Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1023)

Unified Diff: talk/session/media/planarfunctions_unittest.cc

Issue 1362503003: Use suffixed {uint,int}{8,16,32,64}_t types. (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: rebase + revert basictypes.h (to be landed separately just in case of a revert due to unexpected us… Created 5 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « talk/session/media/mediasession_unittest.cc ('k') | talk/session/media/srtpfilter.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: talk/session/media/planarfunctions_unittest.cc
diff --git a/talk/session/media/planarfunctions_unittest.cc b/talk/session/media/planarfunctions_unittest.cc
index e7a666e0b42dc53e246f86c1bef85be0962696d7..886aa590bac4114f2cdb9b457a2d2565e06e641b 100644
--- a/talk/session/media/planarfunctions_unittest.cc
+++ b/talk/session/media/planarfunctions_unittest.cc
@@ -76,21 +76,21 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
// Initialize the color band for testing.
void InitializeColorBand() {
- testing_color_y_.reset(new uint8[kTestingColorNum]);
- testing_color_u_.reset(new uint8[kTestingColorNum]);
- testing_color_v_.reset(new uint8[kTestingColorNum]);
- testing_color_r_.reset(new uint8[kTestingColorNum]);
- testing_color_g_.reset(new uint8[kTestingColorNum]);
- testing_color_b_.reset(new uint8[kTestingColorNum]);
+ testing_color_y_.reset(new uint8_t[kTestingColorNum]);
+ testing_color_u_.reset(new uint8_t[kTestingColorNum]);
+ testing_color_v_.reset(new uint8_t[kTestingColorNum]);
+ testing_color_r_.reset(new uint8_t[kTestingColorNum]);
+ testing_color_g_.reset(new uint8_t[kTestingColorNum]);
+ testing_color_b_.reset(new uint8_t[kTestingColorNum]);
int color_counter = 0;
for (int i = 0; i < kTestingColorChannelResolution; ++i) {
- uint8 color_r = static_cast<uint8>(
- i * 255 / (kTestingColorChannelResolution - 1));
+ uint8_t color_r =
+ static_cast<uint8_t>(i * 255 / (kTestingColorChannelResolution - 1));
for (int j = 0; j < kTestingColorChannelResolution; ++j) {
- uint8 color_g = static_cast<uint8>(
+ uint8_t color_g = static_cast<uint8_t>(
j * 255 / (kTestingColorChannelResolution - 1));
for (int k = 0; k < kTestingColorChannelResolution; ++k) {
- uint8 color_b = static_cast<uint8>(
+ uint8_t color_b = static_cast<uint8_t>(
k * 255 / (kTestingColorChannelResolution - 1));
testing_color_r_[color_counter] = color_r;
testing_color_g_[color_counter] = color_g;
@@ -107,16 +107,20 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
}
// Simple and slow RGB->YUV conversion. From NTSC standard, c/o Wikipedia.
// (from lmivideoframe_unittest.cc)
- void ConvertRgbPixel(uint8 r, uint8 g, uint8 b,
- uint8* y, uint8* u, uint8* v) {
+ void ConvertRgbPixel(uint8_t r,
+ uint8_t g,
+ uint8_t b,
+ uint8_t* y,
+ uint8_t* u,
+ uint8_t* v) {
*y = ClampUint8(.257 * r + .504 * g + .098 * b + 16);
*u = ClampUint8(-.148 * r - .291 * g + .439 * b + 128);
*v = ClampUint8(.439 * r - .368 * g - .071 * b + 128);
}
- uint8 ClampUint8(double value) {
+ uint8_t ClampUint8(double value) {
value = std::max(0., std::min(255., value));
- uint8 uint8_value = static_cast<uint8>(value);
+ uint8_t uint8_value = static_cast<uint8_t>(value);
return uint8_value;
}
@@ -127,11 +131,13 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
// c2 c3 c4 c5 ...
// ...............
// The size of each chrome block is (block_size) x (block_size).
- uint8* CreateFakeYuvTestingImage(int height, int width, int block_size,
- libyuv::JpegSubsamplingType subsample_type,
- uint8* &y_pointer,
- uint8* &u_pointer,
- uint8* &v_pointer) {
+ uint8_t* CreateFakeYuvTestingImage(int height,
+ int width,
+ int block_size,
+ libyuv::JpegSubsamplingType subsample_type,
+ uint8_t*& y_pointer,
+ uint8_t*& u_pointer,
+ uint8_t*& v_pointer) {
if (height <= 0 || width <= 0 || block_size <= 0) { return NULL; }
int y_size = height * width;
int u_size, v_size;
@@ -156,13 +162,13 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
return NULL;
break;
}
- uint8* image_pointer = new uint8[y_size + u_size + v_size + kAlignment];
+ uint8_t* image_pointer = new uint8_t[y_size + u_size + v_size + kAlignment];
y_pointer = ALIGNP(image_pointer, kAlignment);
u_pointer = ALIGNP(&image_pointer[y_size], kAlignment);
v_pointer = ALIGNP(&image_pointer[y_size + u_size], kAlignment);
- uint8* current_y_pointer = y_pointer;
- uint8* current_u_pointer = u_pointer;
- uint8* current_v_pointer = v_pointer;
+ uint8_t* current_y_pointer = y_pointer;
+ uint8_t* current_u_pointer = u_pointer;
+ uint8_t* current_v_pointer = v_pointer;
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
int color = ((i / block_size) + (j / block_size)) % kTestingColorNum;
@@ -184,9 +190,11 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
// c2 c3 c4 c5 ...
// ...............
// The size of each chrome block is (block_size) x (block_size).
