Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1085)

Unified Diff: webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.cc

Issue 1394103003: Make the nonlinear beamformer steerable (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@highfreq
Patch Set: Add nonlinear_beamformer_unittest Created 5 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.cc
diff --git a/webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.cc b/webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.cc
index d3f9b33bc2e845bea4789e1b94ac66d0075699bb..a8cf7232d01798ca1ab9b0d2b2852ad3b52356d2 100644
--- a/webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.cc
+++ b/webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.cc
@@ -29,13 +29,6 @@ const float kKbdAlpha = 1.5f;
const float kSpeedOfSoundMeterSeconds = 343;
-// For both target and interference angles, PI / 2 is perpendicular to the
-// microphone array, facing forwards. The positive direction goes
-// counterclockwise.
-// The angle at which we amplify sound.
-// TODO(aluebs): Make the target angle dynamically settable.
-const float kTargetAngleRadians = static_cast<float>(M_PI) / 2.f;
-
// The minimum separation in radians between the target direction and an
// interferer scenario.
const float kMinAwayRadians = 0.2f;
@@ -185,16 +178,56 @@ std::vector<Point> GetCenteredArray(std::vector<Point> array_geometry) {
return array_geometry;
}
+float DotProduct(std::vector<float> a, std::vector<float> b) {
+ RTC_DCHECK_EQ(a.size(), b.size());
+ float dot_product = 0.f;
+ for (size_t i = 0u; i < a.size(); ++i) {
+ dot_product += a[i] * b[i];
+ }
+ return dot_product;
+}
+
+float NormalizedDotProduct(std::vector<float> a, std::vector<float> b) {
+ const float kMinNorm = 1e-6f;
+ float norm_a = DotProduct(a, a);
+ float norm_b = DotProduct(b, b);
+ if (norm_a > kMinNorm && norm_b > kMinNorm) {
+ return DotProduct(a, b) / std::sqrt(norm_a * norm_b);
+ } else {
+ return 0.f;
+ }
+}
+
+bool IsGeometryLinear(std::vector<Point> array_geometry) {
+ const float kMinDotProduct = 0.9999f;
+ bool is_geometry_linear = true;
+ std::vector<float> directiona;
+ directiona.push_back(array_geometry[1].x() - array_geometry[0].x());
+ directiona.push_back(array_geometry[1].y() - array_geometry[0].y());
+ directiona.push_back(array_geometry[1].z() - array_geometry[0].z());
+ for (size_t i = 2u; i < array_geometry.size(); ++i) {
+ std::vector<float> directionb;
+ directionb.push_back(array_geometry[i].x() - array_geometry[i - 1].x());
+ directionb.push_back(array_geometry[i].y() - array_geometry[i - 1].y());
+ directionb.push_back(array_geometry[i].z() - array_geometry[i - 1].z());
+ is_geometry_linear &=
+ std::abs(NormalizedDotProduct(directiona, directionb)) > kMinDotProduct;
+ }
+ return is_geometry_linear;
+}
+
} // namespace
// static
const size_t NonlinearBeamformer::kNumFreqBins;
NonlinearBeamformer::NonlinearBeamformer(
- const std::vector<Point>& array_geometry)
+ const std::vector<Point>& array_geometry,
+ SphericalPointf target_direction)
: num_input_channels_(array_geometry.size()),
array_geometry_(GetCenteredArray(array_geometry)),
- min_mic_spacing_(GetMinimumSpacing(array_geometry)) {
+ min_mic_spacing_(GetMinimumSpacing(array_geometry)),
+ target_angle_radians_(target_direction.azimuth()) {
WindowGenerator::KaiserBesselDerived(kKbdAlpha, kFftSize, window_);
}
@@ -202,7 +235,6 @@ void NonlinearBeamformer::Initialize(int chunk_size_ms, int sample_rate_hz) {
chunk_length_ =
static_cast<size_t>(sample_rate_hz / (1000.f / chunk_size_ms));
sample_rate_hz_ = sample_rate_hz;
- InitFrequencyCorrectionRanges();
high_pass_postfilter_mask_ = 1.f;
is_target_present_ = false;
@@ -223,52 +255,45 @@ void NonlinearBeamformer::Initialize(int chunk_size_ms, int sample_rate_hz) {
wave_numbers_[i] = 2 * M_PI * freq_hz / kSpeedOfSoundMeterSeconds;
}
- // Initialize all nonadaptive values before looping through the frames.
