| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| (...skipping 18 matching lines...) Expand all Loading... |
| 29 | 29 |
| 30 const float kSpeedOfSoundMeterSeconds = 343; | 30 const float kSpeedOfSoundMeterSeconds = 343; |
| 31 | 31 |
| 32 // For both target and interference angles, PI / 2 is perpendicular to the | 32 // For both target and interference angles, PI / 2 is perpendicular to the |
| 33 // microphone array, facing forwards. The positive direction goes | 33 // microphone array, facing forwards. The positive direction goes |
| 34 // counterclockwise. | 34 // counterclockwise. |
| 35 // The angle at which we amplify sound. | 35 // The angle at which we amplify sound. |
| 36 // TODO(aluebs): Make the target angle dynamically settable. | 36 // TODO(aluebs): Make the target angle dynamically settable. |
| 37 const float kTargetAngleRadians = static_cast<float>(M_PI) / 2.f; | 37 const float kTargetAngleRadians = static_cast<float>(M_PI) / 2.f; |
| 38 | 38 |
| 39 // The minimum separation in radians between the target direction and an |
| 40 // interferer scenario. |
| 41 const float kMinAwayRadians = 0.2f; |
| 42 |
| 43 // The separation between the target direction and the closest interferer |
| 44 // scenario is proportional to this constant. |
| 45 const float kAwaySlope = 0.008f; |
| 46 |
| 39 // When calculating the interference covariance matrix, this is the weight for | 47 // When calculating the interference covariance matrix, this is the weight for |
| 40 // the weighted average between the uniform covariance matrix and the angled | 48 // the weighted average between the uniform covariance matrix and the angled |
| 41 // covariance matrix. | 49 // covariance matrix. |
| 42 // Rpsi = Rpsi_angled * kBalance + Rpsi_uniform * (1 - kBalance) | 50 // Rpsi = Rpsi_angled * kBalance + Rpsi_uniform * (1 - kBalance) |
| 43 const float kBalance = 0.95f; | 51 const float kBalance = 0.95f; |
| 44 | 52 |
| 45 const float kHalfBeamWidthRadians = static_cast<float>(M_PI) * 20.f / 180.f; | 53 const float kHalfBeamWidthRadians = static_cast<float>(M_PI) * 20.f / 180.f; |
| 46 | 54 |
| 47 // Alpha coefficients for mask smoothing. | 55 // Alpha coefficients for mask smoothing. |
| 48 const float kMaskTimeSmoothAlpha = 0.2f; | 56 const float kMaskTimeSmoothAlpha = 0.2f; |
| (...skipping 133 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 182 return array_geometry; | 190 return array_geometry; |
| 183 } | 191 } |
| 184 | 192 |
| 185 } // namespace | 193 } // namespace |
| 186 | 194 |
| 187 // static | 195 // static |
| 188 const size_t NonlinearBeamformer::kNumFreqBins; | 196 const size_t NonlinearBeamformer::kNumFreqBins; |
| 189 | 197 |
| 190 NonlinearBeamformer::NonlinearBeamformer( | 198 NonlinearBeamformer::NonlinearBeamformer( |
| 191 const std::vector<Point>& array_geometry) | 199 const std::vector<Point>& array_geometry) |
| 192 : num_input_channels_(array_geometry.size()), | 200 : num_input_channels_(array_geometry.size()), |
| 193 array_geometry_(GetCenteredArray(array_geometry)) { | 201 array_geometry_(GetCenteredArray(array_geometry)), |
| 202 min_mic_spacing_(GetMinimumSpacing(array_geometry)) { |
| 194 WindowGenerator::KaiserBesselDerived(kKbdAlpha, kFftSize, window_); | 203 WindowGenerator::KaiserBesselDerived(kKbdAlpha, kFftSize, window_); |
| 195 } | 204 } |
| 196 | 205 |
| 197 void NonlinearBeamformer::Initialize(int chunk_size_ms, int sample_rate_hz) { | 206 void NonlinearBeamformer::Initialize(int chunk_size_ms, int sample_rate_hz) { |
| 198 chunk_length_ = | 207 chunk_length_ = |