- uint8* CreateFakeInterleaveYuvTestingImage(
- int height, int width, int block_size,
- uint8* &yuv_pointer, FourCC fourcc_type) {
+ uint8_t* CreateFakeInterleaveYuvTestingImage(int height,
+ int width,
+ int block_size,
+ uint8_t*& yuv_pointer,
+ FourCC fourcc_type) {
if (height <= 0 || width <= 0 || block_size <= 0) { return NULL; }
if (fourcc_type != FOURCC_YUY2 && fourcc_type != FOURCC_UYVY) {
LOG(LS_ERROR) << "Format " << static_cast<int>(fourcc_type)
@@ -196,9 +204,9 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
// Regularize the width of the output to be even.
int awidth = (width + 1) & ~1;
- uint8* image_pointer = new uint8[2 * height * awidth + kAlignment];
+ uint8_t* image_pointer = new uint8_t[2 * height * awidth + kAlignment];
yuv_pointer = ALIGNP(image_pointer, kAlignment);
- uint8* current_yuv_pointer = yuv_pointer;
+ uint8_t* current_yuv_pointer = yuv_pointer;
switch (fourcc_type) {
case FOURCC_YUY2: {
for (int j = 0; j < height; ++j) {
@@ -209,13 +217,15 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
kTestingColorNum;
current_yuv_pointer[0] = testing_color_y_[color1];
if (i < width) {
- current_yuv_pointer[1] = static_cast<uint8>(
- (static_cast<uint32>(testing_color_u_[color1]) +
- static_cast<uint32>(testing_color_u_[color2])) / 2);
+ current_yuv_pointer[1] = static_cast<uint8_t>(
+ (static_cast<uint32_t>(testing_color_u_[color1]) +
+ static_cast<uint32_t>(testing_color_u_[color2])) /
+ 2);
current_yuv_pointer[2] = testing_color_y_[color2];
- current_yuv_pointer[3] = static_cast<uint8>(
- (static_cast<uint32>(testing_color_v_[color1]) +
- static_cast<uint32>(testing_color_v_[color2])) / 2);
+ current_yuv_pointer[3] = static_cast<uint8_t>(
+ (static_cast<uint32_t>(testing_color_v_[color1]) +
+ static_cast<uint32_t>(testing_color_v_[color2])) /
+ 2);
} else {
current_yuv_pointer[1] = testing_color_u_[color1];
current_yuv_pointer[2] = 0;
@@ -233,13 +243,15 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
int color2 = (((i + 1) / block_size) + (j / block_size)) %
kTestingColorNum;
if (i < width) {
- current_yuv_pointer[0] = static_cast<uint8>(
- (static_cast<uint32>(testing_color_u_[color1]) +
- static_cast<uint32>(testing_color_u_[color2])) / 2);
+ current_yuv_pointer[0] = static_cast<uint8_t>(
+ (static_cast<uint32_t>(testing_color_u_[color1]) +
+ static_cast<uint32_t>(testing_color_u_[color2])) /
+ 2);
current_yuv_pointer[1] = testing_color_y_[color1];
- current_yuv_pointer[2] = static_cast<uint8>(
- (static_cast<uint32>(testing_color_v_[color1]) +
- static_cast<uint32>(testing_color_v_[color2])) / 2);
+ current_yuv_pointer[2] = static_cast<uint8_t>(
+ (static_cast<uint32_t>(testing_color_v_[color1]) +
+ static_cast<uint32_t>(testing_color_v_[color2])) /
+ 2);
current_yuv_pointer[3] = testing_color_y_[color2];
} else {
current_yuv_pointer[0] = testing_color_u_[color1];
@@ -263,16 +275,20 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
// c2 c3 c4 c5 ...
// ...............
// The size of each chrome block is (block_size) x (block_size).
- uint8* CreateFakeNV12TestingImage(int height, int width, int block_size,
- uint8* &y_pointer, uint8* &uv_pointer) {
+ uint8_t* CreateFakeNV12TestingImage(int height,
+ int width,
+ int block_size,
+ uint8_t*& y_pointer,
+ uint8_t*& uv_pointer) {
if (height <= 0 || width <= 0 || block_size <= 0) { return NULL; }
- uint8* image_pointer = new uint8[height * width +
- ((height + 1) / 2) * ((width + 1) / 2) * 2 + kAlignment];
+ uint8_t* image_pointer =
+ new uint8_t[height * width +
+ ((height + 1) / 2) * ((width + 1) / 2) * 2 + kAlignment];
y_pointer = ALIGNP(image_pointer, kAlignment);
uv_pointer = y_pointer + height * width;
- uint8* current_uv_pointer = uv_pointer;
- uint8* current_y_pointer = y_pointer;
+ uint8_t* current_uv_pointer = uv_pointer;
+ uint8_t* current_y_pointer = y_pointer;
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
int color = ((i / block_size) + (j / block_size)) %
@@ -299,14 +315,17 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
// c2 c3 c4 c5 ...
// ...............
// The size of each chrome block is (block_size) x (block_size).
- uint8* CreateFakeM420TestingImage(
- int height, int width, int block_size, uint8* &m420_pointer) {
+ uint8_t* CreateFakeM420TestingImage(int height,
+ int width,
+ int block_size,
+ uint8_t*& m420_pointer) {
if (height <= 0 || width <= 0 || block_size <= 0) { return NULL; }
- uint8* image_pointer = new uint8[height * width +
- ((height + 1) / 2) * ((width + 1) / 2) * 2 + kAlignment];
+ uint8_t* image_pointer =
+ new uint8_t[height * width +
+ ((height + 1) / 2) * ((width + 1) / 2) * 2 + kAlignment];
m420_pointer = ALIGNP(image_pointer, kAlignment);
- uint8* current_m420_pointer = m420_pointer;
+ uint8_t* current_m420_pointer = m420_pointer;
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
int color = ((i / block_size) + (j / block_size)) %
@@ -332,22 +351,25 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
// c2 c3 c4 c5 ...
// ...............
// The size of each chrome block is (block_size) x (block_size).
