |
| 893 rtt_ms_ >= low_rtt_nack_threshold_ms_) { | |
| 894 // For RTTs above low_rtt_nack_threshold_ms_ we don't apply extra delay | |
| 895 // when waiting for retransmissions. | |
| 896 rtt_mult = 0.0f; | |
| 897 } | |
| 898 return jitter_estimate_.GetJitterEstimate(rtt_mult); | |
| 899 } | |
| 900 | |
| 901 void VCMJitterBuffer::UpdateRtt(int64_t rtt_ms) { | |
| 902 CriticalSectionScoped cs(crit_sect_); | |
| 903 rtt_ms_ = rtt_ms; | |
| 904 jitter_estimate_.UpdateRtt(rtt_ms); | |
| 905 } | |
| 906 | |
| 907 void VCMJitterBuffer::SetNackMode(VCMNackMode mode, | |
| 908 int64_t low_rtt_nack_threshold_ms, | |
| 909 int64_t high_rtt_nack_threshold_ms) { | |
| 910 CriticalSectionScoped cs(crit_sect_); | |
| 911 nack_mode_ = mode; | |
| 912 if (mode == kNoNack) { | |
| 913 missing_sequence_numbers_.clear(); | |
| 914 } | |
| 915 assert(low_rtt_nack_threshold_ms >= -1 && high_rtt_nack_threshold_ms >= -1); | |
| 916 assert(high_rtt_nack_threshold_ms == -1 || | |
| 917 low_rtt_nack_threshold_ms <= high_rtt_nack_threshold_ms); | |
| 918 assert(low_rtt_nack_threshold_ms > -1 || high_rtt_nack_threshold_ms == -1); | |
| 919 low_rtt_nack_threshold_ms_ = low_rtt_nack_threshold_ms; | |
| 920 high_rtt_nack_threshold_ms_ = high_rtt_nack_threshold_ms; | |
| 921 // Don't set a high start rtt if high_rtt_nack_threshold_ms_ is used, to not | |
| 922 // disable NACK in |kNack| mode. | |
| 923 if (rtt_ms_ == kDefaultRtt && high_rtt_nack_threshold_ms_ != -1) { | |
| 924 rtt_ms_ = 0; | |
| 925 } | |
| 926 if (!WaitForRetransmissions()) { | |
| 927 jitter_estimate_.ResetNackCount(); | |
| 928 } | |
| 929 } | |
| 930 | |
| 931 void VCMJitterBuffer::SetNackSettings(size_t max_nack_list_size, | |
| 932 int max_packet_age_to_nack, | |
| 933 int max_incomplete_time_ms) { | |
| 934 CriticalSectionScoped cs(crit_sect_); | |
| 935 assert(max_packet_age_to_nack >= 0); | |
| 936 assert(max_incomplete_time_ms_ >= 0); | |
| 937 max_nack_list_size_ = max_nack_list_size; | |
| 938 max_packet_age_to_nack_ = max_packet_age_to_nack; | |
| 939 max_incomplete_time_ms_ = max_incomplete_time_ms; | |
| 940 } | |
| 941 | |
| 942 VCMNackMode VCMJitterBuffer::nack_mode() const { | |
| 943 CriticalSectionScoped cs(crit_sect_); | |
| 944 return nack_mode_; | |
| 945 } | |
| 946 | |
| 947 int VCMJitterBuffer::NonContinuousOrIncompleteDuration() { | |
| 948 if (incomplete_frames_.empty()) { | |
| 949 return 0; | |
| 950 } | |
| 951 uint32_t start_timestamp = incomplete_frames_.Front()->TimeStamp(); | |
| 952 if (!decodable_frames_.empty()) { | |
| 953 start_timestamp = decodable_frames_.Back()->TimeStamp(); | |
| 954 } | |
| 955 return incomplete_frames_.Back()->TimeStamp() - start_timestamp; | |
| 956 } | |
| 957 | |
| 958 uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber( | |
| 959 const VCMFrameBuffer& frame) const { | |
| 960 assert(frame.GetLowSeqNum() >= 0); | |
| 961 if (frame.HaveFirstPacket()) | |
| 962 return frame.GetLowSeqNum(); | |
| 963 | |
| 964 // This estimate is not accurate if more than one packet with lower sequence | |
| 965 // number is lost. | |
| 966 return frame.GetLowSeqNum() - 1; | |
| 967 } | |
| 968 | |
| 969 std::vector<uint16_t> VCMJitterBuffer::GetNackList(bool* request_key_frame) { | |
| 970 CriticalSectionScoped cs(crit_sect_); | |
| 971 *request_key_frame = false; | |
| 972 if (nack_mode_ == kNoNack) { | |
| 973 return std::vector<uint16_t>(); | |
| 974 } | |
| 975 if (last_decoded_state_.in_initial_state()) { | |
| 976 VCMFrameBuffer* next_frame = NextFrame(); | |
| 977 const bool first_frame_is_key = next_frame && | |
| 978 next_frame->FrameType() == kVideoFrameKey && | |
| 979 next_frame->HaveFirstPacket(); | |
| 980 if (!first_frame_is_key) { | |
