Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(495)

Side by Side Diff: webrtc/modules/video_processing/main/source/deflickering.cc

Issue 1410663004: modules/video_processing: refactor interface->include + more. (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Rebased Created 5 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/video_processing/main/source/deflickering.h"
12
13 #include <math.h>
14 #include <stdlib.h>
15
16 #include "webrtc/base/logging.h"
17 #include "webrtc/common_audio/signal_processing/include/signal_processing_librar y.h"
18 #include "webrtc/system_wrappers/include/sort.h"
19
20 namespace webrtc {
21
22 // Detection constants
23 // (Q4) Maximum allowed deviation for detection.
24 enum { kFrequencyDeviation = 39 };
25 // (Q4) Minimum frequency that can be detected.
26 enum { kMinFrequencyToDetect = 32 };
27 // Number of flickers before we accept detection
28 enum { kNumFlickerBeforeDetect = 2 };
29 enum { kmean_valueScaling = 4 }; // (Q4) In power of 2
30 // Dead-zone region in terms of pixel values
31 enum { kZeroCrossingDeadzone = 10 };
32 // Deflickering constants.
33 // Compute the quantiles over 1 / DownsamplingFactor of the image.
34 enum { kDownsamplingFactor = 8 };
35 enum { kLog2OfDownsamplingFactor = 3 };
36
37 // To generate in Matlab:
38 // >> probUW16 = round(2^11 *
39 // [0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.97]);
40 // >> fprintf('%d, ', probUW16)
41 // Resolution reduced to avoid overflow when multiplying with the
42 // (potentially) large number of pixels.
43 const uint16_t VPMDeflickering::prob_uw16_[kNumProbs] = {102, 205, 410, 614,
44 819, 1024, 1229, 1434, 1638, 1843, 1946, 1987}; // <Q11>
45
46 // To generate in Matlab:
47 // >> numQuants = 14; maxOnlyLength = 5;
48 // >> weightUW16 = round(2^15 *
49 // [linspace(0.5, 1.0, numQuants - maxOnlyLength)]);
50 // >> fprintf('%d, %d,\n ', weightUW16);
51 const uint16_t VPMDeflickering::weight_uw16_[kNumQuants - kMaxOnlyLength] =
52 {16384, 18432, 20480, 22528, 24576, 26624, 28672, 30720, 32768}; // <Q15>
53
54 VPMDeflickering::VPMDeflickering() {
55 Reset();
56 }
57
58 VPMDeflickering::~VPMDeflickering() {}
59
60 void VPMDeflickering::Reset() {
61 mean_buffer_length_ = 0;
62 detection_state_ = 0;
63 frame_rate_ = 0;
64
65 memset(mean_buffer_, 0, sizeof(int32_t) * kMeanBufferLength);
66 memset(timestamp_buffer_, 0, sizeof(int32_t) * kMeanBufferLength);
67
68 // Initialize the history with a uniformly distributed histogram.
69 quant_hist_uw8_[0][0] = 0;
70 quant_hist_uw8_[0][kNumQuants - 1] = 255;
71 for (int32_t i = 0; i < kNumProbs; i++) {
72 // Unsigned round. <Q0>
73 quant_hist_uw8_[0][i + 1] = static_cast<uint8_t>(
74 (prob_uw16_[i] * 255 + (1 << 10)) >> 11);
75 }
76
77 for (int32_t i = 1; i < kFrameHistory_size; i++) {
78 memcpy(quant_hist_uw8_[i], quant_hist_uw8_[0],
79 sizeof(uint8_t) * kNumQuants);
80 }
81 }
82
83 int32_t VPMDeflickering::ProcessFrame(
84 VideoFrame* frame,
85 VideoProcessingModule::FrameStats* stats) {
86 assert(frame);
87 uint32_t frame_memory;
88 uint8_t quant_uw8[kNumQuants];
89 uint8_t maxquant_uw8[kNumQuants];
90 uint8_t minquant_uw8[kNumQuants];
91 uint16_t target_quant_uw16[kNumQuants];
92 uint16_t increment_uw16;
93 uint8_t map_uw8[256];
94
95 uint16_t tmp_uw16;
96 uint32_t tmp_uw32;
97 int width = frame->width();
98 int height = frame->height();
99
100 if (frame->IsZeroSize()) {
101 return VPM_GENERAL_ERROR;
102 }
103
104 // Stricter height check due to subsampling size calculation below.