- uint8* CreateFakeArgbTestingImage(int height, int width, int block_size,
- uint8* &argb_pointer, FourCC fourcc_type) {
+ uint8_t* CreateFakeArgbTestingImage(int height,
+ int width,
+ int block_size,
+ uint8_t*& argb_pointer,
+ FourCC fourcc_type) {
if (height <= 0 || width <= 0 || block_size <= 0) { return NULL; }
- uint8* image_pointer = NULL;
+ uint8_t* image_pointer = NULL;
if (fourcc_type == FOURCC_ABGR || fourcc_type == FOURCC_BGRA ||
fourcc_type == FOURCC_ARGB) {
- image_pointer = new uint8[height * width * 4 + kAlignment];
+ image_pointer = new uint8_t[height * width * 4 + kAlignment];
} else if (fourcc_type == FOURCC_RAW || fourcc_type == FOURCC_24BG) {
- image_pointer = new uint8[height * width * 3 + kAlignment];
+ image_pointer = new uint8_t[height * width * 3 + kAlignment];
} else {
LOG(LS_ERROR) << "Format " << static_cast<int>(fourcc_type)
<< " is not supported.";
return NULL;
}
argb_pointer = ALIGNP(image_pointer, kAlignment);
- uint8* current_pointer = argb_pointer;
+ uint8_t* current_pointer = argb_pointer;
switch (fourcc_type) {
case FOURCC_ARGB: {
for (int j = 0; j < height; ++j) {
@@ -422,8 +444,10 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
// Check if two memory chunks are equal.
// (tolerate MSE errors within a threshold).
- static bool IsMemoryEqual(const uint8* ibuf, const uint8* obuf,
- int osize, double average_error) {
+ static bool IsMemoryEqual(const uint8_t* ibuf,
+ const uint8_t* obuf,
+ int osize,
+ double average_error) {
double sse = cricket::ComputeSumSquareError(ibuf, obuf, osize);
double error = sse / osize; // Mean Squared Error.
double PSNR = cricket::ComputePSNR(sse, osize);
@@ -433,7 +457,7 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
}
// Returns the index of the first differing byte. Easier to debug than memcmp.
- static int FindDiff(const uint8* buf1, const uint8* buf2, int len) {
+ static int FindDiff(const uint8_t* buf1, const uint8_t* buf2, int len) {
int i = 0;
while (i < len && buf1[i] == buf2[i]) {
i++;
@@ -442,12 +466,12 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
}
// Dump the result image (ARGB format).
- void DumpArgbImage(const uint8* obuf, int width, int height) {
+ void DumpArgbImage(const uint8_t* obuf, int width, int height) {
DumpPlanarArgbTestImage(GetTestName(), obuf, width, height);
}
// Dump the result image (YUV420 format).
- void DumpYuvImage(const uint8* obuf, int width, int height) {
+ void DumpYuvImage(const uint8_t* obuf, int width, int height) {
DumpPlanarYuvTestImage(GetTestName(), obuf, width, height);
}
@@ -462,16 +486,18 @@ class PlanarFunctionsTest : public testing::TestWithParam<int> {
int repeat_;
// Y, U, V and R, G, B channels of testing colors.
- rtc::scoped_ptr<uint8[]> testing_color_y_;
- rtc::scoped_ptr<uint8[]> testing_color_u_;
- rtc::scoped_ptr<uint8[]> testing_color_v_;
- rtc::scoped_ptr<uint8[]> testing_color_r_;
- rtc::scoped_ptr<uint8[]> testing_color_g_;
- rtc::scoped_ptr<uint8[]> testing_color_b_;
+ rtc::scoped_ptr<uint8_t[]> testing_color_y_;
+ rtc::scoped_ptr<uint8_t[]> testing_color_u_;
+ rtc::scoped_ptr<uint8_t[]> testing_color_v_;
+ rtc::scoped_ptr<uint8_t[]> testing_color_r_;
+ rtc::scoped_ptr<uint8_t[]> testing_color_g_;
+ rtc::scoped_ptr<uint8_t[]> testing_color_b_;
};
TEST_F(PlanarFunctionsTest, I420Copy) {
- uint8 *y_pointer = NULL, *u_pointer = NULL, *v_pointer = NULL;
+ uint8_t* y_pointer = nullptr;
+ uint8_t* u_pointer = nullptr;
+ uint8_t* v_pointer = nullptr;
int y_pitch = kWidth;
int u_pitch = (kWidth + 1) >> 1;
int v_pitch = (kWidth + 1) >> 1;
@@ -479,16 +505,15 @@ TEST_F(PlanarFunctionsTest, I420Copy) {
int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1);
int block_size = 3;
// Generate a fake input image.
- rtc::scoped_ptr<uint8[]> yuv_input(
- CreateFakeYuvTestingImage(kHeight, kWidth, block_size,
- libyuv::kJpegYuv420,
- y_pointer, u_pointer, v_pointer));
+ rtc::scoped_ptr<uint8_t[]> yuv_input(CreateFakeYuvTestingImage(
+ kHeight, kWidth, block_size, libyuv::kJpegYuv420, y_pointer, u_pointer,
+ v_pointer));
// Allocate space for the output image.
- rtc::scoped_ptr<uint8[]> yuv_output(
- new uint8[I420_SIZE(kHeight, kWidth) + kAlignment]);
- uint8 *y_output_pointer = ALIGNP(yuv_output.get(), kAlignment);
- uint8 *u_output_pointer = y_output_pointer + y_size;
- uint8 *v_output_pointer = u_output_pointer + uv_size;
+ rtc::scoped_ptr<uint8_t[]> yuv_output(
+ new uint8_t[I420_SIZE(kHeight, kWidth) + kAlignment]);
+ uint8_t* y_output_pointer = ALIGNP(yuv_output.get(), kAlignment);
+ uint8_t* u_output_pointer = y_output_pointer + y_size;
+ uint8_t* v_output_pointer = u_output_pointer + uv_size;
for (int i = 0; i < repeat_; ++i) {
libyuv::I420Copy(y_pointer, y_pitch,
@@ -508,7 +533,9 @@ TEST_F(PlanarFunctionsTest, I420Copy) {
}
TEST_F(PlanarFunctionsTest, I422ToI420) {
- uint8 *y_pointer = NULL, *u_pointer = NULL, *v_pointer = NULL;
+ uint8_t* y_pointer = nullptr;
+ uint8_t* u_pointer = nullptr;
+ uint8_t* v_pointer = nullptr;
int y_pitch = kWidth;
int u_pitch = (kWidth + 1) >> 1;
int v_pitch = (kWidth + 1) >> 1;
@@ -516,23 +543,22 @@ TEST_F(PlanarFunctionsTest, I422ToI420) {
int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1);
int block_size = 2;
// Generate a fake input image.
