Index: webrtc/modules/rtp_rtcp/source/h264_bitstream_parser.cc |
diff --git a/webrtc/modules/rtp_rtcp/source/h264_bitstream_parser.cc b/webrtc/modules/rtp_rtcp/source/h264_bitstream_parser.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..dfbb6b7c524bb92907832ab12e8dc6548ef534b1 |
--- /dev/null |
+++ b/webrtc/modules/rtp_rtcp/source/h264_bitstream_parser.cc |
@@ -0,0 +1,566 @@ |
+/* |
+ * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+#include "webrtc/modules/rtp_rtcp/source/h264_bitstream_parser.h" |
+ |
+#include <vector> |
+ |
+#include "webrtc/base/bitbuffer.h" |
+#include "webrtc/base/bytebuffer.h" |
+#include "webrtc/base/checks.h" |
+#include "webrtc/base/logging.h" |
+#include "webrtc/base/scoped_ptr.h" |
+ |
+namespace webrtc { |
+namespace { |
+// The size of a NALU header {0 0 0 1}. |
+static const size_t kNaluHeaderSize = 4; |
+ |
+// The size of a NALU header plus the type byte. |
+static const size_t kNaluHeaderAndTypeSize = kNaluHeaderSize + 1; |
+ |
+// The NALU type. |
+static const uint8_t kNaluSps = 0x7; |
+static const uint8_t kNaluPps = 0x8; |
+static const uint8_t kNaluIdr = 0x5; |
+static const uint8_t kNaluTypeMask = 0x1F; |
+ |
+static const uint8_t kSliceTypeP = 0x0; |
+static const uint8_t kSliceTypeB = 0x1; |
+static const uint8_t kSliceTypeSp = 0x3; |
+ |
+// Returns a vector of the NALU start sequences (0 0 0 1) in the given buffer. |
+std::vector<size_t> FindNaluStartSequences(const uint8_t* buffer, |
+ size_t buffer_size) { |
+ std::vector<size_t> sequences; |
+ // This is sorta like Boyer-Moore, but with only the first optimization step: |
+ // given a 4-byte sequence we're looking at, if the 4th byte isn't 1 or 0, |
+ // skip ahead to the next 4-byte sequence. 0s and 1s are relatively rare, so |
+ // this will skip the majority of reads/checks. |
+ const uint8_t* end = buffer + buffer_size - 4; |
+ for (const uint8_t* head = buffer; head < end;) { |
+ if (head[3] > 1) { |
+ head += 4; |
+ } else if (head[3] == 1 && head[2] == 0 && head[1] == 0 && head[0] == 0) { |
+ sequences.push_back(static_cast<size_t>(head - buffer)); |
+ head += 4; |
+ } else { |
+ head++; |
+ } |
+ } |
+ |
+ return sequences; |
+} |
+} // namespace |
+ |
+// Parses RBSP from source bytes. Removes emulation bytes, but leaves the |
+// rbsp_trailing_bits() in the stream, since none of the parsing reads all the |
+// way to the end of a parsed RBSP sequence. When writing, that means the |
+// rbsp_trailing_bits() should be preserved and don't need to be restored (i.e. |
+// the rbsp_stop_one_bit, which is just a 1, then zero padded), and alignment |
+// should "just work". |
+// TODO(pbos): Make parsing RBSP something that can be integrated into BitBuffer |
+// so we don't have to copy the entire frames when only interested in the |
+// headers. |
+rtc::ByteBuffer* ParseRbsp(const uint8_t* bytes, size_t length) { |
+ // Copied from webrtc::H264SpsParser::Parse. |
+ rtc::ByteBuffer* rbsp_buffer = new rtc::ByteBuffer; |
+ for (size_t i = 0; i < length;) { |
+ if (length - i >= 3 && bytes[i] == 0 && bytes[i + 1] == 0 && |
+ bytes[i + 2] == 3) { |
+ rbsp_buffer->WriteBytes(reinterpret_cast<const char*>(bytes) + i, 2); |
+ i += 3; |
+ } else { |
+ rbsp_buffer->WriteBytes(reinterpret_cast<const char*>(bytes) + i, 1); |
+ i++; |
+ } |
+ } |