| 981 bool have_non_empty_frame = decodable_frames_.end() != find_if( | |
| 982 decodable_frames_.begin(), decodable_frames_.end(), | |
| 983 HasNonEmptyState); | |
| 984 if (!have_non_empty_frame) { | |
| 985 have_non_empty_frame = incomplete_frames_.end() != find_if( | |
| 986 incomplete_frames_.begin(), incomplete_frames_.end(), | |
| 987 HasNonEmptyState); | |
| 988 } | |
| 989 bool found_key_frame = RecycleFramesUntilKeyFrame(); | |
| 990 if (!found_key_frame) { | |
| 991 *request_key_frame = have_non_empty_frame; | |
| 992 return std::vector<uint16_t>(); | |
| 993 } | |
| 994 } | |
| 995 } | |
| 996 if (TooLargeNackList()) { | |
| 997 *request_key_frame = !HandleTooLargeNackList(); | |
| 998 } | |
| 999 if (max_incomplete_time_ms_ > 0) { | |
| 1000 int non_continuous_incomplete_duration = | |
| 1001 NonContinuousOrIncompleteDuration(); | |
| 1002 if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) { | |
| 1003 LOG_F(LS_WARNING) << "Too long non-decodable duration: " | |
| 1004 << non_continuous_incomplete_duration << " > " | |
| 1005 << 90 * max_incomplete_time_ms_; | |
| 1006 FrameList::reverse_iterator rit = find_if(incomplete_frames_.rbegin(), | |
| 1007 incomplete_frames_.rend(), IsKeyFrame); | |
| 1008 if (rit == incomplete_frames_.rend()) { | |
| 1009 // Request a key frame if we don't have one already. | |
| 1010 *request_key_frame = true; | |
| 1011 return std::vector<uint16_t>(); | |
| 1012 } else { | |
| 1013 // Skip to the last key frame. If it's incomplete we will start | |
| 1014 // NACKing it. | |
| 1015 // Note that the estimated low sequence number is correct for VP8 | |
| 1016 // streams because only the first packet of a key frame is marked. | |
| 1017 last_decoded_state_.Reset(); | |
| 1018 DropPacketsFromNackList(EstimatedLowSequenceNumber(*rit->second)); | |
| 1019 } | |
| 1020 } | |
| 1021 } | |
| 1022 std::vector<uint16_t> nack_list(missing_sequence_numbers_.begin(), | |
| 1023 missing_sequence_numbers_.end()); | |
| 1024 return nack_list; | |
| 1025 } | |
| 1026 | |
| 1027 void VCMJitterBuffer::SetDecodeErrorMode(VCMDecodeErrorMode error_mode) { | |
| 1028 CriticalSectionScoped cs(crit_sect_); | |
| 1029 decode_error_mode_ = error_mode; | |
| 1030 } | |
| 1031 | |
| 1032 VCMFrameBuffer* VCMJitterBuffer::NextFrame() const { | |
| 1033 if (!decodable_frames_.empty()) | |
| 1034 return decodable_frames_.Front(); | |
| 1035 if (!incomplete_frames_.empty()) | |
| 1036 return incomplete_frames_.Front(); | |
| 1037 return NULL; | |
| 1038 } | |
| 1039 | |
| 1040 bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) { | |
| 1041 if (nack_mode_ == kNoNack) { | |
| 1042 return true; | |
| 1043 } | |
| 1044 // Make sure we don't add packets which are already too old to be decoded. | |
| 1045 if (!last_decoded_state_.in_initial_state()) { | |
| 1046 latest_received_sequence_number_ = LatestSequenceNumber( | |
| 1047 latest_received_sequence_number_, | |
| 1048 last_decoded_state_.sequence_num()); | |
| 1049 } | |
| 1050 if (IsNewerSequenceNumber(sequence_number, | |
| 1051 latest_received_sequence_number_)) { | |
| 1052 // Push any missing sequence numbers to the NACK list. | |
| 1053 for (uint16_t i = latest_received_sequence_number_ + 1; | |
| 1054 IsNewerSequenceNumber(sequence_number, i); ++i) { | |
| 1055 missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i); | |
| 1056 TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "AddNack", | |
| 1057 "seqnum", i); | |
| 1058 } | |
| 1059 if (TooLargeNackList() && !HandleTooLargeNackList()) { | |
| 1060 LOG(LS_WARNING) << "Requesting key frame due to too large NACK list."; | |
| 1061 return false; | |
| 1062 } | |
| 1063 if (MissingTooOldPacket(sequence_number) && | |
| 1064 !HandleTooOldPackets(sequence_number)) { | |