- rtc::scoped_ptr<uint8[]> yuv_input(
- CreateFakeYuvTestingImage(kHeight, kWidth, block_size,
- libyuv::kJpegYuv422,
- y_pointer, u_pointer, v_pointer));
+ rtc::scoped_ptr<uint8_t[]> yuv_input(CreateFakeYuvTestingImage(
+ kHeight, kWidth, block_size, libyuv::kJpegYuv422, y_pointer, u_pointer,
+ v_pointer));
// Allocate space for the output image.
- rtc::scoped_ptr<uint8[]> yuv_output(
- new uint8[I420_SIZE(kHeight, kWidth) + kAlignment]);
- uint8 *y_output_pointer = ALIGNP(yuv_output.get(), kAlignment);
- uint8 *u_output_pointer = y_output_pointer + y_size;
- uint8 *v_output_pointer = u_output_pointer + uv_size;
+ rtc::scoped_ptr<uint8_t[]> yuv_output(
+ new uint8_t[I420_SIZE(kHeight, kWidth) + kAlignment]);
+ uint8_t* y_output_pointer = ALIGNP(yuv_output.get(), kAlignment);
+ uint8_t* u_output_pointer = y_output_pointer + y_size;
+ uint8_t* v_output_pointer = u_output_pointer + uv_size;
// Generate the expected output.
- uint8 *y_expected_pointer = NULL, *u_expected_pointer = NULL,
- *v_expected_pointer = NULL;
- rtc::scoped_ptr<uint8[]> yuv_output_expected(
- CreateFakeYuvTestingImage(kHeight, kWidth, block_size,
- libyuv::kJpegYuv420,
- y_expected_pointer, u_expected_pointer, v_expected_pointer));
+ uint8_t* y_expected_pointer = nullptr;
+ uint8_t* u_expected_pointer = nullptr;
+ uint8_t* v_expected_pointer = nullptr;
+ rtc::scoped_ptr<uint8_t[]> yuv_output_expected(CreateFakeYuvTestingImage(
+ kHeight, kWidth, block_size, libyuv::kJpegYuv420, y_expected_pointer,
+ u_expected_pointer, v_expected_pointer));
for (int i = 0; i < repeat_; ++i) {
libyuv::I422ToI420(y_pointer, y_pitch,
@@ -556,7 +582,7 @@ TEST_F(PlanarFunctionsTest, I422ToI420) {
TEST_P(PlanarFunctionsTest, M420ToI420) {
// Get the unalignment offset
int unalignment = GetParam();
- uint8 *m420_pointer = NULL;
+ uint8_t* m420_pointer = NULL;
int y_pitch = kWidth;
int m420_pitch = kWidth;
int u_pitch = (kWidth + 1) >> 1;
@@ -565,21 +591,22 @@ TEST_P(PlanarFunctionsTest, M420ToI420) {
int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1);
int block_size = 2;
// Generate a fake input image.
- rtc::scoped_ptr<uint8[]> yuv_input(
+ rtc::scoped_ptr<uint8_t[]> yuv_input(
CreateFakeM420TestingImage(kHeight, kWidth, block_size, m420_pointer));
// Allocate space for the output image.
- rtc::scoped_ptr<uint8[]> yuv_output(
- new uint8[I420_SIZE(kHeight, kWidth) + kAlignment + unalignment]);
- uint8 *y_output_pointer = ALIGNP(yuv_output.get(), kAlignment) + unalignment;
- uint8 *u_output_pointer = y_output_pointer + y_size;
- uint8 *v_output_pointer = u_output_pointer + uv_size;
+ rtc::scoped_ptr<uint8_t[]> yuv_output(
+ new uint8_t[I420_SIZE(kHeight, kWidth) + kAlignment + unalignment]);
+ uint8_t* y_output_pointer =
+ ALIGNP(yuv_output.get(), kAlignment) + unalignment;
+ uint8_t* u_output_pointer = y_output_pointer + y_size;
+ uint8_t* v_output_pointer = u_output_pointer + uv_size;
// Generate the expected output.
- uint8 *y_expected_pointer = NULL, *u_expected_pointer = NULL,
- *v_expected_pointer = NULL;
- rtc::scoped_ptr<uint8[]> yuv_output_expected(
- CreateFakeYuvTestingImage(kHeight, kWidth, block_size,
- libyuv::kJpegYuv420,
- y_expected_pointer, u_expected_pointer, v_expected_pointer));
+ uint8_t* y_expected_pointer = nullptr;
+ uint8_t* u_expected_pointer = nullptr;
+ uint8_t* v_expected_pointer = nullptr;
+ rtc::scoped_ptr<uint8_t[]> yuv_output_expected(CreateFakeYuvTestingImage(
+ kHeight, kWidth, block_size, libyuv::kJpegYuv420, y_expected_pointer,
+ u_expected_pointer, v_expected_pointer));
for (int i = 0; i < repeat_; ++i) {
libyuv::M420ToI420(m420_pointer, m420_pitch,
@@ -600,7 +627,8 @@ TEST_P(PlanarFunctionsTest, M420ToI420) {
TEST_P(PlanarFunctionsTest, NV12ToI420) {
// Get the unalignment offset
int unalignment = GetParam();
- uint8 *y_pointer = NULL, *uv_pointer = NULL;
+ uint8_t* y_pointer = nullptr;
+ uint8_t* uv_pointer = nullptr;
int y_pitch = kWidth;
int uv_pitch = 2 * ((kWidth + 1) >> 1);
int u_pitch = (kWidth + 1) >> 1;
@@ -609,22 +637,22 @@ TEST_P(PlanarFunctionsTest, NV12ToI420) {
int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1);
int block_size = 2;
// Generate a fake input image.
- rtc::scoped_ptr<uint8[]> yuv_input(
- CreateFakeNV12TestingImage(kHeight, kWidth, block_size,
- y_pointer, uv_pointer));
+ rtc::scoped_ptr<uint8_t[]> yuv_input(CreateFakeNV12TestingImage(
+ kHeight, kWidth, block_size, y_pointer, uv_pointer));
// Allocate space for the output image.