+ return rbsp_buffer; |
+} |
+ |
+#define RETURN_FALSE_ON_FAIL(x) \ |
+ if (!(x)) { \ |
+ LOG_F(LS_ERROR) << "FAILED: " #x; \ |
+ return false; \ |
+ } |
+ |
+H264BitstreamParser::PpsState::PpsState() { |
+} |
+ |
+H264BitstreamParser::SpsState::SpsState() { |
+} |
+ |
+// These functions are similar to webrtc::H264SpsParser::Parse, and based on the |
+// same version of the H.264 standard. You can find it here: |
+// http://www.itu.int/rec/T-REC-H.264 |
+bool H264BitstreamParser::ParseSpsNalu(const uint8_t* sps, size_t length) { |
+ // Reset SPS state. |
+ sps_ = SpsState(); |
+ sps_parsed_ = false; |
+ // Parse out the SPS RBSP. It should be small, so it's ok that we create a |
+ // copy. We'll eventually write this back. |
+ rtc::scoped_ptr<rtc::ByteBuffer> sps_rbsp( |
+ ParseRbsp(sps + kNaluHeaderAndTypeSize, length - kNaluHeaderAndTypeSize)); |
+ rtc::BitBuffer sps_parser(reinterpret_cast<const uint8*>(sps_rbsp->Data()), |
+ sps_rbsp->Length()); |
+ |
+ uint8_t byte_tmp; |
+ uint32_t golomb_tmp; |
+ uint32_t bits_tmp; |
+ |
+ // profile_idc: u(8). |
+ uint8 profile_idc; |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadUInt8(&profile_idc)); |
+ // constraint_set0_flag through constraint_set5_flag + reserved_zero_2bits |
+ // 1 bit each for the flags + 2 bits = 8 bits = 1 byte. |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadUInt8(&byte_tmp)); |
+ // level_idc: u(8) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadUInt8(&byte_tmp)); |
+ // seq_parameter_set_id: ue(v) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp)); |
+ sps_.separate_colour_plane_flag = 0; |
+ // See if profile_idc has chroma format information. |
+ if (profile_idc == 100 || profile_idc == 110 || profile_idc == 122 || |
+ profile_idc == 244 || profile_idc == 44 || profile_idc == 83 || |
+ profile_idc == 86 || profile_idc == 118 || profile_idc == 128 || |
+ profile_idc == 138 || profile_idc == 139 || profile_idc == 134) { |
+ // chroma_format_idc: ue(v) |
+ uint32 chroma_format_idc; |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&chroma_format_idc)); |
+ if (chroma_format_idc == 3) { |
+ // separate_colour_plane_flag: u(1) |
+ RETURN_FALSE_ON_FAIL( |
+ sps_parser.ReadBits(&sps_.separate_colour_plane_flag, 1)); |
+ } |
+ // bit_depth_luma_minus8: ue(v) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp)); |
+ // bit_depth_chroma_minus8: ue(v) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp)); |
+ // qpprime_y_zero_transform_bypass_flag: u(1) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadBits(&bits_tmp, 1)); |
+ // seq_scaling_matrix_present_flag: u(1) |
+ uint32_t seq_scaling_matrix_present_flag; |
+ RETURN_FALSE_ON_FAIL( |
+ sps_parser.ReadBits(&seq_scaling_matrix_present_flag, 1)); |
+ if (seq_scaling_matrix_present_flag) { |
+ // seq_scaling_list_present_flags. Either 8 or 12, depending on |
+ // chroma_format_idc. |
+ uint32_t seq_scaling_list_present_flags; |
+ if (chroma_format_idc != 3) { |
+ RETURN_FALSE_ON_FAIL( |
+ sps_parser.ReadBits(&seq_scaling_list_present_flags, 8)); |
+ } else { |
+ RETURN_FALSE_ON_FAIL( |
+ sps_parser.ReadBits(&seq_scaling_list_present_flags, 12)); |
+ } |
+ // TODO(pbos): Support parsing scaling lists if they're seen in practice. |
+ RTC_CHECK(seq_scaling_list_present_flags == 0) |
