OLD | NEW |
1 /* | 1 /* |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
(...skipping 11 matching lines...) Expand all Loading... |
22 #include "webrtc/modules/audio_processing/beamformer/covariance_matrix_generator
.h" | 22 #include "webrtc/modules/audio_processing/beamformer/covariance_matrix_generator
.h" |
23 | 23 |
24 namespace webrtc { | 24 namespace webrtc { |
25 namespace { | 25 namespace { |
26 | 26 |
27 // Alpha for the Kaiser Bessel Derived window. | 27 // Alpha for the Kaiser Bessel Derived window. |
28 const float kKbdAlpha = 1.5f; | 28 const float kKbdAlpha = 1.5f; |
29 | 29 |
30 const float kSpeedOfSoundMeterSeconds = 343; | 30 const float kSpeedOfSoundMeterSeconds = 343; |
31 | 31 |
32 // For both target and interference angles, PI / 2 is perpendicular to the | |
33 // microphone array, facing forwards. The positive direction goes | |
34 // counterclockwise. | |
35 // The angle at which we amplify sound. | |
36 // TODO(aluebs): Make the target angle dynamically settable. | |
37 const float kTargetAngleRadians = static_cast<float>(M_PI) / 2.f; | |
38 | |
39 // The minimum separation in radians between the target direction and an | 32 // The minimum separation in radians between the target direction and an |
40 // interferer scenario. | 33 // interferer scenario. |
41 const float kMinAwayRadians = 0.2f; | 34 const float kMinAwayRadians = 0.2f; |
42 | 35 |
43 // The separation between the target direction and the closest interferer | 36 // The separation between the target direction and the closest interferer |
44 // scenario is proportional to this constant. | 37 // scenario is proportional to this constant. |
45 const float kAwaySlope = 0.008f; | 38 const float kAwaySlope = 0.008f; |
46 | 39 |
47 // When calculating the interference covariance matrix, this is the weight for | 40 // When calculating the interference covariance matrix, this is the weight for |
48 // the weighted average between the uniform covariance matrix and the angled | 41 // the weighted average between the uniform covariance matrix and the angled |
49 // covariance matrix. | 42 // covariance matrix. |
50 // Rpsi = Rpsi_angled * kBalance + Rpsi_uniform * (1 - kBalance) | 43 // Rpsi = Rpsi_angled * kBalance + Rpsi_uniform * (1 - kBalance) |
51 const float kBalance = 0.95f; | 44 const float kBalance = 0.95f; |
52 | 45 |
53 const float kHalfBeamWidthRadians = static_cast<float>(M_PI) * 20.f / 180.f; | |
54 | |
55 // Alpha coefficients for mask smoothing. | 46 // Alpha coefficients for mask smoothing. |
56 const float kMaskTimeSmoothAlpha = 0.2f; | 47 const float kMaskTimeSmoothAlpha = 0.2f; |
57 const float kMaskFrequencySmoothAlpha = 0.6f; | 48 const float kMaskFrequencySmoothAlpha = 0.6f; |
58 | 49 |
59 // The average mask is computed from masks in this mid-frequency range. If these | 50 // The average mask is computed from masks in this mid-frequency range. If these |
60 // ranges are changed |kMaskQuantile| might need to be adjusted. | 51 // ranges are changed |kMaskQuantile| might need to be adjusted. |
61 const int kLowMeanStartHz = 200; | 52 const int kLowMeanStartHz = 200; |
62 const int kLowMeanEndHz = 400; | 53 const int kLowMeanEndHz = 400; |
63 | 54 |