- rtc::scoped_ptr<uint8[]> yuv_output(
- new uint8[I420_SIZE(kHeight, kWidth) + kAlignment + unalignment]);
- uint8 *y_output_pointer = ALIGNP(yuv_output.get(), kAlignment) + unalignment;
- uint8 *u_output_pointer = y_output_pointer + y_size;
- uint8 *v_output_pointer = u_output_pointer + uv_size;
+ rtc::scoped_ptr<uint8_t[]> yuv_output(
+ new uint8_t[I420_SIZE(kHeight, kWidth) + kAlignment + unalignment]);
+ uint8_t* y_output_pointer =
+ ALIGNP(yuv_output.get(), kAlignment) + unalignment;
+ uint8_t* u_output_pointer = y_output_pointer + y_size;
+ uint8_t* v_output_pointer = u_output_pointer + uv_size;
// Generate the expected output.
- uint8 *y_expected_pointer = NULL, *u_expected_pointer = NULL,
- *v_expected_pointer = NULL;
- rtc::scoped_ptr<uint8[]> yuv_output_expected(
- CreateFakeYuvTestingImage(kHeight, kWidth, block_size,
- libyuv::kJpegYuv420,
- y_expected_pointer, u_expected_pointer, v_expected_pointer));
+ uint8_t* y_expected_pointer = nullptr;
+ uint8_t* u_expected_pointer = nullptr;
+ uint8_t* v_expected_pointer = nullptr;
+ rtc::scoped_ptr<uint8_t[]> yuv_output_expected(CreateFakeYuvTestingImage(
+ kHeight, kWidth, block_size, libyuv::kJpegYuv420, y_expected_pointer,
+ u_expected_pointer, v_expected_pointer));
for (int i = 0; i < repeat_; ++i) {
libyuv::NV12ToI420(y_pointer, y_pitch,
@@ -644,50 +672,49 @@ TEST_P(PlanarFunctionsTest, NV12ToI420) {
}
// A common macro for testing converting YUY2/UYVY to I420.
-#define TEST_YUVTOI420(SRC_NAME, MSE, BLOCK_SIZE) \
-TEST_P(PlanarFunctionsTest, SRC_NAME##ToI420) { \
- /* Get the unalignment offset.*/ \
- int unalignment = GetParam(); \
- uint8 *yuv_pointer = NULL; \
- int yuv_pitch = 2 * ((kWidth + 1) & ~1); \
- int y_pitch = kWidth; \
- int u_pitch = (kWidth + 1) >> 1; \
- int v_pitch = (kWidth + 1) >> 1; \
- int y_size = kHeight * kWidth; \
- int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1); \
- int block_size = 2; \
- /* Generate a fake input image.*/ \
- rtc::scoped_ptr<uint8[]> yuv_input( \
- CreateFakeInterleaveYuvTestingImage(kHeight, kWidth, BLOCK_SIZE, \
- yuv_pointer, FOURCC_##SRC_NAME)); \
- /* Allocate space for the output image.*/ \
- rtc::scoped_ptr<uint8[]> yuv_output( \
- new uint8[I420_SIZE(kHeight, kWidth) + kAlignment + unalignment]); \
- uint8 *y_output_pointer = ALIGNP(yuv_output.get(), kAlignment) + \
- unalignment; \
- uint8 *u_output_pointer = y_output_pointer + y_size; \
- uint8 *v_output_pointer = u_output_pointer + uv_size; \
- /* Generate the expected output.*/ \
- uint8 *y_expected_pointer = NULL, *u_expected_pointer = NULL, \
- *v_expected_pointer = NULL; \
- rtc::scoped_ptr<uint8[]> yuv_output_expected( \
- CreateFakeYuvTestingImage(kHeight, kWidth, block_size, \
- libyuv::kJpegYuv420, \
- y_expected_pointer, u_expected_pointer, v_expected_pointer)); \
- for (int i = 0; i < repeat_; ++i) { \
- libyuv::SRC_NAME##ToI420(yuv_pointer, yuv_pitch, \
- y_output_pointer, y_pitch, \
- u_output_pointer, u_pitch, \
- v_output_pointer, v_pitch, \
- kWidth, kHeight); \
- } \
- /* Compare the output frame with what is expected.*/ \
- /* Note: MSE should be set to a larger threshold if an odd block width*/ \
- /* is used, since the conversion will be lossy.*/ \
- EXPECT_TRUE(IsMemoryEqual(y_output_pointer, y_expected_pointer, \
- I420_SIZE(kHeight, kWidth), MSE)); \
- if (dump_) { DumpYuvImage(y_output_pointer, kWidth, kHeight); } \
-} \
+#define TEST_YUVTOI420(SRC_NAME, MSE, BLOCK_SIZE) \
+ TEST_P(PlanarFunctionsTest, SRC_NAME##ToI420) { \
+ /* Get the unalignment offset.*/ \
+ int unalignment = GetParam(); \
+ uint8_t* yuv_pointer = nullptr; \
+ int yuv_pitch = 2 * ((kWidth + 1) & ~1); \
+ int y_pitch = kWidth; \
+ int u_pitch = (kWidth + 1) >> 1; \
+ int v_pitch = (kWidth + 1) >> 1; \
+ int y_size = kHeight * kWidth; \
+ int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1); \
+ int block_size = 2; \
+ /* Generate a fake input image.*/ \
+ rtc::scoped_ptr<uint8_t[]> yuv_input(CreateFakeInterleaveYuvTestingImage( \
+ kHeight, kWidth, BLOCK_SIZE, yuv_pointer, FOURCC_##SRC_NAME)); \
+ /* Allocate space for the output image.*/ \
+ rtc::scoped_ptr<uint8_t[]> yuv_output( \
+ new uint8_t[I420_SIZE(kHeight, kWidth) + kAlignment + unalignment]); \
+ uint8_t* y_output_pointer = \
+ ALIGNP(yuv_output.get(), kAlignment) + unalignment; \
+ uint8_t* u_output_pointer = y_output_pointer + y_size; \
+ uint8_t* v_output_pointer = u_output_pointer + uv_size; \
+ /* Generate the expected output.*/ \
+ uint8_t* y_expected_pointer = nullptr; \
+ uint8_t* u_expected_pointer = nullptr; \
+ uint8_t* v_expected_pointer = nullptr; \
+ rtc::scoped_ptr<uint8_t[]> yuv_output_expected(CreateFakeYuvTestingImage( \
+ kHeight, kWidth, block_size, libyuv::kJpegYuv420, y_expected_pointer, \
+ u_expected_pointer, v_expected_pointer)); \
+ for (int i = 0; i < repeat_; ++i) { \
+ libyuv::SRC_NAME##ToI420(yuv_pointer, yuv_pitch, y_output_pointer, \
+ y_pitch, u_output_pointer, u_pitch, \
+ v_output_pointer, v_pitch, kWidth, kHeight); \
+ } \
+ /* Compare the output frame with what is expected.*/ \
+ /* Note: MSE should be set to a larger threshold if an odd block width*/ \
+ /* is used, since the conversion will be lossy.*/ \
+ EXPECT_TRUE(IsMemoryEqual(y_output_pointer, y_expected_pointer, \
+ I420_SIZE(kHeight, kWidth), MSE)); \
+ if (dump_) { \
+ DumpYuvImage(y_output_pointer, kWidth, kHeight); \
+ } \
+ }
// TEST_P(PlanarFunctionsTest, YUV2ToI420)
TEST_YUVTOI420(YUY2, 1.e-6, 2);
@@ -695,37 +722,38 @@ TEST_YUVTOI420(YUY2, 1.e-6, 2);
TEST_YUVTOI420(UYVY, 1.e-6, 2);
// A common macro for testing converting I420 to ARGB, BGRA and ABGR.