+ << "SPS contains scaling lists, which are unsupported."; |
+ } |
+ } |
+ // log2_max_frame_num_minus4: ue(v) |
+ RETURN_FALSE_ON_FAIL( |
+ sps_parser.ReadExponentialGolomb(&sps_.log2_max_frame_num_minus4)); |
+ // pic_order_cnt_type: ue(v) |
+ RETURN_FALSE_ON_FAIL( |
+ sps_parser.ReadExponentialGolomb(&sps_.pic_order_cnt_type)); |
+ |
+ if (sps_.pic_order_cnt_type == 0) { |
+ // log2_max_pic_order_cnt_lsb_minus4: ue(v) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb( |
+ &sps_.log2_max_pic_order_cnt_lsb_minus4)); |
+ } else if (sps_.pic_order_cnt_type == 1) { |
+ // delta_pic_order_always_zero_flag: u(1) |
+ RETURN_FALSE_ON_FAIL( |
+ sps_parser.ReadBits(&sps_.delta_pic_order_always_zero_flag, 1)); |
+ // offset_for_non_ref_pic: se(v) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp)); |
+ // offset_for_top_to_bottom_field: se(v) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp)); |
+ uint32_t num_ref_frames_in_pic_order_cnt_cycle; |
+ // num_ref_frames_in_pic_order_cnt_cycle: ue(v) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb( |
+ &num_ref_frames_in_pic_order_cnt_cycle)); |
+ for (uint32_t i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++) { |
+ // offset_for_ref_frame[i]: se(v) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp)); |
+ } |
+ } |
+ // max_num_ref_frames: ue(v) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp)); |
+ // gaps_in_frame_num_value_allowed_flag: u(1) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadBits(&bits_tmp, 1)); |
+ // pic_width_in_mbs_minus1: ue(v) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp)); |
+ // pic_height_in_map_units_minus1: ue(v) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp)); |
+ // frame_mbs_only_flag: u(1) |
+ RETURN_FALSE_ON_FAIL(sps_parser.ReadBits(&sps_.frame_mbs_only_flag, 1)); |
+ sps_parsed_ = true; |
+ return true; |
+} |
+ |
+bool H264BitstreamParser::ParsePpsNalu(const uint8_t* pps, size_t length) { |
+ RTC_CHECK(sps_parsed_); |
+ // We're starting a new stream, so reset picture type rewriting values. |
+ pps_ = PpsState(); |
+ pps_parsed_ = false; |
+ rtc::scoped_ptr<rtc::ByteBuffer> buffer( |
+ ParseRbsp(pps + kNaluHeaderAndTypeSize, length - kNaluHeaderAndTypeSize)); |
+ rtc::BitBuffer parser(reinterpret_cast<const uint8*>(buffer->Data()), |
+ buffer->Length()); |
+ |
+ uint32_t bits_tmp; |
+ uint32_t golomb_ignored; |
+ // pic_parameter_set_id: ue(v) |
+ RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); |
+ // seq_parameter_set_id: ue(v) |
+ RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); |
+ // entropy_coding_mode_flag: u(1) |
+ uint32_t entropy_coding_mode_flag; |
+ RETURN_FALSE_ON_FAIL(parser.ReadBits(&entropy_coding_mode_flag, 1)); |
+ // TODO(pbos): Implement CABAC support if spotted in the wild. |
+ RTC_CHECK(entropy_coding_mode_flag == 0) |
+ << "Don't know how to parse CABAC streams."; |
+ // bottom_field_pic_order_in_frame_present_flag: u(1) |
+ uint32_t bottom_field_pic_order_in_frame_present_flag; |
+ RETURN_FALSE_ON_FAIL( |
+ parser.ReadBits(&bottom_field_pic_order_in_frame_present_flag, 1)); |
+ pps_.bottom_field_pic_order_in_frame_present_flag = |
+ bottom_field_pic_order_in_frame_present_flag != 0; |
+ |
+ // num_slice_groups_minus1: ue(v) |
+ uint32_t num_slice_groups_minus1; |
+ RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&num_slice_groups_minus1)); |
+ if (num_slice_groups_minus1 > 0) { |
+ uint32_t slice_group_map_type; |
+ // slice_group_map_type: ue(v) |
+ RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&slice_group_map_type)); |
+ if (slice_group_map_type == 0) { |
+ for (uint32_t i_group = 0; i_group <= num_slice_groups_minus1; |
+ ++i_group) { |
+ // run_length_minus1[iGroup]: ue(v) |
+ RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); |
+ } |
+ } else if (slice_group_map_type == 2) { |
+ for (uint32_t i_group = 0; i_group <= num_slice_groups_minus1; |
+ ++i_group) { |
+ // top_left[iGroup]: ue(v) |
+ RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); |
+ // bottom_right[iGroup]: ue(v) |
+ RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); |
+ } |
+ } else if (slice_group_map_type == 3 || slice_group_map_type == 4 || |
+ slice_group_map_type == 5) { |
+ // slice_group_change_direction_flag: u(1) |
+ RETURN_FALSE_ON_FAIL(parser.ReadBits(&bits_tmp, 1)); |
+ // slice_group_change_rate_minus1: ue(v) |
+ RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); |
+ } else if (slice_group_map_type == 6) { |
+ // pic_size_in_map_units_minus1: ue(v) |
+ uint32_t pic_size_in_map_units_minus1; |
+ RETURN_FALSE_ON_FAIL( |
+ parser.ReadExponentialGolomb(&pic_size_in_map_units_minus1)); |
+ uint32_t slice_group_id_bits = 0; |
+ uint32_t num_slice_groups = num_slice_groups_minus1 + 1; |
+ // If num_slice_groups is not a power of two an additional bit is required |
+ // to account for the ceil() of log2() below. |
+ if ((num_slice_groups & (num_slice_groups - 1)) != 0) |
+ ++slice_group_id_bits; |
+ while (num_slice_groups > 0) { |
+ num_slice_groups >>= 1; |
+ ++slice_group_id_bits; |
+ } |
+ for (uint32_t i = 0; i <= pic_size_in_map_units_minus1; i++) { |
+ // slice_group_id[i]: u(v) |
+ // Represented by ceil(log2(num_slice_groups_minus1 + 1)) bits. |
+ RETURN_FALSE_ON_FAIL(parser.ReadBits(&bits_tmp, slice_group_id_bits)); |
+ } |
+ } |
+ } |
+ // num_ref_idx_l0_default_active_minus1: ue(v) |
+ RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); |
+ // num_ref_idx_l1_default_active_minus1: ue(v) |
+ RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); |
+ // weighted_pred_flag: u(1) |
+ uint32_t weighted_pred_flag; |
+ RETURN_FALSE_ON_FAIL(parser.ReadBits(&weighted_pred_flag, 1)); |
+ pps_.weighted_pred_flag = weighted_pred_flag != 0; |
+ // weighted_bipred_idc: u(2) |
+ RETURN_FALSE_ON_FAIL(parser.ReadBits(&pps_.weighted_bipred_idc, 2)); |
+ |
+ // pic_init_qp_minus26: se(v) |
+ RETURN_FALSE_ON_FAIL( |
+ parser.ReadSignedExponentialGolomb(&pps_.pic_init_qp_minus26)); |
+ // pic_init_qs_minus26: se(v) |
+ RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); |
+ // chroma_qp_index_offset: se(v) |
+ RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); |
+ // deblocking_filter_control_present_flag: u(1) |
+ // constrained_intra_pred_flag: u(1) |
+ RETURN_FALSE_ON_FAIL(parser.ReadBits(&bits_tmp, 2)); |
+ // redundant_pic_cnt_present_flag: u(1) |
+ RETURN_FALSE_ON_FAIL( |
+ parser.ReadBits(&pps_.redundant_pic_cnt_present_flag, 1)); |
+ |
+ pps_parsed_ = true; |
+ return true; |
+} |
+ |
+bool H264BitstreamParser::ParseNonParameterSetNalu(const uint8_t* source, |
+ size_t source_length, |
+ uint8_t nalu_type) { |