| 1065 LOG(LS_WARNING) << "Requesting key frame due to missing too old packets"; | |
| 1066 return false; | |
| 1067 } | |
| 1068 } else { | |
| 1069 missing_sequence_numbers_.erase(sequence_number); | |
| 1070 TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "RemoveNack", | |
| 1071 "seqnum", sequence_number); | |
| 1072 } | |
| 1073 return true; | |
| 1074 } | |
| 1075 | |
| 1076 bool VCMJitterBuffer::TooLargeNackList() const { | |
| 1077 return missing_sequence_numbers_.size() > max_nack_list_size_; | |
| 1078 } | |
| 1079 | |
| 1080 bool VCMJitterBuffer::HandleTooLargeNackList() { | |
| 1081 // Recycle frames until the NACK list is small enough. It is likely cheaper to | |
| 1082 // request a key frame than to retransmit this many missing packets. | |
| 1083 LOG_F(LS_WARNING) << "NACK list has grown too large: " | |
| 1084 << missing_sequence_numbers_.size() << " > " | |
| 1085 << max_nack_list_size_; | |
| 1086 bool key_frame_found = false; | |
| 1087 while (TooLargeNackList()) { | |
| 1088 key_frame_found = RecycleFramesUntilKeyFrame(); | |
| 1089 } | |
| 1090 return key_frame_found; | |
| 1091 } | |
| 1092 | |
| 1093 bool VCMJitterBuffer::MissingTooOldPacket( | |
| 1094 uint16_t latest_sequence_number) const { | |
| 1095 if (missing_sequence_numbers_.empty()) { | |
| 1096 return false; | |
| 1097 } | |
| 1098 const uint16_t age_of_oldest_missing_packet = latest_sequence_number - | |
| 1099 *missing_sequence_numbers_.begin(); | |
| 1100 // Recycle frames if the NACK list contains too old sequence numbers as | |
| 1101 // the packets may have already been dropped by the sender. | |
| 1102 return age_of_oldest_missing_packet > max_packet_age_to_nack_; | |
| 1103 } | |
| 1104 | |
| 1105 bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) { | |
| 1106 bool key_frame_found = false; | |
| 1107 const uint16_t age_of_oldest_missing_packet = latest_sequence_number - | |
| 1108 *missing_sequence_numbers_.begin(); | |
| 1109 LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: " | |
| 1110 << age_of_oldest_missing_packet << " > " | |
| 1111 << max_packet_age_to_nack_; | |
| 1112 while (MissingTooOldPacket(latest_sequence_number)) { | |
| 1113 key_frame_found = RecycleFramesUntilKeyFrame(); | |
| 1114 } | |
| 1115 return key_frame_found; | |
| 1116 } | |
| 1117 | |
| 1118 void VCMJitterBuffer::DropPacketsFromNackList( | |
| 1119 uint16_t last_decoded_sequence_number) { | |
| 1120 // Erase all sequence numbers from the NACK list which we won't need any | |
| 1121 // longer. | |
| 1122 missing_sequence_numbers_.erase(missing_sequence_numbers_.begin(), | |
| 1123 missing_sequence_numbers_.upper_bound( | |
| 1124 last_decoded_sequence_number)); | |
| 1125 } | |
| 1126 | |
| 1127 int64_t VCMJitterBuffer::LastDecodedTimestamp() const { | |
| 1128 CriticalSectionScoped cs(crit_sect_); | |
| 1129 return last_decoded_state_.time_stamp(); | |
| 1130 } | |
| 1131 | |
| 1132 void VCMJitterBuffer::RenderBufferSize(uint32_t* timestamp_start, | |
| 1133 uint32_t* timestamp_end) { | |
| 1134 CriticalSectionScoped cs(crit_sect_); | |
| 1135 CleanUpOldOrEmptyFrames(); | |
| 1136 *timestamp_start = 0; | |
| 1137 *timestamp_end = 0; | |
| 1138 if (decodable_frames_.empty()) { | |
| 1139 return; | |
| 1140 } | |
| 1141 *timestamp_start = decodable_frames_.Front()->TimeStamp(); | |
| 1142 *timestamp_end = decodable_frames_.Back()->TimeStamp(); | |
| 1143 } | |
| 1144 | |
| 1145 void VCMJitterBuffer::RegisterStatsCallback( | |
| 1146 VCMReceiveStatisticsCallback* callback) { | |
| 1147 CriticalSectionScoped cs(crit_sect_); | |
| 1148 stats_callback_ = callback; | |
| 1149 } | |
| 1150 | |
| 1151 VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() { | |
| 1152 if (free_frames_.empty()) { | |