- InitInterfAngles();
- InitDelaySumMasks();
- InitTargetCovMats();
- InitInterfCovMats();
+ InitLowFrequencyCorrectionRanges();
+ InitDifuseCovMats();
+ AimAt(SphericalPointf(target_angle_radians_, 0.f, 1.f));
+}
- for (size_t i = 0; i < kNumFreqBins; ++i) {
- rxiws_[i] = Norm(target_cov_mats_[i], delay_sum_masks_[i]);
- rpsiws_[i].clear();
- for (size_t j = 0; j < interf_angles_radians_.size(); ++j) {
- rpsiws_[i].push_back(Norm(*interf_cov_mats_[i][j], delay_sum_masks_[i]));
- }
- }
+// These bin indexes determine the regions over which a mean is taken. This is
+// applied as a constant value over the adjacent end "frequency correction"
+// regions.
+//
+// low_mean_start_bin_ high_mean_start_bin_
+// v v constant
+// |----------------|--------|----------------|-------|----------------|
+// constant ^ ^
+// low_mean_end_bin_ high_mean_end_bin_
+//
+void NonlinearBeamformer::InitLowFrequencyCorrectionRanges() {
+ low_mean_start_bin_ = Round(kLowMeanStartHz * kFftSize / sample_rate_hz_);
+ low_mean_end_bin_ = Round(kLowMeanEndHz * kFftSize / sample_rate_hz_);
+
+ RTC_DCHECK_GT(low_mean_start_bin_, 0U);
+ RTC_DCHECK_LT(low_mean_start_bin_, low_mean_end_bin_);
}
-void NonlinearBeamformer::InitFrequencyCorrectionRanges() {
+void NonlinearBeamformer::InitHighFrequencyCorrectionRanges() {
const float kAliasingFreqHz =
kSpeedOfSoundMeterSeconds /
- (min_mic_spacing_ * (1.f + std::abs(std::cos(kTargetAngleRadians))));
+ (min_mic_spacing_ * (1.f + std::abs(std::cos(target_angle_radians_))));
const float kHighMeanStartHz = std::min(0.5f * kAliasingFreqHz,
sample_rate_hz_ / 2.f);
const float kHighMeanEndHz = std::min(0.75f * kAliasingFreqHz,
sample_rate_hz_ / 2.f);
-
- low_mean_start_bin_ = Round(kLowMeanStartHz * kFftSize / sample_rate_hz_);
- low_mean_end_bin_ = Round(kLowMeanEndHz * kFftSize / sample_rate_hz_);
high_mean_start_bin_ = Round(kHighMeanStartHz * kFftSize / sample_rate_hz_);
high_mean_end_bin_ = Round(kHighMeanEndHz * kFftSize / sample_rate_hz_);
- // These bin indexes determine the regions over which a mean is taken. This
- // is applied as a constant value over the adjacent end "frequency correction"
- // regions.
- //
- // low_mean_start_bin_ high_mean_start_bin_
- // v v constant
- // |----------------|--------|----------------|-------|----------------|
- // constant ^ ^
- // low_mean_end_bin_ high_mean_end_bin_
- //
- RTC_DCHECK_GT(low_mean_start_bin_, 0U);
- RTC_DCHECK_LT(low_mean_start_bin_, low_mean_end_bin_);
+
RTC_DCHECK_LT(low_mean_end_bin_, high_mean_end_bin_);
RTC_DCHECK_LT(high_mean_start_bin_, high_mean_end_bin_);
RTC_DCHECK_LT(high_mean_end_bin_, kNumFreqBins - 1);
}
-
void NonlinearBeamformer::InitInterfAngles() {
const float kAwayRadians =
std::min(static_cast<float>(M_PI),
@@ -276,22 +301,29 @@ void NonlinearBeamformer::InitInterfAngles() {
min_mic_spacing_));
interf_angles_radians_.clear();
- // TODO(aluebs): When the target angle is settable, make sure the interferer
- // scenarios aren't reflected over the target one for linear geometries.