64 // Range limiter for subtractive terms in the nominator and denominator of the | 55 // Range limiter for subtractive terms in the nominator and denominator of the |
(...skipping 115 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
180 center /= array_geometry.size(); | 171 center /= array_geometry.size(); |
181 for (size_t i = 0; i < array_geometry.size(); ++i) { | 172 for (size_t i = 0; i < array_geometry.size(); ++i) { |
182 array_geometry[i].c[dim] -= center; | 173 array_geometry[i].c[dim] -= center; |
183 } | 174 } |
184 } | 175 } |
185 return array_geometry; | 176 return array_geometry; |
186 } | 177 } |
187 | 178 |
188 } // namespace | 179 } // namespace |
189 | 180 |
| 181 const float NonlinearBeamformer::kHalfBeamWidthRadians = DegreesToRadians(20.f); |
| 182 |
190 // static | 183 // static |
191 const size_t NonlinearBeamformer::kNumFreqBins; | 184 const size_t NonlinearBeamformer::kNumFreqBins; |
192 | 185 |
193 NonlinearBeamformer::NonlinearBeamformer( | 186 NonlinearBeamformer::NonlinearBeamformer( |
194 const std::vector<Point>& array_geometry) | 187 const std::vector<Point>& array_geometry, |
| 188 SphericalPointf target_direction) |
195 : num_input_channels_(array_geometry.size()), | 189 : num_input_channels_(array_geometry.size()), |
196 array_geometry_(GetCenteredArray(array_geometry)), | 190 array_geometry_(GetCenteredArray(array_geometry)), |
197 min_mic_spacing_(GetMinimumSpacing(array_geometry)) { | 191 array_normal_(GetArrayNormal(array_geometry)), |
| 192 min_mic_spacing_(GetMinimumSpacing(array_geometry)), |
| 193 target_angle_radians_(target_direction.azimuth()), |
| 194 away_radians_(std::min( |
| 195 static_cast<float>(M_PI), |
| 196 std::max(kMinAwayRadians, |
| 197 kAwaySlope * static_cast<float>(M_PI) / min_mic_spacing_))) { |
198 WindowGenerator::KaiserBesselDerived(kKbdAlpha, kFftSize, window_); | 198 WindowGenerator::KaiserBesselDerived(kKbdAlpha, kFftSize, window_); |
199 } | 199 } |
200 | 200 |
201 void NonlinearBeamformer::Initialize(int chunk_size_ms, int sample_rate_hz) { | 201 void NonlinearBeamformer::Initialize(int chunk_size_ms, int sample_rate_hz) { |
202 chunk_length_ = | 202 chunk_length_ = |
203 static_cast<size_t>(sample_rate_hz / (1000.f / chunk_size_ms)); | 203 static_cast<size_t>(sample_rate_hz / (1000.f / chunk_size_ms)); |
204 sample_rate_hz_ = sample_rate_hz; | 204 sample_rate_hz_ = sample_rate_hz; |
205 InitFrequencyCorrectionRanges(); | |
206 | 205 |
207 high_pass_postfilter_mask_ = 1.f; | 206 high_pass_postfilter_mask_ = 1.f; |
208 is_target_present_ = false; | 207 is_target_present_ = false; |
209 hold_target_blocks_ = kHoldTargetSeconds * 2 * sample_rate_hz / kFftSize; | 208 hold_target_blocks_ = kHoldTargetSeconds * 2 * sample_rate_hz / kFftSize; |
210 interference_blocks_count_ = hold_target_blocks_; | 209 interference_blocks_count_ = hold_target_blocks_; |
211 | 210 |
212 lapped_transform_.reset(new LappedTransform(num_input_channels_, | 211 lapped_transform_.reset(new LappedTransform(num_input_channels_, |
213 1, | 212 1, |
214 chunk_length_, | 213 chunk_length_, |
215 window_, | 214 window_, |
216 kFftSize, | 215 kFftSize, |
217 kFftSize / 2, | 216 kFftSize / 2, |
218 this)); | 217 this)); |
219 for (size_t i = 0; i < kNumFreqBins; ++i) { | 218 for (size_t i = 0; i < kNumFreqBins; ++i) { |
220 time_smooth_mask_[i] = 1.f; | 219 time_smooth_mask_[i] = 1.f; |