| 199 static_cast<size_t>(sample_rate_hz / (1000.f / chunk_size_ms)); | 208 static_cast<size_t>(sample_rate_hz / (1000.f / chunk_size_ms)); |
| 200 sample_rate_hz_ = sample_rate_hz; | 209 sample_rate_hz_ = sample_rate_hz; |
| 201 low_mean_start_bin_ = Round(kLowMeanStartHz * kFftSize / sample_rate_hz_); | 210 low_mean_start_bin_ = Round(kLowMeanStartHz * kFftSize / sample_rate_hz_); |
| 202 low_mean_end_bin_ = Round(kLowMeanEndHz * kFftSize / sample_rate_hz_); | 211 low_mean_end_bin_ = Round(kLowMeanEndHz * kFftSize / sample_rate_hz_); |
| 203 high_mean_start_bin_ = Round(kHighMeanStartHz * kFftSize / sample_rate_hz_); | 212 high_mean_start_bin_ = Round(kHighMeanStartHz * kFftSize / sample_rate_hz_); |
| (...skipping 42 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 246 for (size_t i = 0; i < kNumFreqBins; ++i) { | 255 for (size_t i = 0; i < kNumFreqBins; ++i) { |
| 247 rxiws_[i] = Norm(target_cov_mats_[i], delay_sum_masks_[i]); | 256 rxiws_[i] = Norm(target_cov_mats_[i], delay_sum_masks_[i]); |
| 248 rpsiws_[i].clear(); | 257 rpsiws_[i].clear(); |
| 249 for (size_t j = 0; j < interf_angles_radians_.size(); ++j) { | 258 for (size_t j = 0; j < interf_angles_radians_.size(); ++j) { |
| 250 rpsiws_[i].push_back(Norm(*interf_cov_mats_[i][j], delay_sum_masks_[i])); | 259 rpsiws_[i].push_back(Norm(*interf_cov_mats_[i][j], delay_sum_masks_[i])); |
| 251 } | 260 } |
| 252 } | 261 } |
| 253 } | 262 } |
| 254 | 263 |
| 255 void NonlinearBeamformer::InitInterfAngles() { | 264 void NonlinearBeamformer::InitInterfAngles() { |
| 256 // TODO(aluebs): Make kAwayRadians dependent on the mic spacing. | 265 const float kAwayRadians = |
| 257 const float kAwayRadians = 0.5; | 266 std::min(static_cast<float>(M_PI), |
| 267 std::max(kMinAwayRadians, kAwaySlope * static_cast<float>(M_PI) / |
| 268 min_mic_spacing_)); |
| 258 | 269 |
| 259 interf_angles_radians_.clear(); | 270 interf_angles_radians_.clear(); |
| 260 // TODO(aluebs): When the target angle is settable, make sure the interferer | 271 // TODO(aluebs): When the target angle is settable, make sure the interferer |
| 261 // scenarios aren't reflected over the target one for linear geometries. | 272 // scenarios aren't reflected over the target one for linear geometries. |
| 262 interf_angles_radians_.push_back(kTargetAngleRadians - kAwayRadians); | 273 interf_angles_radians_.push_back(kTargetAngleRadians - kAwayRadians); |
| 263 interf_angles_radians_.push_back(kTargetAngleRadians + kAwayRadians); | 274 interf_angles_radians_.push_back(kTargetAngleRadians + kAwayRadians); |
| 264 } | 275 } |
| 265 | 276 |
| 266 void NonlinearBeamformer::InitDelaySumMasks() { | 277 void NonlinearBeamformer::InitDelaySumMasks() { |
| 267 for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) { | 278 for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) { |
| (...skipping 246 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 514 new_mask_ + high_mean_end_bin_ + 1); | 525 new_mask_ + high_mean_end_bin_ + 1); |
| 515 if (new_mask_[quantile] > kMaskTargetThreshold) { | 526 if (new_mask_[quantile] > kMaskTargetThreshold) { |
| 516 is_target_present_ = true; | 527 is_target_present_ = true; |
| 517 interference_blocks_count_ = 0; | 528 interference_blocks_count_ = 0; |
| 518 } else { | 529 } else { |
| 519 is_target_present_ = interference_blocks_count_++ < hold_target_blocks_; | 530 is_target_present_ = interference_blocks_count_++ < hold_target_blocks_; |
| 520 } | 531 } |
| 521 } | 532 } |
| 522 | 533 |
| 523 } // namespace webrtc | 534 } // namespace webrtc |
| OLD | NEW |