105 if (height < 2) {
106 LOG(LS_ERROR) << "Invalid frame size.";
107 return VPM_GENERAL_ERROR;
108 }
109
110 if (!VideoProcessingModule::ValidFrameStats(*stats)) {
111 return VPM_GENERAL_ERROR;
112 }
113
114 if (PreDetection(frame->timestamp(), *stats) == -1) return VPM_GENERAL_ERROR;
115
116 // Flicker detection
117 int32_t det_flicker = DetectFlicker();
118 if (det_flicker < 0) {
119 return VPM_GENERAL_ERROR;
120 } else if (det_flicker != 1) {
121 return 0;
122 }
123
124 // Size of luminance component.
125 const uint32_t y_size = height * width;
126
127 const uint32_t y_sub_size = width * (((height - 1) >>
128 kLog2OfDownsamplingFactor) + 1);
129 uint8_t* y_sorted = new uint8_t[y_sub_size];
130 uint32_t sort_row_idx = 0;
131 for (int i = 0; i < height; i += kDownsamplingFactor) {
132 memcpy(y_sorted + sort_row_idx * width,
133 frame->buffer(kYPlane) + i * width, width);
134 sort_row_idx++;
135 }
136
137 webrtc::Sort(y_sorted, y_sub_size, webrtc::TYPE_UWord8);
138
139 uint32_t prob_idx_uw32 = 0;
140 quant_uw8[0] = 0;
141 quant_uw8[kNumQuants - 1] = 255;
142
143 // Ensure we won't get an overflow below.
144 // In practice, the number of subsampled pixels will not become this large.
145 if (y_sub_size > (1 << 21) - 1) {
146 LOG(LS_ERROR) << "Subsampled number of pixels too large.";
147 return -1;
148 }
149
150 for (int32_t i = 0; i < kNumProbs; i++) {
151 // <Q0>.
152 prob_idx_uw32 = WEBRTC_SPL_UMUL_32_16(y_sub_size, prob_uw16_[i]) >> 11;
153 quant_uw8[i + 1] = y_sorted[prob_idx_uw32];
154 }
155
156 delete [] y_sorted;
157 y_sorted = NULL;
158
159 // Shift history for new frame.
160 memmove(quant_hist_uw8_[1], quant_hist_uw8_[0],
161 (kFrameHistory_size - 1) * kNumQuants * sizeof(uint8_t));
162 // Store current frame in history.
163 memcpy(quant_hist_uw8_[0], quant_uw8, kNumQuants * sizeof(uint8_t));
164
165 // We use a frame memory equal to the ceiling of half the frame rate to
166 // ensure we capture an entire period of flicker.
167 frame_memory = (frame_rate_ + (1 << 5)) >> 5; // Unsigned ceiling. <Q0>
168 // frame_rate_ in Q4.
169 if (frame_memory > kFrameHistory_size) {
170 frame_memory = kFrameHistory_size;
171 }
172
173 // Get maximum and minimum.
174 for (int32_t i = 0; i < kNumQuants; i++) {
175 maxquant_uw8[i] = 0;
176 minquant_uw8[i] = 255;
177 for (uint32_t j = 0; j < frame_memory; j++) {
178 if (quant_hist_uw8_[j][i] > maxquant_uw8[i]) {
179 maxquant_uw8[i] = quant_hist_uw8_[j][i];
180 }
181
182 if (quant_hist_uw8_[j][i] < minquant_uw8[i]) {
183 minquant_uw8[i] = quant_hist_uw8_[j][i];
184 }
185 }
186 }
187
188 // Get target quantiles.
189 for (int32_t i = 0; i < kNumQuants - kMaxOnlyLength; i++) {
190 // target = w * maxquant_uw8 + (1 - w) * minquant_uw8
191 // Weights w = |weight_uw16_| are in Q15, hence the final output has to be
192 // right shifted by 8 to end up in Q7.
193 target_quant_uw16[i] = static_cast<uint16_t>((
194 weight_uw16_[i] * maxquant_uw8[i] +
195 ((1 << 15) - weight_uw16_[i]) * minquant_uw8[i]) >> 8); // <Q7>
196 }
197
198 for (int32_t i = kNumQuants - kMaxOnlyLength; i < kNumQuants; i++) {
199 target_quant_uw16[i] = ((uint16_t)maxquant_uw8[i]) << 7;
200 }
201
202 // Compute the map from input to output pixels.