- interf_angles_radians_.push_back(kTargetAngleRadians - kAwayRadians);
- interf_angles_radians_.push_back(kTargetAngleRadians + kAwayRadians);
+ if (IsGeometryLinear(array_geometry_)) {
+ if (target_angle_radians_ - kAwayRadians >= 0.f) {
+ interf_angles_radians_.push_back(target_angle_radians_ - kAwayRadians);
+ } else {
+ interf_angles_radians_.push_back(M_PI);
+ }
+ if (target_angle_radians_ + kAwayRadians <= M_PI) {
+ interf_angles_radians_.push_back(target_angle_radians_ + kAwayRadians);
+ } else {
+ interf_angles_radians_.push_back(0.f);
+ }
+ } else {
+ interf_angles_radians_.push_back(target_angle_radians_ - kAwayRadians);
+ interf_angles_radians_.push_back(target_angle_radians_ + kAwayRadians);
+ }
}
void NonlinearBeamformer::InitDelaySumMasks() {
for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) {
delay_sum_masks_[f_ix].Resize(1, num_input_channels_);
- CovarianceMatrixGenerator::PhaseAlignmentMasks(f_ix,
- kFftSize,
- sample_rate_hz_,
- kSpeedOfSoundMeterSeconds,
- array_geometry_,
- kTargetAngleRadians,
- &delay_sum_masks_[f_ix]);
+ CovarianceMatrixGenerator::PhaseAlignmentMasks(
+ f_ix, kFftSize, sample_rate_hz_, kSpeedOfSoundMeterSeconds,
+ array_geometry_, target_angle_radians_, &delay_sum_masks_[f_ix]);
complex_f norm_factor = sqrt(
ConjugateDotProduct(delay_sum_masks_[f_ix], delay_sum_masks_[f_ix]));
@@ -309,15 +341,19 @@ void NonlinearBeamformer::InitTargetCovMats() {
}
}
+void NonlinearBeamformer::InitDifuseCovMats() {
+ for (size_t i = 0; i < kNumFreqBins; ++i) {
+ uniform_cov_mat_[i].Resize(num_input_channels_, num_input_channels_);
+ CovarianceMatrixGenerator::UniformCovarianceMatrix(
+ wave_numbers_[i], array_geometry_, &uniform_cov_mat_[i]);
+ complex_f normalization_factor = uniform_cov_mat_[i].elements()[0][0];
+ uniform_cov_mat_[i].Scale(1.f / normalization_factor);
+ uniform_cov_mat_[i].Scale(1 - kBalance);
+ }
+}
+
void NonlinearBeamformer::InitInterfCovMats() {
for (size_t i = 0; i < kNumFreqBins; ++i) {
- ComplexMatrixF uniform_cov_mat(num_input_channels_, num_input_channels_);
- CovarianceMatrixGenerator::UniformCovarianceMatrix(wave_numbers_[i],
- array_geometry_,
- &uniform_cov_mat);
- complex_f normalization_factor = uniform_cov_mat.elements()[0][0];
- uniform_cov_mat.Scale(1.f / normalization_factor);
- uniform_cov_mat.Scale(1 - kBalance);
interf_cov_mats_[i].clear();
for (size_t j = 0; j < interf_angles_radians_.size(); ++j) {
interf_cov_mats_[i].push_back(new ComplexMatrixF(num_input_channels_,
@@ -333,11 +369,21 @@ void NonlinearBeamformer::InitInterfCovMats() {
array_geometry_,
&angled_cov_mat);
// Normalize matrices before averaging them.
- normalization_factor = angled_cov_mat.elements()[0][0];
+ complex_f normalization_factor = angled_cov_mat.elements()[0][0];
angled_cov_mat.Scale(1.f / normalization_factor);
// Weighted average of matrices.
angled_cov_mat.Scale(kBalance);
- interf_cov_mats_[i][j]->Add(uniform_cov_mat, angled_cov_mat);
+ interf_cov_mats_[i][j]->Add(uniform_cov_mat_[i], angled_cov_mat);
+ }
+ }
+}
+
+void NonlinearBeamformer::NormalizeCovMats() {
+ for (size_t i = 0; i < kNumFreqBins; ++i) {
+ rxiws_[i] = Norm(target_cov_mats_[i], delay_sum_masks_[i]);
+ rpsiws_[i].clear();
+ for (size_t j = 0; j < interf_angles_radians_.size(); ++j) {
+ rpsiws_[i].push_back(Norm(*interf_cov_mats_[i][j], delay_sum_masks_[i]));
}
}
}
@@ -372,10 +418,20 @@ void NonlinearBeamformer::ProcessChunk(const ChannelBuffer<float>& input,
}
}
+void NonlinearBeamformer::AimAt(const SphericalPointf& target_direction) {
+ target_angle_radians_ = target_direction.azimuth();
+ InitHighFrequencyCorrectionRanges();
+ InitInterfAngles();
+ InitDelaySumMasks();
+ InitTargetCovMats();
+ InitInterfCovMats();
+ NormalizeCovMats();
+}
+
bool NonlinearBeamformer::IsInBeam(const SphericalPointf& spherical_point) {
// If more than half-beamwidth degrees away from the beam's center,
// you are out of the beam.
- return fabs(spherical_point.azimuth() - kTargetAngleRadians) <
+ return fabs(spherical_point.azimuth() - target_angle_radians_) <
kHalfBeamWidthRadians;
}

Powered by Google App Engine
This is Rietveld 408576698