221 final_mask_[i] = 1.f; | 220 final_mask_[i] = 1.f; |
222 float freq_hz = (static_cast<float>(i) / kFftSize) * sample_rate_hz_; | 221 float freq_hz = (static_cast<float>(i) / kFftSize) * sample_rate_hz_; |
223 wave_numbers_[i] = 2 * M_PI * freq_hz / kSpeedOfSoundMeterSeconds; | 222 wave_numbers_[i] = 2 * M_PI * freq_hz / kSpeedOfSoundMeterSeconds; |
224 } | 223 } |
225 | 224 |
226 // Initialize all nonadaptive values before looping through the frames. | 225 InitLowFrequencyCorrectionRanges(); |
227 InitInterfAngles(); | 226 InitDiffuseCovMats(); |
228 InitDelaySumMasks(); | 227 AimAt(SphericalPointf(target_angle_radians_, 0.f, 1.f)); |
229 InitTargetCovMats(); | |
230 InitInterfCovMats(); | |
231 | |
232 for (size_t i = 0; i < kNumFreqBins; ++i) { | |
233 rxiws_[i] = Norm(target_cov_mats_[i], delay_sum_masks_[i]); | |
234 rpsiws_[i].clear(); | |
235 for (size_t j = 0; j < interf_angles_radians_.size(); ++j) { | |
236 rpsiws_[i].push_back(Norm(*interf_cov_mats_[i][j], delay_sum_masks_[i])); | |
237 } | |
238 } | |
239 } | 228 } |
240 | 229 |
241 void NonlinearBeamformer::InitFrequencyCorrectionRanges() { | 230 // These bin indexes determine the regions over which a mean is taken. This is |
| 231 // applied as a constant value over the adjacent end "frequency correction" |
| 232 // regions. |
| 233 // |
| 234 // low_mean_start_bin_ high_mean_start_bin_ |
| 235 // v v constant |
| 236 // |----------------|--------|----------------|-------|----------------| |
| 237 // constant ^ ^ |
| 238 // low_mean_end_bin_ high_mean_end_bin_ |
| 239 // |
| 240 void NonlinearBeamformer::InitLowFrequencyCorrectionRanges() { |
| 241 low_mean_start_bin_ = Round(kLowMeanStartHz * kFftSize / sample_rate_hz_); |
| 242 low_mean_end_bin_ = Round(kLowMeanEndHz * kFftSize / sample_rate_hz_); |
| 243 |
| 244 RTC_DCHECK_GT(low_mean_start_bin_, 0U); |
| 245 RTC_DCHECK_LT(low_mean_start_bin_, low_mean_end_bin_); |
| 246 } |
| 247 |
| 248 void NonlinearBeamformer::InitHighFrequencyCorrectionRanges() { |
242 const float kAliasingFreqHz = | 249 const float kAliasingFreqHz = |
243 kSpeedOfSoundMeterSeconds / | 250 kSpeedOfSoundMeterSeconds / |
244 (min_mic_spacing_ * (1.f + std::abs(std::cos(kTargetAngleRadians)))); | 251 (min_mic_spacing_ * (1.f + std::abs(std::cos(target_angle_radians_)))); |
245 const float kHighMeanStartHz = std::min(0.5f * kAliasingFreqHz, | 252 const float kHighMeanStartHz = std::min(0.5f * kAliasingFreqHz, |
246 sample_rate_hz_ / 2.f); | 253 sample_rate_hz_ / 2.f); |
247 const float kHighMeanEndHz = std::min(0.75f * kAliasingFreqHz, | 254 const float kHighMeanEndHz = std::min(0.75f * kAliasingFreqHz, |
248 sample_rate_hz_ / 2.f); | 255 sample_rate_hz_ / 2.f); |
249 | |
250 low_mean_start_bin_ = Round(kLowMeanStartHz * kFftSize / sample_rate_hz_); | |
251 low_mean_end_bin_ = Round(kLowMeanEndHz * kFftSize / sample_rate_hz_); | |
252 high_mean_start_bin_ = Round(kHighMeanStartHz * kFftSize / sample_rate_hz_); | 256 high_mean_start_bin_ = Round(kHighMeanStartHz * kFftSize / sample_rate_hz_); |
253 high_mean_end_bin_ = Round(kHighMeanEndHz * kFftSize / sample_rate_hz_); | 257 high_mean_end_bin_ = Round(kHighMeanEndHz * kFftSize / sample_rate_hz_); |
254 // These bin indexes determine the regions over which a mean is taken. This | 258 |