+ RTC_CHECK(sps_parsed_); |
+ RTC_CHECK(pps_parsed_); |
+ last_slice_qp_delta_parsed_ = false; |
+ rtc::scoped_ptr<rtc::ByteBuffer> slice_rbsp(ParseRbsp( |
+ source + kNaluHeaderAndTypeSize, source_length - kNaluHeaderAndTypeSize)); |
+ rtc::BitBuffer slice_reader( |
+ reinterpret_cast<const uint8*>(slice_rbsp->Data()), slice_rbsp->Length()); |
+ // Check to see if this is an IDR slice, which has an extra field to parse |
+ // out. |
+ bool is_idr = (source[kNaluHeaderSize] & 0x0F) == kNaluIdr; |
+ uint8_t nal_ref_idc = (source[kNaluHeaderSize] & 0x60) >> 5; |
+ uint32_t golomb_tmp; |
+ uint32_t bits_tmp; |
+ |
+ // first_mb_in_slice: ue(v) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ // slice_type: ue(v) |
+ uint32_t slice_type; |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&slice_type)); |
+ // slice_type's 5..9 range is used to indicate that all slices of a picture |
+ // have the same value of slice_type % 5, we don't care about that, so we map |
+ // to the corresponding 0..4 range. |
+ slice_type %= 5; |
+ // pic_parameter_set_id: ue(v) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ if (sps_.separate_colour_plane_flag == 1) { |
+ // colour_plane_id |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 2)); |
+ } |
+ // frame_num: u(v) |
+ // Represented by log2_max_frame_num_minus4 + 4 bits. |
+ RETURN_FALSE_ON_FAIL( |
+ slice_reader.ReadBits(&bits_tmp, sps_.log2_max_frame_num_minus4 + 4)); |
+ uint32 field_pic_flag = 0; |
+ if (sps_.frame_mbs_only_flag == 0) { |
+ // field_pic_flag: u(1) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&field_pic_flag, 1)); |
+ if (field_pic_flag != 0) { |
+ // bottom_field_flag: u(1) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 1)); |
+ } |
+ } |
+ if (is_idr) { |
+ // idr_pic_id: ue(v) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ } |
+ // pic_order_cnt_lsb: u(v) |
+ // Represented by sps_.log2_max_pic_order_cnt_lsb_minus4 + 4 bits. |
+ if (sps_.pic_order_cnt_type == 0) { |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadBits( |
+ &bits_tmp, sps_.log2_max_pic_order_cnt_lsb_minus4 + 4)); |
+ if (pps_.bottom_field_pic_order_in_frame_present_flag && |
+ field_pic_flag == 0) { |
+ // delta_pic_order_cnt_bottom: se(v) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ } |
+ } |
+ if (sps_.pic_order_cnt_type == 1 && !sps_.delta_pic_order_always_zero_flag) { |
+ // delta_pic_order_cnt[0]: se(v) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ if (pps_.bottom_field_pic_order_in_frame_present_flag && !field_pic_flag) { |
+ // delta_pic_order_cnt[1]: se(v) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ } |
+ } |
+ if (pps_.redundant_pic_cnt_present_flag) { |
+ // redundant_pic_cnt: ue(v) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ } |
+ if (slice_type == kSliceTypeB) { |
+ // direct_spatial_mv_pred_flag: u(1) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 1)); |
+ } |
+ if (slice_type == kSliceTypeP || slice_type == kSliceTypeSp || |
+ slice_type == kSliceTypeB) { |
+ uint32_t num_ref_idx_active_override_flag; |
+ // num_ref_idx_active_override_flag: u(1) |
+ RETURN_FALSE_ON_FAIL( |
+ slice_reader.ReadBits(&num_ref_idx_active_override_flag, 1)); |
+ if (num_ref_idx_active_override_flag != 0) { |