203 uint16_t mapUW16; // <Q7>
204 for (int32_t i = 1; i < kNumQuants; i++) {
205 // As quant and targetQuant are limited to UWord8, it's safe to use Q7 here.
206 tmp_uw32 = static_cast<uint32_t>(target_quant_uw16[i] -
207 target_quant_uw16[i - 1]);
208 tmp_uw16 = static_cast<uint16_t>(quant_uw8[i] - quant_uw8[i - 1]); // <Q0>
209
210 if (tmp_uw16 > 0) {
211 increment_uw16 = static_cast<uint16_t>(WebRtcSpl_DivU32U16(tmp_uw32,
212 tmp_uw16)); // <Q7>
213 } else {
214 // The value is irrelevant; the loop below will only iterate once.
215 increment_uw16 = 0;
216 }
217
218 mapUW16 = target_quant_uw16[i - 1];
219 for (uint32_t j = quant_uw8[i - 1]; j < (uint32_t)(quant_uw8[i] + 1); j++) {
220 // Unsigned round. <Q0>
221 map_uw8[j] = (uint8_t)((mapUW16 + (1 << 6)) >> 7);
222 mapUW16 += increment_uw16;
223 }
224 }
225
226 // Map to the output frame.
227 uint8_t* buffer = frame->buffer(kYPlane);
228 for (uint32_t i = 0; i < y_size; i++) {
229 buffer[i] = map_uw8[buffer[i]];
230 }
231
232 // Frame was altered, so reset stats.
233 VideoProcessingModule::ClearFrameStats(stats);
234
235 return VPM_OK;
236 }
237
238 /**
239 Performs some pre-detection operations. Must be called before
240 DetectFlicker().
241
242 \param[in] timestamp Timestamp of the current frame.
243 \param[in] stats Statistics of the current frame.
244
245 \return 0: Success\n
246 2: Detection not possible due to flickering frequency too close to
247 zero.\n
248 -1: Error
249 */
250 int32_t VPMDeflickering::PreDetection(const uint32_t timestamp,
251 const VideoProcessingModule::FrameStats& stats) {
252 int32_t mean_val; // Mean value of frame (Q4)
253 uint32_t frame_rate = 0;
254 int32_t meanBufferLength; // Temp variable.
255
256 mean_val = ((stats.sum << kmean_valueScaling) / stats.num_pixels);
257 // Update mean value buffer.
258 // This should be done even though we might end up in an unreliable detection.
259 memmove(mean_buffer_ + 1, mean_buffer_,
260 (kMeanBufferLength - 1) * sizeof(int32_t));
261 mean_buffer_[0] = mean_val;
262
263 // Update timestamp buffer.
264 // This should be done even though we might end up in an unreliable detection.
265 memmove(timestamp_buffer_ + 1, timestamp_buffer_, (kMeanBufferLength - 1) *
266 sizeof(uint32_t));
267 timestamp_buffer_[0] = timestamp;
268
269 /* Compute current frame rate (Q4) */
270 if (timestamp_buffer_[kMeanBufferLength - 1] != 0) {
271 frame_rate = ((90000 << 4) * (kMeanBufferLength - 1));
272 frame_rate /=
273 (timestamp_buffer_[0] - timestamp_buffer_[kMeanBufferLength - 1]);
274 } else if (timestamp_buffer_[1] != 0) {
275 frame_rate = (90000 << 4) / (timestamp_buffer_[0] - timestamp_buffer_[1]);
276 }
277
278 /* Determine required size of mean value buffer (mean_buffer_length_) */
279 if (frame_rate == 0) {
280 meanBufferLength = 1;
281 } else {
282 meanBufferLength =
283 (kNumFlickerBeforeDetect * frame_rate) / kMinFrequencyToDetect;
284 }
285 /* Sanity check of buffer length */
286 if (meanBufferLength >= kMeanBufferLength) {
287 /* Too long buffer. The flickering frequency is too close to zero, which
288 * makes the estimation unreliable.