255 // is applied as a constant value over the adjacent end "frequency correction" | |
256 // regions. | |
257 // | |
258 // low_mean_start_bin_ high_mean_start_bin_ | |
259 // v v constant | |
260 // |----------------|--------|----------------|-------|----------------| | |
261 // constant ^ ^ | |
262 // low_mean_end_bin_ high_mean_end_bin_ | |
263 // | |
264 RTC_DCHECK_GT(low_mean_start_bin_, 0U); | |
265 RTC_DCHECK_LT(low_mean_start_bin_, low_mean_end_bin_); | |
266 RTC_DCHECK_LT(low_mean_end_bin_, high_mean_end_bin_); | 259 RTC_DCHECK_LT(low_mean_end_bin_, high_mean_end_bin_); |
267 RTC_DCHECK_LT(high_mean_start_bin_, high_mean_end_bin_); | 260 RTC_DCHECK_LT(high_mean_start_bin_, high_mean_end_bin_); |
268 RTC_DCHECK_LT(high_mean_end_bin_, kNumFreqBins - 1); | 261 RTC_DCHECK_LT(high_mean_end_bin_, kNumFreqBins - 1); |
269 } | 262 } |
270 | 263 |
271 | |
272 void NonlinearBeamformer::InitInterfAngles() { | 264 void NonlinearBeamformer::InitInterfAngles() { |
273 const float kAwayRadians = | |
274 std::min(static_cast<float>(M_PI), | |
275 std::max(kMinAwayRadians, kAwaySlope * static_cast<float>(M_PI) / | |
276 min_mic_spacing_)); | |
277 | |
278 interf_angles_radians_.clear(); | 265 interf_angles_radians_.clear(); |
279 // TODO(aluebs): When the target angle is settable, make sure the interferer | 266 const Point target_direction = AzimuthToPoint(target_angle_radians_); |
280 // scenarios aren't reflected over the target one for linear geometries. | 267 const Point clockwise_interf_direction = |
281 interf_angles_radians_.push_back(kTargetAngleRadians - kAwayRadians); | 268 AzimuthToPoint(target_angle_radians_ - away_radians_); |
282 interf_angles_radians_.push_back(kTargetAngleRadians + kAwayRadians); | 269 if (DotProduct(array_normal_, target_direction) * |
| 270 DotProduct(array_normal_, clockwise_interf_direction) >= |
| 271 0.f) { |
| 272 // The target and clockwise interferer are in the same half-plane defined |
| 273 // by the array. |
| 274 interf_angles_radians_.push_back(target_angle_radians_ - away_radians_); |
| 275 } else { |
| 276 // Otherwise, the interferer will begin reflecting back at the target. |
| 277 // Instead rotate it away 180 degrees. |
| 278 interf_angles_radians_.push_back(target_angle_radians_ - away_radians_ + |
| 279 M_PI); |
| 280 } |
| 281 const Point counterclock_interf_direction = |
| 282 AzimuthToPoint(target_angle_radians_ + away_radians_); |
| 283 if (DotProduct(array_normal_, target_direction) * |
| 284 DotProduct(array_normal_, counterclock_interf_direction) >= |
| 285 0.f) { |
| 286 // The target and counter-clockwise interferer are in the same half-plane |
| 287 // defined by the array. |
| 288 interf_angles_radians_.push_back(target_angle_radians_ + away_radians_); |
| 289 } else { |
| 290 // Otherwise, the interferer will begin reflecting back at the target. |
| 291 // Instead rotate it away 180 degrees. |
| 292 interf_angles_radians_.push_back(target_angle_radians_ + away_radians_ - |
| 293 M_PI); |
| 294 } |
283 } | 295 } |
284 | 296 |
285 void NonlinearBeamformer::InitDelaySumMasks() { | 297 void NonlinearBeamformer::InitDelaySumMasks() { |
286 for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) { | 298 for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) { |