+ // num_ref_idx_l0_active_minus1: ue(v) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ if (slice_type == kSliceTypeB) { |
+ // num_ref_idx_l1_active_minus1: ue(v) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ } |
+ } |
+ } |
+ // assume nal_unit_type != 20 && nal_unit_type != 21: |
+ RTC_CHECK_NE(nalu_type, 20); |
+ RTC_CHECK_NE(nalu_type, 21); |
+ // if (nal_unit_type == 20 || nal_unit_type == 21) |
+ // ref_pic_list_mvc_modification() |
+ // else |
+ { |
+ // ref_pic_list_modification(): |
+ // |slice_type| checks here don't use named constants as they aren't named |
+ // in the spec for this segment. Keeping them consistent makes it easier to |
+ // verify that they are both the same. |
+ if (slice_type % 5 != 2 && slice_type % 5 != 4) { |
+ // ref_pic_list_modification_flag_l0: u(1) |
+ uint32_t ref_pic_list_modification_flag_l0; |
+ RETURN_FALSE_ON_FAIL( |
+ slice_reader.ReadBits(&ref_pic_list_modification_flag_l0, 1)); |
+ if (ref_pic_list_modification_flag_l0) { |
+ uint32_t modification_of_pic_nums_idc; |
+ do { |
+ // modification_of_pic_nums_idc: ue(v) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb( |
+ &modification_of_pic_nums_idc)); |
+ if (modification_of_pic_nums_idc == 0 || |
+ modification_of_pic_nums_idc == 1) { |
+ // abs_diff_pic_num_minus1: ue(v) |
+ RETURN_FALSE_ON_FAIL( |
+ slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ } else if (modification_of_pic_nums_idc == 2) { |
+ // long_term_pic_num: ue(v) |
+ RETURN_FALSE_ON_FAIL( |
+ slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ } |
+ } while (modification_of_pic_nums_idc != 3); |
+ } |
+ } |
+ if (slice_type % 5 == 1) { |
+ // ref_pic_list_modification_flag_l1: u(1) |
+ uint32_t ref_pic_list_modification_flag_l1; |
+ RETURN_FALSE_ON_FAIL( |
+ slice_reader.ReadBits(&ref_pic_list_modification_flag_l1, 1)); |
+ if (ref_pic_list_modification_flag_l1) { |
+ uint32_t modification_of_pic_nums_idc; |
+ do { |
+ // modification_of_pic_nums_idc: ue(v) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb( |
+ &modification_of_pic_nums_idc)); |
+ if (modification_of_pic_nums_idc == 0 || |
+ modification_of_pic_nums_idc == 1) { |
+ // abs_diff_pic_num_minus1: ue(v) |
+ RETURN_FALSE_ON_FAIL( |
+ slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ } else if (modification_of_pic_nums_idc == 2) { |
+ // long_term_pic_num: ue(v) |
+ RETURN_FALSE_ON_FAIL( |
+ slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ } |
+ } while (modification_of_pic_nums_idc != 3); |
+ } |
+ } |
+ } |
+ // TODO(pbos): Do we need support for pred_weight_table()? |
stefan-webrtc
2015/09/23 21:14:39
I would guess not, I don't think it's part of the
pbos-webrtc
2015/09/24 11:38:23
Then if any chip implements past the base profile
stefan-webrtc
2015/09/24 12:23:24
I don't think there are any plans to support profi
|
+ RTC_CHECK(!((pps_.weighted_pred_flag && |
+ (slice_type == kSliceTypeP || slice_type == kSliceTypeSp)) || |
+ (pps_.weighted_bipred_idc != 0 && slice_type == kSliceTypeB))) |
+ << "Missing support for pred_weight_table()."; |
+ // if ((weighted_pred_flag && (slice_type == P || slice_type == SP)) || |
+ // (weighted_bipred_idc == 1 && slice_type == B)) { |
+ // pred_weight_table() |
+ // } |
+ if (nal_ref_idc != 0) { |
+ // dec_ref_pic_marking(): |
+ if (is_idr) { |
+ // no_output_of_prior_pics_flag: u(1) |