-#define TEST_YUVTORGB(SRC_NAME, DST_NAME, JPG_TYPE, MSE, BLOCK_SIZE) \
-TEST_F(PlanarFunctionsTest, SRC_NAME##To##DST_NAME) { \
- uint8 *y_pointer = NULL, *u_pointer = NULL, *v_pointer = NULL; \
- uint8 *argb_expected_pointer = NULL; \
- int y_pitch = kWidth; \
- int u_pitch = (kWidth + 1) >> 1; \
- int v_pitch = (kWidth + 1) >> 1; \
- /* Generate a fake input image.*/ \
- rtc::scoped_ptr<uint8[]> yuv_input( \
- CreateFakeYuvTestingImage(kHeight, kWidth, BLOCK_SIZE, JPG_TYPE, \
- y_pointer, u_pointer, v_pointer)); \
- /* Generate the expected output.*/ \
- rtc::scoped_ptr<uint8[]> argb_expected( \
- CreateFakeArgbTestingImage(kHeight, kWidth, BLOCK_SIZE, \
- argb_expected_pointer, FOURCC_##DST_NAME)); \
- /* Allocate space for the output.*/ \
- rtc::scoped_ptr<uint8[]> argb_output( \
- new uint8[kHeight * kWidth * 4 + kAlignment]); \
- uint8 *argb_pointer = ALIGNP(argb_expected.get(), kAlignment); \
- for (int i = 0; i < repeat_; ++i) { \
- libyuv::SRC_NAME##To##DST_NAME(y_pointer, y_pitch, \
- u_pointer, u_pitch, \
- v_pointer, v_pitch, \
- argb_pointer, \
- kWidth * 4, \
- kWidth, kHeight); \
- } \
- EXPECT_TRUE(IsMemoryEqual(argb_expected_pointer, argb_pointer, \
- kHeight * kWidth * 4, MSE)); \
- if (dump_) { DumpArgbImage(argb_pointer, kWidth, kHeight); } \
-}
+#define TEST_YUVTORGB(SRC_NAME, DST_NAME, JPG_TYPE, MSE, BLOCK_SIZE) \
+ TEST_F(PlanarFunctionsTest, SRC_NAME##To##DST_NAME) { \
+ uint8_t* y_pointer = nullptr; \
+ uint8_t* u_pointer = nullptr; \
+ uint8_t* v_pointer = nullptr; \
+ uint8_t* argb_expected_pointer = NULL; \
+ int y_pitch = kWidth; \
+ int u_pitch = (kWidth + 1) >> 1; \
+ int v_pitch = (kWidth + 1) >> 1; \
+ /* Generate a fake input image.*/ \
+ rtc::scoped_ptr<uint8_t[]> yuv_input( \
+ CreateFakeYuvTestingImage(kHeight, kWidth, BLOCK_SIZE, JPG_TYPE, \
+ y_pointer, u_pointer, v_pointer)); \
+ /* Generate the expected output.*/ \
+ rtc::scoped_ptr<uint8_t[]> argb_expected( \
+ CreateFakeArgbTestingImage(kHeight, kWidth, BLOCK_SIZE, \
+ argb_expected_pointer, FOURCC_##DST_NAME)); \
+ /* Allocate space for the output.*/ \
+ rtc::scoped_ptr<uint8_t[]> argb_output( \
+ new uint8_t[kHeight * kWidth * 4 + kAlignment]); \
+ uint8_t* argb_pointer = ALIGNP(argb_expected.get(), kAlignment); \
+ for (int i = 0; i < repeat_; ++i) { \
+ libyuv::SRC_NAME##To##DST_NAME(y_pointer, y_pitch, u_pointer, u_pitch, \
+ v_pointer, v_pitch, argb_pointer, \
+ kWidth * 4, kWidth, kHeight); \
+ } \
+ EXPECT_TRUE(IsMemoryEqual(argb_expected_pointer, argb_pointer, \
+ kHeight* kWidth * 4, MSE)); \
+ if (dump_) { \
+ DumpArgbImage(argb_pointer, kWidth, kHeight); \
+ } \
+ }
// TEST_F(PlanarFunctionsTest, I420ToARGB)
TEST_YUVTORGB(I420, ARGB, libyuv::kJpegYuv420, 3., 2);
@@ -738,34 +766,35 @@ TEST_YUVTORGB(I422, ARGB, libyuv::kJpegYuv422, 3., 2);
// TEST_F(PlanarFunctionsTest, I444ToARGB)
TEST_YUVTORGB(I444, ARGB, libyuv::kJpegYuv444, 3., 3);
// Note: an empirical MSE tolerance 3.0 is used here for the probable
-// error from float-to-uint8 type conversion.
+// error from float-to-uint8_t type conversion.