287 delay_sum_masks_[f_ix].Resize(1, num_input_channels_); | 299 delay_sum_masks_[f_ix].Resize(1, num_input_channels_); |
288 CovarianceMatrixGenerator::PhaseAlignmentMasks(f_ix, | 300 CovarianceMatrixGenerator::PhaseAlignmentMasks( |
289 kFftSize, | 301 f_ix, kFftSize, sample_rate_hz_, kSpeedOfSoundMeterSeconds, |
290 sample_rate_hz_, | 302 array_geometry_, target_angle_radians_, &delay_sum_masks_[f_ix]); |
291 kSpeedOfSoundMeterSeconds, | |
292 array_geometry_, | |
293 kTargetAngleRadians, | |
294 &delay_sum_masks_[f_ix]); | |
295 | 303 |
296 complex_f norm_factor = sqrt( | 304 complex_f norm_factor = sqrt( |
297 ConjugateDotProduct(delay_sum_masks_[f_ix], delay_sum_masks_[f_ix])); | 305 ConjugateDotProduct(delay_sum_masks_[f_ix], delay_sum_masks_[f_ix])); |
298 delay_sum_masks_[f_ix].Scale(1.f / norm_factor); | 306 delay_sum_masks_[f_ix].Scale(1.f / norm_factor); |
299 normalized_delay_sum_masks_[f_ix].CopyFrom(delay_sum_masks_[f_ix]); | 307 normalized_delay_sum_masks_[f_ix].CopyFrom(delay_sum_masks_[f_ix]); |
300 normalized_delay_sum_masks_[f_ix].Scale(1.f / SumAbs( | 308 normalized_delay_sum_masks_[f_ix].Scale(1.f / SumAbs( |
301 normalized_delay_sum_masks_[f_ix])); | 309 normalized_delay_sum_masks_[f_ix])); |
302 } | 310 } |
303 } | 311 } |
304 | 312 |
305 void NonlinearBeamformer::InitTargetCovMats() { | 313 void NonlinearBeamformer::InitTargetCovMats() { |
306 for (size_t i = 0; i < kNumFreqBins; ++i) { | 314 for (size_t i = 0; i < kNumFreqBins; ++i) { |
307 target_cov_mats_[i].Resize(num_input_channels_, num_input_channels_); | 315 target_cov_mats_[i].Resize(num_input_channels_, num_input_channels_); |
308 TransposedConjugatedProduct(delay_sum_masks_[i], &target_cov_mats_[i]); | 316 TransposedConjugatedProduct(delay_sum_masks_[i], &target_cov_mats_[i]); |
309 } | 317 } |
310 } | 318 } |
311 | 319 |
| 320 void NonlinearBeamformer::InitDiffuseCovMats() { |
| 321 for (size_t i = 0; i < kNumFreqBins; ++i) { |
| 322 uniform_cov_mat_[i].Resize(num_input_channels_, num_input_channels_); |
| 323 CovarianceMatrixGenerator::UniformCovarianceMatrix( |
| 324 wave_numbers_[i], array_geometry_, &uniform_cov_mat_[i]); |
| 325 complex_f normalization_factor = uniform_cov_mat_[i].elements()[0][0]; |
| 326 uniform_cov_mat_[i].Scale(1.f / normalization_factor); |
| 327 uniform_cov_mat_[i].Scale(1 - kBalance); |
| 328 } |
| 329 } |
| 330 |
312 void NonlinearBeamformer::InitInterfCovMats() { | 331 void NonlinearBeamformer::InitInterfCovMats() { |
313 for (size_t i = 0; i < kNumFreqBins; ++i) { | 332 for (size_t i = 0; i < kNumFreqBins; ++i) { |
314 ComplexMatrixF uniform_cov_mat(num_input_channels_, num_input_channels_); | |
315 CovarianceMatrixGenerator::UniformCovarianceMatrix(wave_numbers_[i], | |
316 array_geometry_, | |
317 &uniform_cov_mat); | |
318 complex_f normalization_factor = uniform_cov_mat.elements()[0][0]; | |
319 uniform_cov_mat.Scale(1.f / normalization_factor); | |
320 uniform_cov_mat.Scale(1 - kBalance); | |
321 interf_cov_mats_[i].clear(); | 333 interf_cov_mats_[i].clear(); |
322 for (size_t j = 0; j < interf_angles_radians_.size(); ++j) { | 334 for (size_t j = 0; j < interf_angles_radians_.size(); ++j) { |
323 interf_cov_mats_[i].push_back(new ComplexMatrixF(num_input_channels_, | 335 interf_cov_mats_[i].push_back(new ComplexMatrixF(num_input_channels_, |