| 1153 if (!TryToIncreaseJitterBufferSize()) { | |
| 1154 return NULL; | |
| 1155 } | |
| 1156 } | |
| 1157 VCMFrameBuffer* frame = free_frames_.front(); | |
| 1158 free_frames_.pop_front(); | |
| 1159 return frame; | |
| 1160 } | |
| 1161 | |
| 1162 bool VCMJitterBuffer::TryToIncreaseJitterBufferSize() { | |
| 1163 if (max_number_of_frames_ >= kMaxNumberOfFrames) | |
| 1164 return false; | |
| 1165 free_frames_.push_back(new VCMFrameBuffer()); | |
| 1166 ++max_number_of_frames_; | |
| 1167 TRACE_COUNTER1("webrtc", "JBMaxFrames", max_number_of_frames_); | |
| 1168 return true; | |
| 1169 } | |
| 1170 | |
| 1171 // Recycle oldest frames up to a key frame, used if jitter buffer is completely | |
| 1172 // full. | |
| 1173 bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() { | |
| 1174 // First release incomplete frames, and only release decodable frames if there | |
| 1175 // are no incomplete ones. | |
| 1176 FrameList::iterator key_frame_it; | |
| 1177 bool key_frame_found = false; | |
| 1178 int dropped_frames = 0; | |
| 1179 dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame( | |
| 1180 &key_frame_it, &free_frames_); | |
| 1181 key_frame_found = key_frame_it != incomplete_frames_.end(); | |
| 1182 if (dropped_frames == 0) { | |
| 1183 dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame( | |
| 1184 &key_frame_it, &free_frames_); | |
| 1185 key_frame_found = key_frame_it != decodable_frames_.end(); | |
| 1186 } | |
| 1187 TRACE_EVENT_INSTANT0("webrtc", "JB::RecycleFramesUntilKeyFrame"); | |
| 1188 if (key_frame_found) { | |
| 1189 LOG(LS_INFO) << "Found key frame while dropping frames."; | |
| 1190 // Reset last decoded state to make sure the next frame decoded is a key | |
| 1191 // frame, and start NACKing from here. | |
| 1192 last_decoded_state_.Reset(); | |
| 1193 DropPacketsFromNackList(EstimatedLowSequenceNumber(*key_frame_it->second)); | |
| 1194 } else if (decodable_frames_.empty()) { | |
| 1195 // All frames dropped. Reset the decoding state and clear missing sequence | |
| 1196 // numbers as we're starting fresh. | |
| 1197 last_decoded_state_.Reset(); | |
| 1198 missing_sequence_numbers_.clear(); | |
| 1199 } | |
| 1200 return key_frame_found; | |
| 1201 } | |
| 1202 | |
| 1203 // Must be called under the critical section |crit_sect_|. | |
| 1204 void VCMJitterBuffer::CountFrame(const VCMFrameBuffer& frame) { | |
| 1205 incoming_frame_count_++; | |
| 1206 | |
| 1207 if (frame.FrameType() == kVideoFrameKey) { | |
| 1208 TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", | |
| 1209 frame.TimeStamp(), "KeyComplete"); | |
| 1210 } else { | |
| 1211 TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", | |
| 1212 frame.TimeStamp(), "DeltaComplete"); | |
| 1213 } | |
| 1214 | |
| 1215 // Update receive statistics. We count all layers, thus when you use layers | |
| 1216 // adding all key and delta frames might differ from frame count. | |
| 1217 if (frame.IsSessionComplete()) { | |
| 1218 if (frame.FrameType() == kVideoFrameKey) { | |
| 1219 ++receive_statistics_.key_frames; | |
| 1220 } else { | |
| 1221 ++receive_statistics_.delta_frames; | |
| 1222 } | |
| 1223 if (stats_callback_ != NULL) | |
| 1224 stats_callback_->OnFrameCountsUpdated(receive_statistics_); | |
| 1225 } | |
| 1226 } | |
| 1227 | |
| 1228 void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) { | |
| 1229 if (frame_counter_ > kFastConvergeThreshold) { | |
| 1230 average_packets_per_frame_ = average_packets_per_frame_ | |
| 1231 * (1 - kNormalConvergeMultiplier) | |
| 1232 + current_number_packets * kNormalConvergeMultiplier; | |
| 1233 } else if (frame_counter_ > 0) { | |
| 1234 average_packets_per_frame_ = average_packets_per_frame_ | |