TEST_F(PlanarFunctionsTest, I400ToARGB_Reference) {
- uint8 *y_pointer = NULL, *u_pointer = NULL, *v_pointer = NULL;
+ uint8_t* y_pointer = nullptr;
+ uint8_t* u_pointer = nullptr;
+ uint8_t* v_pointer = nullptr;
int y_pitch = kWidth;
int u_pitch = (kWidth + 1) >> 1;
int v_pitch = (kWidth + 1) >> 1;
int block_size = 3;
// Generate a fake input image.
- rtc::scoped_ptr<uint8[]> yuv_input(
- CreateFakeYuvTestingImage(kHeight, kWidth, block_size,
- libyuv::kJpegYuv420,
- y_pointer, u_pointer, v_pointer));
+ rtc::scoped_ptr<uint8_t[]> yuv_input(CreateFakeYuvTestingImage(
+ kHeight, kWidth, block_size, libyuv::kJpegYuv420, y_pointer, u_pointer,
+ v_pointer));
// As the comparison standard, we convert a grayscale image (by setting both
// U and V channels to be 128) using an I420 converter.
int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1);
- rtc::scoped_ptr<uint8[]> uv(new uint8[uv_size + kAlignment]);
+ rtc::scoped_ptr<uint8_t[]> uv(new uint8_t[uv_size + kAlignment]);
u_pointer = v_pointer = ALIGNP(uv.get(), kAlignment);
memset(u_pointer, 128, uv_size);
// Allocate space for the output image and generate the expected output.
- rtc::scoped_ptr<uint8[]> argb_expected(
- new uint8[kHeight * kWidth * 4 + kAlignment]);
- rtc::scoped_ptr<uint8[]> argb_output(
- new uint8[kHeight * kWidth * 4 + kAlignment]);
- uint8 *argb_expected_pointer = ALIGNP(argb_expected.get(), kAlignment);
- uint8 *argb_pointer = ALIGNP(argb_output.get(), kAlignment);
+ rtc::scoped_ptr<uint8_t[]> argb_expected(
+ new uint8_t[kHeight * kWidth * 4 + kAlignment]);
+ rtc::scoped_ptr<uint8_t[]> argb_output(
+ new uint8_t[kHeight * kWidth * 4 + kAlignment]);
+ uint8_t* argb_expected_pointer = ALIGNP(argb_expected.get(), kAlignment);
+ uint8_t* argb_pointer = ALIGNP(argb_output.get(), kAlignment);
libyuv::I420ToARGB(y_pointer, y_pitch,
u_pointer, u_pitch,
@@ -787,35 +816,36 @@ TEST_F(PlanarFunctionsTest, I400ToARGB_Reference) {
TEST_P(PlanarFunctionsTest, I400ToARGB) {
// Get the unalignment offset
int unalignment = GetParam();
- uint8 *y_pointer = NULL, *u_pointer = NULL, *v_pointer = NULL;
+ uint8_t* y_pointer = nullptr;
+ uint8_t* u_pointer = nullptr;
+ uint8_t* v_pointer = nullptr;
int y_pitch = kWidth;
int u_pitch = (kWidth + 1) >> 1;
int v_pitch = (kWidth + 1) >> 1;
int block_size = 3;
// Generate a fake input image.
- rtc::scoped_ptr<uint8[]> yuv_input(
- CreateFakeYuvTestingImage(kHeight, kWidth, block_size,
- libyuv::kJpegYuv420,
- y_pointer, u_pointer, v_pointer));
+ rtc::scoped_ptr<uint8_t[]> yuv_input(CreateFakeYuvTestingImage(
+ kHeight, kWidth, block_size, libyuv::kJpegYuv420, y_pointer, u_pointer,
+ v_pointer));
// As the comparison standard, we convert a grayscale image (by setting both
// U and V channels to be 128) using an I420 converter.
int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1);
// 1 byte extra if in the unaligned mode.
- rtc::scoped_ptr<uint8[]> uv(new uint8[uv_size * 2 + kAlignment]);
+ rtc::scoped_ptr<uint8_t[]> uv(new uint8_t[uv_size * 2 + kAlignment]);
u_pointer = ALIGNP(uv.get(), kAlignment);
v_pointer = u_pointer + uv_size;
memset(u_pointer, 128, uv_size);
memset(v_pointer, 128, uv_size);
// Allocate space for the output image and generate the expected output.
- rtc::scoped_ptr<uint8[]> argb_expected(
- new uint8[kHeight * kWidth * 4 + kAlignment]);
+ rtc::scoped_ptr<uint8_t[]> argb_expected(
+ new uint8_t[kHeight * kWidth * 4 + kAlignment]);
// 1 byte extra if in the misalinged mode.
- rtc::scoped_ptr<uint8[]> argb_output(
- new uint8[kHeight * kWidth * 4 + kAlignment + unalignment]);
- uint8 *argb_expected_pointer = ALIGNP(argb_expected.get(), kAlignment);
- uint8 *argb_pointer = ALIGNP(argb_output.get(), kAlignment) + unalignment;
+ rtc::scoped_ptr<uint8_t[]> argb_output(
+ new uint8_t[kHeight * kWidth * 4 + kAlignment + unalignment]);
+ uint8_t* argb_expected_pointer = ALIGNP(argb_expected.get(), kAlignment);
+ uint8_t* argb_pointer = ALIGNP(argb_output.get(), kAlignment) + unalignment;
libyuv::I420ToARGB(y_pointer, y_pitch,
u_pointer, u_pitch,
@@ -839,22 +869,20 @@ TEST_P(PlanarFunctionsTest, ARGBToI400) {
// Get the unalignment offset
int unalignment = GetParam();
// Create a fake ARGB input image.
- uint8 *y_pointer = NULL, *u_pointer = NULL, *v_pointer = NULL;
- uint8 *argb_pointer = NULL;
+ uint8_t* y_pointer = NULL, * u_pointer = NULL, * v_pointer = NULL;
+ uint8_t* argb_pointer = NULL;
int block_size = 3;
// Generate a fake input image.