289 */
290 mean_buffer_length_ = 0;
291 return 2;
292 }
293 mean_buffer_length_ = meanBufferLength;
294
295 if ((timestamp_buffer_[mean_buffer_length_ - 1] != 0) &&
296 (mean_buffer_length_ != 1)) {
297 frame_rate = ((90000 << 4) * (mean_buffer_length_ - 1));
298 frame_rate /=
299 (timestamp_buffer_[0] - timestamp_buffer_[mean_buffer_length_ - 1]);
300 } else if (timestamp_buffer_[1] != 0) {
301 frame_rate = (90000 << 4) / (timestamp_buffer_[0] - timestamp_buffer_[1]);
302 }
303 frame_rate_ = frame_rate;
304
305 return VPM_OK;
306 }
307
308 /**
309 This function detects flicker in the video stream. As a side effect the
310 mean value buffer is updated with the new mean value.
311
312 \return 0: No flickering detected\n
313 1: Flickering detected\n
314 2: Detection not possible due to unreliable frequency interval
315 -1: Error
316 */
317 int32_t VPMDeflickering::DetectFlicker() {
318 uint32_t i;
319 int32_t freqEst; // (Q4) Frequency estimate to base detection upon
320 int32_t ret_val = -1;
321
322 /* Sanity check for mean_buffer_length_ */
323 if (mean_buffer_length_ < 2) {
324 /* Not possible to estimate frequency */
325 return(2);
326 }
327 // Count zero crossings with a dead zone to be robust against noise. If the
328 // noise std is 2 pixel this corresponds to about 95% confidence interval.
329 int32_t deadzone = (kZeroCrossingDeadzone << kmean_valueScaling); // Q4
330 int32_t meanOfBuffer = 0; // Mean value of mean value buffer.
331 int32_t numZeros = 0; // Number of zeros that cross the dead-zone.
332 int32_t cntState = 0; // State variable for zero crossing regions.
333 int32_t cntStateOld = 0; // Previous state for zero crossing regions.
334
335 for (i = 0; i < mean_buffer_length_; i++) {
336 meanOfBuffer += mean_buffer_[i];
337 }
338 meanOfBuffer += (mean_buffer_length_ >> 1); // Rounding, not truncation.
339 meanOfBuffer /= mean_buffer_length_;
340
341 // Count zero crossings.
342 cntStateOld = (mean_buffer_[0] >= (meanOfBuffer + deadzone));
343 cntStateOld -= (mean_buffer_[0] <= (meanOfBuffer - deadzone));
344 for (i = 1; i < mean_buffer_length_; i++) {
345 cntState = (mean_buffer_[i] >= (meanOfBuffer + deadzone));
346 cntState -= (mean_buffer_[i] <= (meanOfBuffer - deadzone));
347 if (cntStateOld == 0) {
348 cntStateOld = -cntState;
349 }
350 if (((cntState + cntStateOld) == 0) && (cntState != 0)) {
351 numZeros++;
352 cntStateOld = cntState;
353 }
354 }
355 // END count zero crossings.
356
357 /* Frequency estimation according to:
358 * freqEst = numZeros * frame_rate / 2 / mean_buffer_length_;
359 *
360 * Resolution is set to Q4
361 */
362 freqEst = ((numZeros * 90000) << 3);
363 freqEst /=
364 (timestamp_buffer_[0] - timestamp_buffer_[mean_buffer_length_ - 1]);
365
366 /* Translate frequency estimate to regions close to 100 and 120 Hz */
367 uint8_t freqState = 0; // Current translation state;
368 // (0) Not in interval,
369 // (1) Within valid interval,
370 // (2) Out of range
371 int32_t freqAlias = freqEst;
372 if (freqEst > kMinFrequencyToDetect) {
373 uint8_t aliasState = 1;
374 while(freqState == 0) {
375 /* Increase frequency */
376 freqAlias += (aliasState * frame_rate_);
377 freqAlias += ((freqEst << 1) * (1 - (aliasState << 1)));
378 /* Compute state */
379 freqState = (abs(freqAlias - (100 << 4)) <= kFrequencyDeviation);
380 freqState += (abs(freqAlias - (120 << 4)) <= kFrequencyDeviation);
381 freqState += 2 * (freqAlias > ((120 << 4) + kFrequencyDeviation));
382 /* Switch alias state */
383 aliasState++;
384 aliasState &= 0x01;
385 }
386 }
387 /* Is frequency estimate within detection region? */
388 if (freqState == 1) {
389 ret_val = 1;
390 } else if (freqState == 0) {
391 ret_val = 2;
392 } else {
393 ret_val = 0;
394 }
395 return ret_val;
396 }
397
398 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698