+ // long_term_reference_flag: u(1) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 2)); |
+ } else { |
+ // adaptive_ref_pic_marking_mode_flag: u(1) |
+ uint32_t adaptive_ref_pic_marking_mode_flag; |
+ RETURN_FALSE_ON_FAIL( |
+ slice_reader.ReadBits(&adaptive_ref_pic_marking_mode_flag, 1)); |
+ if (adaptive_ref_pic_marking_mode_flag) { |
+ uint32_t memory_management_control_operation; |
+ do { |
+ // memory_management_control_operation: ue(v) |
+ RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb( |
+ &memory_management_control_operation)); |
+ if (memory_management_control_operation == 1 || |
+ memory_management_control_operation == 3) { |
+ // difference_of_pic_nums_minus1: ue(v) |
+ RETURN_FALSE_ON_FAIL( |
+ slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ } |
+ if (memory_management_control_operation == 2) { |
+ // long_term_pic_num: ue(v) |
+ RETURN_FALSE_ON_FAIL( |
+ slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ } |
+ if (memory_management_control_operation == 3 || |
+ memory_management_control_operation == 6) { |
+ // long_term_frame_idx: ue(v) |
+ RETURN_FALSE_ON_FAIL( |
+ slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ } |
+ if (memory_management_control_operation == 4) { |
+ // max_long_term_frame_idx_plus1: ue(v) |
+ RETURN_FALSE_ON_FAIL( |
+ slice_reader.ReadExponentialGolomb(&golomb_tmp)); |
+ } |
+ } while (memory_management_control_operation != 0); |
+ } |
+ } |
+ } |
+ // cabac not supported: entropy_coding_mode_flag == 0 asserted above. |
+ // if (entropy_coding_mode_flag && slice_type != I && slice_type != SI) |
+ // cabac_init_idc |
+ RETURN_FALSE_ON_FAIL( |
+ slice_reader.ReadSignedExponentialGolomb(&last_slice_qp_delta_)); |
+ last_slice_qp_delta_parsed_ = true; |
+ return true; |
+} |
+ |
+void H264BitstreamParser::ParseSlice(const uint8_t* slice, size_t length) { |
+ uint8_t nalu_type = slice[4] & kNaluTypeMask; |
+ switch (nalu_type) { |
+ case kNaluSps: |
+ RTC_CHECK(ParseSpsNalu(slice, length)) |
+ << "Failed to parse bitstream SPS."; |
+ break; |
+ case kNaluPps: |
+ RTC_CHECK(ParsePpsNalu(slice, length)) |
+ << "Failed to parse bitstream PPS."; |
+ break; |
+ default: |
+ RTC_CHECK(ParseNonParameterSetNalu(slice, length, nalu_type)) |
+ << "Failed to parse picture slice."; |
+ break; |
+ } |
+} |
+ |
+void H264BitstreamParser::ParseBitstream(const uint8_t* bitstream, |
+ size_t length) { |
+ RTC_CHECK_GE(length, 4u); |
+ std::vector<size_t> slice_markers = FindNaluStartSequences(bitstream, length); |
+ RTC_CHECK(!slice_markers.empty()); |
+ for (size_t i = 0; i < slice_markers.size() - 1; ++i) { |
+ ParseSlice(bitstream + slice_markers[i], |
+ slice_markers[i + 1] - slice_markers[i]); |
+ } |
+ // Parse the last slice. |
+ ParseSlice(bitstream + slice_markers.back(), length - slice_markers.back()); |
+} |
+ |
+bool H264BitstreamParser::GetLastSliceQp(int* qp) const { |
+ if (!last_slice_qp_delta_parsed_) |
+ return false; |
+ *qp = 26 + pps_.pic_init_qp_minus26 + last_slice_qp_delta_; |
stefan-webrtc
2015/09/23 21:14:38
Why is it the last_slice_qp_delta_ we want to use
pbos-webrtc
2015/09/24 11:38:23
Easier to not have to know which slices are part o
stefan-webrtc
2015/09/24 12:23:24
It's true that it probably doesn't matter in most
|
+ return true; |
+} |
+ |
+} // namespace webrtc |