| 1235 * (1 - kFastConvergeMultiplier) | |
| 1236 + current_number_packets * kFastConvergeMultiplier; | |
| 1237 frame_counter_++; | |
| 1238 } else { | |
| 1239 average_packets_per_frame_ = current_number_packets; | |
| 1240 frame_counter_++; | |
| 1241 } | |
| 1242 } | |
| 1243 | |
| 1244 // Must be called under the critical section |crit_sect_|. | |
| 1245 void VCMJitterBuffer::CleanUpOldOrEmptyFrames() { | |
| 1246 decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_, | |
| 1247 &free_frames_); | |
| 1248 incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_, | |
| 1249 &free_frames_); | |
| 1250 if (!last_decoded_state_.in_initial_state()) { | |
| 1251 DropPacketsFromNackList(last_decoded_state_.sequence_num()); | |
| 1252 } | |
| 1253 } | |
| 1254 | |
| 1255 // Must be called from within |crit_sect_|. | |
| 1256 bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const { | |
| 1257 return missing_sequence_numbers_.find(packet.seqNum) != | |
| 1258 missing_sequence_numbers_.end(); | |
| 1259 } | |
| 1260 | |
| 1261 // Must be called under the critical section |crit_sect_|. Should never be | |
| 1262 // called with retransmitted frames, they must be filtered out before this | |
| 1263 // function is called. | |
| 1264 void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample, | |
| 1265 bool incomplete_frame) { | |
| 1266 if (sample.latest_packet_time == -1) { | |
| 1267 return; | |
| 1268 } | |
| 1269 UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp, | |
| 1270 sample.frame_size, incomplete_frame); | |
| 1271 } | |
| 1272 | |
| 1273 // Must be called under the critical section crit_sect_. Should never be | |
| 1274 // called with retransmitted frames, they must be filtered out before this | |
| 1275 // function is called. | |
| 1276 void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame, | |
| 1277 bool incomplete_frame) { | |
| 1278 if (frame.LatestPacketTimeMs() == -1) { | |
| 1279 return; | |
| 1280 } | |
| 1281 // No retransmitted frames should be a part of the jitter | |
| 1282 // estimate. | |
| 1283 UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.TimeStamp(), | |
| 1284 frame.Length(), incomplete_frame); | |
| 1285 } | |
| 1286 | |
| 1287 // Must be called under the critical section |crit_sect_|. Should never be | |
| 1288 // called with retransmitted frames, they must be filtered out before this | |
| 1289 // function is called. | |
| 1290 void VCMJitterBuffer::UpdateJitterEstimate( | |
| 1291 int64_t latest_packet_time_ms, | |
| 1292 uint32_t timestamp, | |
| 1293 unsigned int frame_size, | |
| 1294 bool incomplete_frame) { | |
| 1295 if (latest_packet_time_ms == -1) { | |
| 1296 return; | |
| 1297 } | |
| 1298 int64_t frame_delay; | |
| 1299 bool not_reordered = inter_frame_delay_.CalculateDelay(timestamp, | |
| 1300 &frame_delay, | |
| 1301 latest_packet_time_ms); | |
| 1302 // Filter out frames which have been reordered in time by the network | |
| 1303 if (not_reordered) { | |
| 1304 // Update the jitter estimate with the new samples | |
| 1305 jitter_estimate_.UpdateEstimate(frame_delay, frame_size, incomplete_frame); | |
| 1306 } | |
| 1307 } | |
| 1308 | |
| 1309 bool VCMJitterBuffer::WaitForRetransmissions() { | |
| 1310 if (nack_mode_ == kNoNack) { | |
| 1311 // NACK disabled -> don't wait for retransmissions. | |
| 1312 return false; | |
| 1313 } | |
| 1314 // Evaluate if the RTT is higher than |high_rtt_nack_threshold_ms_|, and in | |
| 1315 // that case we don't wait for retransmissions. | |
| 1316 if (high_rtt_nack_threshold_ms_ >= 0 && | |
| 1317 rtt_ms_ >= high_rtt_nack_threshold_ms_) { | |
| 1318 return false; | |
| 1319 } | |
| 1320 return true; | |
| 1321 } | |
| 1322 } // namespace webrtc | |
| OLD | NEW |