- rtc::scoped_ptr<uint8[]> argb_input(
- CreateFakeArgbTestingImage(kHeight, kWidth, block_size,
- argb_pointer, FOURCC_ARGB));
+ rtc::scoped_ptr<uint8_t[]> argb_input(CreateFakeArgbTestingImage(
+ kHeight, kWidth, block_size, argb_pointer, FOURCC_ARGB));
// Generate the expected output. Only Y channel is used
- rtc::scoped_ptr<uint8[]> yuv_expected(
- CreateFakeYuvTestingImage(kHeight, kWidth, block_size,
- libyuv::kJpegYuv420,
- y_pointer, u_pointer, v_pointer));
+ rtc::scoped_ptr<uint8_t[]> yuv_expected(CreateFakeYuvTestingImage(
+ kHeight, kWidth, block_size, libyuv::kJpegYuv420, y_pointer, u_pointer,
+ v_pointer));
// Allocate space for the Y output.
- rtc::scoped_ptr<uint8[]> y_output(
- new uint8[kHeight * kWidth + kAlignment + unalignment]);
- uint8 *y_output_pointer = ALIGNP(y_output.get(), kAlignment) + unalignment;
+ rtc::scoped_ptr<uint8_t[]> y_output(
+ new uint8_t[kHeight * kWidth + kAlignment + unalignment]);
+ uint8_t* y_output_pointer = ALIGNP(y_output.get(), kAlignment) + unalignment;
for (int i = 0; i < repeat_; ++i) {
libyuv::ARGBToI400(argb_pointer, kWidth * 4, y_output_pointer, kWidth,
@@ -862,7 +890,7 @@ TEST_P(PlanarFunctionsTest, ARGBToI400) {
}
// Check if the output matches the input Y channel.
// Note: an empirical MSE tolerance 2.0 is used here for the probable
- // error from float-to-uint8 type conversion.
+ // error from float-to-uint8_t type conversion.
EXPECT_TRUE(IsMemoryEqual(y_output_pointer, y_pointer,
kHeight * kWidth, 2.));
if (dump_) { DumpArgbImage(argb_pointer, kWidth, kHeight); }
@@ -870,31 +898,32 @@ TEST_P(PlanarFunctionsTest, ARGBToI400) {
// A common macro for testing converting RAW, BG24, BGRA, and ABGR
// to ARGB.
-#define TEST_ARGB(SRC_NAME, FC_ID, BPP, BLOCK_SIZE) \
-TEST_P(PlanarFunctionsTest, SRC_NAME##ToARGB) { \
- int unalignment = GetParam(); /* Get the unalignment offset.*/ \
- uint8 *argb_expected_pointer = NULL, *src_pointer = NULL; \
- /* Generate a fake input image.*/ \
- rtc::scoped_ptr<uint8[]> src_input( \
- CreateFakeArgbTestingImage(kHeight, kWidth, BLOCK_SIZE, \
- src_pointer, FOURCC_##FC_ID)); \
- /* Generate the expected output.*/ \
- rtc::scoped_ptr<uint8[]> argb_expected( \
- CreateFakeArgbTestingImage(kHeight, kWidth, BLOCK_SIZE, \
- argb_expected_pointer, FOURCC_ARGB)); \
- /* Allocate space for the output; 1 byte extra if in the unaligned mode.*/ \
- rtc::scoped_ptr<uint8[]> argb_output( \
- new uint8[kHeight * kWidth * 4 + kAlignment + unalignment]); \
- uint8 *argb_pointer = ALIGNP(argb_output.get(), kAlignment) + unalignment; \
- for (int i = 0; i < repeat_; ++i) { \
- libyuv:: SRC_NAME##ToARGB(src_pointer, kWidth * (BPP), argb_pointer, \
- kWidth * 4, kWidth, kHeight); \
- } \
- /* Compare the result; expect identical.*/ \
- EXPECT_TRUE(IsMemoryEqual(argb_expected_pointer, argb_pointer, \
- kHeight * kWidth * 4, 1.e-6)); \
- if (dump_) { DumpArgbImage(argb_pointer, kWidth, kHeight); } \
-}
+#define TEST_ARGB(SRC_NAME, FC_ID, BPP, BLOCK_SIZE) \
+ TEST_P(PlanarFunctionsTest, SRC_NAME##ToARGB) { \
+ int unalignment = GetParam(); /* Get the unalignment offset.*/ \
+ uint8_t* argb_expected_pointer = NULL, * src_pointer = NULL; \
+ /* Generate a fake input image.*/ \
+ rtc::scoped_ptr<uint8_t[]> src_input(CreateFakeArgbTestingImage( \
+ kHeight, kWidth, BLOCK_SIZE, src_pointer, FOURCC_##FC_ID)); \
+ /* Generate the expected output.*/ \
+ rtc::scoped_ptr<uint8_t[]> argb_expected(CreateFakeArgbTestingImage( \
+ kHeight, kWidth, BLOCK_SIZE, argb_expected_pointer, FOURCC_ARGB)); \
+ /* Allocate space for the output; 1 byte extra if in the unaligned mode.*/ \
+ rtc::scoped_ptr<uint8_t[]> argb_output( \
+ new uint8_t[kHeight * kWidth * 4 + kAlignment + unalignment]); \
+ uint8_t* argb_pointer = \
+ ALIGNP(argb_output.get(), kAlignment) + unalignment; \
+ for (int i = 0; i < repeat_; ++i) { \
+ libyuv::SRC_NAME##ToARGB(src_pointer, kWidth*(BPP), argb_pointer, \
+ kWidth * 4, kWidth, kHeight); \
+ } \
+ /* Compare the result; expect identical.*/ \
+ EXPECT_TRUE(IsMemoryEqual(argb_expected_pointer, argb_pointer, \
+ kHeight* kWidth * 4, 1.e-6)); \
+ if (dump_) { \
+ DumpArgbImage(argb_pointer, kWidth, kHeight); \
+ } \
+ }
TEST_ARGB(RAW, RAW, 3, 3); // TEST_P(PlanarFunctionsTest, RAWToARGB)
TEST_ARGB(BG24, 24BG, 3, 3); // TEST_P(PlanarFunctionsTest, BG24ToARGB)
« no previous file with comments | « talk/session/media/mediasession_unittest.cc ('k') | talk/session/media/srtpfilter.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698