| Index: webrtc/modules/remote_bitrate_estimator/overuse_estimator.cc
|
| diff --git a/webrtc/modules/remote_bitrate_estimator/overuse_estimator.cc b/webrtc/modules/remote_bitrate_estimator/overuse_estimator.cc
|
| index 4be7b7493b845945937765979797c250e53f229d..a9d3bfe609d2c69b05a8ae4f0e5393ae6a3404b0 100644
|
| --- a/webrtc/modules/remote_bitrate_estimator/overuse_estimator.cc
|
| +++ b/webrtc/modules/remote_bitrate_estimator/overuse_estimator.cc
|
| @@ -16,6 +16,7 @@
|
| #include <stdlib.h>
|
| #include <string.h>
|
|
|
| +#include "webrtc/base/checks.h"
|
| #include "webrtc/modules/remote_bitrate_estimator/include/bwe_defines.h"
|
| #include "webrtc/system_wrappers/include/logging.h"
|
|
|
| @@ -24,33 +25,25 @@ namespace webrtc {
|
| enum { kMinFramePeriodHistoryLength = 60 };
|
| enum { kDeltaCounterMax = 1000 };
|
|
|
| -OveruseEstimator::OveruseEstimator(const OverUseDetectorOptions& options)
|
| - : options_(options),
|
| - num_of_deltas_(0),
|
| - slope_(options_.initial_slope),
|
| - offset_(options_.initial_offset),
|
| - prev_offset_(options_.initial_offset),
|
| - E_(),
|
| - process_noise_(),
|
| - avg_noise_(options_.initial_avg_noise),
|
| - var_noise_(options_.initial_var_noise),
|
| - ts_delta_hist_() {
|
| - memcpy(E_, options_.initial_e, sizeof(E_));
|
| - memcpy(process_noise_, options_.initial_process_noise,
|
| - sizeof(process_noise_));
|
| -}
|
| +OveruseEstimator::OveruseEstimator()
|
| + : num_of_deltas_(0),
|
| + offset_(0),
|
| + prev_offset_(offset_),
|
| + e_(0.1),
|
| + process_noise_(1e-2),
|
| + avg_noise_(0),
|
| + var_noise_(50),
|
| + send_delta_history_() {}
|
|
|
| OveruseEstimator::~OveruseEstimator() {
|
| - ts_delta_hist_.clear();
|
| + send_delta_history_.clear();
|
| }
|
|
|
| -void OveruseEstimator::Update(int64_t t_delta,
|
| - double ts_delta,
|
| - int size_delta,
|
| +void OveruseEstimator::Update(double recv_delta_ms,
|
| + double send_delta_ms,
|
| BandwidthUsage current_hypothesis) {
|
| - const double min_frame_period = UpdateMinFramePeriod(ts_delta);
|
| - const double t_ts_delta = t_delta - ts_delta;
|
| - double fs_delta = size_delta;
|
| + const double min_frame_period = UpdateMinFramePeriod(send_delta_ms);
|
| + const double delta_ms = recv_delta_ms - send_delta_ms;
|
|
|
| ++num_of_deltas_;
|
| if (num_of_deltas_ > kDeltaCounterMax) {
|
| @@ -58,19 +51,14 @@ void OveruseEstimator::Update(int64_t t_delta,
|
| }
|
|
|
| // Update the Kalman filter.
|
| - E_[0][0] += process_noise_[0];
|
| - E_[1][1] += process_noise_[1];
|
| + e_ += process_noise_;
|
|
|
| if ((current_hypothesis == kBwOverusing && offset_ < prev_offset_) ||
|
| (current_hypothesis == kBwUnderusing && offset_ > prev_offset_)) {
|
| - E_[1][1] += 10 * process_noise_[1];
|
| + e_ += 10 * process_noise_;
|
| }
|
|
|
| - const double h[2] = {fs_delta, 1.0};
|
| - const double Eh[2] = {E_[0][0]*h[0] + E_[0][1]*h[1],
|
| - E_[1][0]*h[0] + E_[1][1]*h[1]};
|
| -
|
| - const double residual = t_ts_delta - slope_*h[0] - offset_;
|
| + const double residual = delta_ms - offset_;
|
|
|
| const bool in_stable_state = (current_hypothesis == kBwNormal);
|
| const double max_residual = 3.0 * sqrt(var_noise_);
|
| @@ -82,66 +70,47 @@ void OveruseEstimator::Update(int64_t t_delta,
|
| UpdateNoiseEstimate(residual < 0 ? -max_residual : max_residual,
|
| min_frame_period, in_stable_state);
|
| }
|
| -
|
| - const double denom = var_noise_ + h[0]*Eh[0] + h[1]*Eh[1];
|
| -
|
| - const double K[2] = {Eh[0] / denom,
|
| - Eh[1] / denom};
|
| -
|
| - const double IKh[2][2] = {{1.0 - K[0]*h[0], -K[0]*h[1]},
|
| - {-K[1]*h[0], 1.0 - K[1]*h[1]}};
|
| - const double e00 = E_[0][0];
|
| - const double e01 = E_[0][1];
|
| + const double k = e_ / (var_noise_ + e_);
|
|
|
| // Update state.