324 num_input_channels_)); | 336 num_input_channels_)); |
325 ComplexMatrixF angled_cov_mat(num_input_channels_, num_input_channels_); | 337 ComplexMatrixF angled_cov_mat(num_input_channels_, num_input_channels_); |
326 CovarianceMatrixGenerator::AngledCovarianceMatrix( | 338 CovarianceMatrixGenerator::AngledCovarianceMatrix( |
327 kSpeedOfSoundMeterSeconds, | 339 kSpeedOfSoundMeterSeconds, |
328 interf_angles_radians_[j], | 340 interf_angles_radians_[j], |
329 i, | 341 i, |
330 kFftSize, | 342 kFftSize, |
331 kNumFreqBins, | 343 kNumFreqBins, |
332 sample_rate_hz_, | 344 sample_rate_hz_, |
333 array_geometry_, | 345 array_geometry_, |
334 &angled_cov_mat); | 346 &angled_cov_mat); |
335 // Normalize matrices before averaging them. | 347 // Normalize matrices before averaging them. |
336 normalization_factor = angled_cov_mat.elements()[0][0]; | 348 complex_f normalization_factor = angled_cov_mat.elements()[0][0]; |
337 angled_cov_mat.Scale(1.f / normalization_factor); | 349 angled_cov_mat.Scale(1.f / normalization_factor); |
338 // Weighted average of matrices. | 350 // Weighted average of matrices. |
339 angled_cov_mat.Scale(kBalance); | 351 angled_cov_mat.Scale(kBalance); |
340 interf_cov_mats_[i][j]->Add(uniform_cov_mat, angled_cov_mat); | 352 interf_cov_mats_[i][j]->Add(uniform_cov_mat_[i], angled_cov_mat); |
341 } | 353 } |
342 } | 354 } |
343 } | 355 } |
| 356 |
| 357 void NonlinearBeamformer::NormalizeCovMats() { |
| 358 for (size_t i = 0; i < kNumFreqBins; ++i) { |
| 359 rxiws_[i] = Norm(target_cov_mats_[i], delay_sum_masks_[i]); |
| 360 rpsiws_[i].clear(); |
| 361 for (size_t j = 0; j < interf_angles_radians_.size(); ++j) { |
| 362 rpsiws_[i].push_back(Norm(*interf_cov_mats_[i][j], delay_sum_masks_[i])); |
| 363 } |
| 364 } |
| 365 } |
344 | 366 |
345 void NonlinearBeamformer::ProcessChunk(const ChannelBuffer<float>& input, | 367 void NonlinearBeamformer::ProcessChunk(const ChannelBuffer<float>& input, |
346 ChannelBuffer<float>* output) { | 368 ChannelBuffer<float>* output) { |
347 RTC_DCHECK_EQ(input.num_channels(), num_input_channels_); | 369 RTC_DCHECK_EQ(input.num_channels(), num_input_channels_); |
348 RTC_DCHECK_EQ(input.num_frames_per_band(), chunk_length_); | 370 RTC_DCHECK_EQ(input.num_frames_per_band(), chunk_length_); |
349 | 371 |
350 float old_high_pass_mask = high_pass_postfilter_mask_; | 372 float old_high_pass_mask = high_pass_postfilter_mask_; |
351 lapped_transform_->ProcessChunk(input.channels(0), output->channels(0)); | 373 lapped_transform_->ProcessChunk(input.channels(0), output->channels(0)); |
352 // Ramp up/down for smoothing. 1 mask per 10ms results in audible | 374 // Ramp up/down for smoothing. 1 mask per 10ms results in audible |
353 // discontinuities. | 375 // discontinuities. |
354 const float ramp_increment = | 376 const float ramp_increment = |
355 (high_pass_postfilter_mask_ - old_high_pass_mask) / | 377 (high_pass_postfilter_mask_ - old_high_pass_mask) / |
356 input.num_frames_per_band(); | 378 input.num_frames_per_band(); |
357 // Apply delay and sum and post-filter in the time domain. WARNING: only works | 379 // Apply the smoothed high-pass mask to the first channel of each band. |
358 // because delay-and-sum is not frequency dependent. | 380 // This can be done because the effct of the linear beamformer is negligible |
| 381 // compared to the post-filter. |
359 for (size_t i = 1; i < input.num_bands(); ++i) { | 382 for (size_t i = 1; i < input.num_bands(); ++i) { |
360 float smoothed_mask = old_high_pass_mask; | 383 float smoothed_mask = old_high_pass_mask; |
361 for (size_t j = 0; j < input.num_frames_per_band(); ++j) { | 384 for (size_t j = 0; j < input.num_frames_per_band(); ++j) { |
362 smoothed_mask += ramp_increment; | 385 smoothed_mask += ramp_increment; |
363 | 386 output->channels(i)[0][j] = input.channels(i)[0][j] * smoothed_mask; |
364 // Applying the delay and sum (at zero degrees, this is equivalent to | |
365 // averaging). | |
366 float sum = 0.f; | |
367 for (int k = 0; k < input.num_channels(); ++k) { | |
368 sum += input.channels(i)[k][j]; | |
369 } | |
370 output->channels(i)[0][j] = sum / input.num_channels() * smoothed_mask; | |
371 } | 387 } |
372 } | 388 } |
373 } | 389 } |
374 | 390 |
| 391 void NonlinearBeamformer::AimAt(const SphericalPointf& target_direction) { |
| 392 target_angle_radians_ = target_direction.azimuth(); |
| 393 InitHighFrequencyCorrectionRanges(); |
| 394 InitInterfAngles(); |
| 395 InitDelaySumMasks(); |
| 396 InitTargetCovMats(); |
| 397 InitInterfCovMats(); |
| 398 NormalizeCovMats(); |
| 399 } |
| 400 |
375 bool NonlinearBeamformer::IsInBeam(const SphericalPointf& spherical_point) { | 401 bool NonlinearBeamformer::IsInBeam(const SphericalPointf& spherical_point) { |
376 // If more than half-beamwidth degrees away from the beam's center, | 402 // If more than half-beamwidth degrees away from the beam's center, |
377 // you are out of the beam. | 403 // you are out of the beam. |
378 return fabs(spherical_point.azimuth() - kTargetAngleRadians) < | 404 return fabs(spherical_point.azimuth() - target_angle_radians_) < |
379 kHalfBeamWidthRadians; | 405 kHalfBeamWidthRadians; |
380 } | 406 } |
381 | 407 |
382 void NonlinearBeamformer::ProcessAudioBlock(const complex_f* const* input, | 408 void NonlinearBeamformer::ProcessAudioBlock(const complex_f* const* input, |
383 int num_input_channels, | 409 int num_input_channels, |
384 size_t num_freq_bins, | 410 size_t num_freq_bins, |
385 int num_output_channels, | 411 int num_output_channels, |
386 complex_f* const* output) { | 412 complex_f* const* output) { |
387 RTC_CHECK_EQ(num_freq_bins, kNumFreqBins); | 413 RTC_CHECK_EQ(num_freq_bins, kNumFreqBins); |
388 RTC_CHECK_EQ(num_input_channels, num_input_channels_); | 414 RTC_CHECK_EQ(num_input_channels, num_input_channels_); |
(...skipping 144 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
533 new_mask_ + high_mean_end_bin_ + 1); | 559 new_mask_ + high_mean_end_bin_ + 1); |
534 if (new_mask_[quantile] > kMaskTargetThreshold) { | 560 if (new_mask_[quantile] > kMaskTargetThreshold) { |
535 is_target_present_ = true; | 561 is_target_present_ = true; |
536 interference_blocks_count_ = 0; | 562 interference_blocks_count_ = 0; |
537 } else { | 563 } else { |
538 is_target_present_ = interference_blocks_count_++ < hold_target_blocks_; | 564 is_target_present_ = interference_blocks_count_++ < hold_target_blocks_; |
539 } | 565 } |
540 } | 566 } |
541 | 567 |
542 } // namespace webrtc | 568 } // namespace webrtc |
OLD | NEW |