|
| - E_[0][0] = e00 * IKh[0][0] + E_[1][0] * IKh[0][1];
|
| - E_[0][1] = e01 * IKh[0][0] + E_[1][1] * IKh[0][1];
|
| - E_[1][0] = e00 * IKh[1][0] + E_[1][0] * IKh[1][1];
|
| - E_[1][1] = e01 * IKh[1][0] + E_[1][1] * IKh[1][1];
|
| -
|
| - // The covariance matrix must be positive semi-definite.
|
| - bool positive_semi_definite = E_[0][0] + E_[1][1] >= 0 &&
|
| - E_[0][0] * E_[1][1] - E_[0][1] * E_[1][0] >= 0 && E_[0][0] >= 0;
|
| - assert(positive_semi_definite);
|
| - if (!positive_semi_definite) {
|
| - LOG(LS_ERROR) << "The over-use estimator's covariance matrix is no longer "
|
| - "semi-definite.";
|
| - }
|
| + e_ = e_ * (1.0 - k);
|
| +
|
| + // The covariance matrix must be positive.
|
| + RTC_DCHECK(e_ >= 0.0);
|
| + if (e_ < 0)
|
| + LOG(LS_ERROR) << "The over-use estimator's covariance is negative!";
|
|
|
| - slope_ = slope_ + K[0] * residual;
|
| - prev_offset_ = offset_;
|
| - offset_ = offset_ + K[1] * residual;
|
| + offset_ = offset_ + k * residual;
|
| }
|
|
|
| -double OveruseEstimator::UpdateMinFramePeriod(double ts_delta) {
|
| - double min_frame_period = ts_delta;
|
| - if (ts_delta_hist_.size() >= kMinFramePeriodHistoryLength) {
|
| - ts_delta_hist_.pop_front();
|
| +double OveruseEstimator::UpdateMinFramePeriod(double send_delta_ms) {
|
| + double min_frame_period = send_delta_ms;
|
| + if (send_delta_history_.size() >= kMinFramePeriodHistoryLength) {
|
| + send_delta_history_.pop_front();
|
| }
|
| - std::list<double>::iterator it = ts_delta_hist_.begin();
|
| - for (; it != ts_delta_hist_.end(); it++) {
|
| - min_frame_period = std::min(*it, min_frame_period);
|
| + for (double delta_ms : send_delta_history_) {
|
| + min_frame_period = std::min(delta_ms, min_frame_period);
|
| }
|
| - ts_delta_hist_.push_back(ts_delta);
|
| + send_delta_history_.push_back(send_delta_ms);
|
| return min_frame_period;
|
| }
|
|
|
| void OveruseEstimator::UpdateNoiseEstimate(double residual,
|
| - double ts_delta,
|
| + double send_delta_ms,
|
| bool stable_state) {
|
| if (!stable_state) {
|
| return;
|
| }
|
| // Faster filter during startup to faster adapt to the jitter level
|
| // of the network. |alpha| is tuned for 30 frames per second, but is scaled
|
| - // according to |ts_delta|.
|
| + // according to |send_delta_ms|.
|
| double alpha = 0.01;
|
| if (num_of_deltas_ > 10*30) {
|
| alpha = 0.002;
|
| }
|
| // Only update the noise estimate if we're not over-using. |beta| is a
|
| // function of alpha and the time delta since the previous update.
|
| - const double beta = pow(1 - alpha, ts_delta * 30.0 / 1000.0);
|
| + const double beta = pow(1 - alpha, send_delta_ms * 30.0 / 1000.0);
|
| avg_noise_ = beta * avg_noise_
|
| + (1 - beta) * residual;
|
| var_noise_ = beta * var_noise_
|
|
|