OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 * |
| 10 */ |
| 11 |
| 12 #include "webrtc/modules/video_coding/codecs/h264/h264_encoder_impl.h" |
| 13 |
| 14 // OpenH264 |
| 15 #include "codec_api.h" |
| 16 #include "codec_app_def.h" |
| 17 #include "codec_def.h" |
| 18 |
| 19 #include "webrtc/base/checks.h" |
| 20 #include "webrtc/base/logging.h" |
| 21 #include "webrtc/common_video/libyuv/include/webrtc_libyuv.h" |
| 22 |
| 23 namespace webrtc { |
| 24 |
| 25 namespace { |
| 26 const bool OPENH264_ENCODER_LOGGING = false; |
| 27 } // anonymous namespace |
| 28 |
| 29 static VideoFrameType EVideoFrameType_to_VideoFrameType( |
| 30 const EVideoFrameType& type) { |
| 31 switch (type) { |
| 32 case videoFrameTypeInvalid: |
| 33 case videoFrameTypeSkip: |
| 34 return kSkipFrame; |
| 35 case videoFrameTypeIDR: |
| 36 case videoFrameTypeI: |
| 37 case videoFrameTypeP: |
| 38 case videoFrameTypeIPMixed: |
| 39 return kDeltaFrame; |
| 40 default: |
| 41 LOG(LS_WARNING) << "Unknown EVideoFrameType: " << type; |
| 42 return kDeltaFrame; |
| 43 } |
| 44 } |
| 45 |
| 46 // Copies the encoded bytes from |info| to |encoded_image| and updates the |
| 47 // fragmentation information of |frag_header|. |
| 48 // After OpenH264 encoding, the encoded bytes are stored in |info| spread out |
| 49 // over a number of layers and "NAL units". Each NAL unit is a fragment starting |
| 50 // with the four-byte NAL header {0,0,0,1}. To save bytes, the NAL headers are |
| 51 // excluded when copying to |encoded_image->_buffer|. However these headers must |
| 52 // be included for an H264Decoder to be able to decode the data. |
| 53 // When fragments are sent over a network, the receiving end must re-insert |
| 54 // the NAL headers before each fragment. |
| 55 // For image data encoded and decoded locally, RTPDefragmentize can be used |
| 56 // to convert (EncodedImage, RTPFragmentationHeader) with NAL headers excluded |
| 57 // to a decodable EncodedImage buffer with NAL headers included. |
| 58 static void RTPFragmentize(EncodedImage* encoded_image, |
| 59 const VideoFrame& frame, |
| 60 SFrameBSInfo* info, |
| 61 RTPFragmentationHeader* frag_header) { |
| 62 // Calculate minimum buffer size required to hold encoded data. |
| 63 size_t required_size = 0; |
| 64 for (int iLayer = 0; iLayer < info->iLayerNum; ++iLayer) { |
| 65 const SLayerBSInfo& layerInfo = info->sLayerInfo[iLayer]; |
| 66 for (int iNal = 0; iNal < layerInfo.iNalCount; ++iNal) { |
| 67 required_size += (layerInfo.pNalLengthInByte[iNal] - 4); |
| 68 } |
| 69 } |
| 70 if (encoded_image->_size < required_size) { |
| 71 // Increase buffer size. Allocate enough to hold an unencoded image, this |
| 72 // should be more than enough to hold any encoded data of future frames of |
| 73 // the same size (avoiding possible future reallocation due to variations in |
| 74 // required size). |
| 75 encoded_image->_size = CalcBufferSize( |
| 76 VideoType::kI420, frame.width(), frame.height()); |
| 77 if (encoded_image->_size < required_size) { |
| 78 // Encoded data > unencoded data, wtf? Allocate required bytes. |
| 79 encoded_image->_size = required_size; |
| 80 } |
| 81 if (encoded_image->_buffer != nullptr) |
| 82 delete[] encoded_image->_buffer; |
| 83 encoded_image->_buffer = new uint8_t[encoded_image->_size]; |
| 84 } |
| 85 |
| 86 // Iterate layers and NAL units, copy encoded data to |encoded_image->_buffer| |
| 87 // and note each NAL unit as a fragment, excluding its NAL header. |
| 88 encoded_image->_length = 0; |
| 89 std::vector<int> frags; |
| 90 for (int iLayer = 0; iLayer < info->iLayerNum; ++iLayer) { |
| 91 int iLayerLen = 0; |
| 92 const SLayerBSInfo& layerInfo = info->sLayerInfo[iLayer]; |
| 93 // Copy the layer data to |encoded_image->_buffer|, excluding the 4-byte |
| 94 // NAL headers. |
| 95 for (int iNal = 0; iNal < layerInfo.iNalCount; ++iNal) { |
| 96 // Expecting NAL header constant {0,0,0,1}. |
| 97 DCHECK_EQ(layerInfo.pBsBuf[iLayerLen+0], static_cast<unsigned char>(0)); |
| 98 DCHECK_EQ(layerInfo.pBsBuf[iLayerLen+1], static_cast<unsigned char>(0)); |
| 99 DCHECK_EQ(layerInfo.pBsBuf[iLayerLen+2], static_cast<unsigned char>(0)); |
| 100 DCHECK_EQ(layerInfo.pBsBuf[iLayerLen+3], static_cast<unsigned char>(1)); |
| 101 |
| 102 memcpy(encoded_image->_buffer + encoded_image->_length, |
| 103 layerInfo.pBsBuf + iLayerLen + 4, |
| 104 (layerInfo.pNalLengthInByte[iNal] - 4) * sizeof(unsigned char)); |
| 105 encoded_image->_length += (layerInfo.pNalLengthInByte[iNal] - 4); |
| 106 frags.push_back(layerInfo.pNalLengthInByte[iNal] - 4); |
| 107 |
| 108 iLayerLen += layerInfo.pNalLengthInByte[iNal]; |
| 109 } |
| 110 } |
| 111 |
| 112 frag_header->VerifyAndAllocateFragmentationHeader(frags.size()); |
| 113 for (size_t i = 0, off = 0; i < frags.size(); ++i) { |
| 114 frag_header->fragmentationOffset[i] = off; |
| 115 frag_header->fragmentationLength[i] = frags[i]; |
| 116 off += frags[i]; |
| 117 } |
| 118 } |
| 119 |
| 120 void H264EncoderImpl::RTPDefragmentize( |
| 121 const EncodedImage& encoded_image, |
| 122 const RTPFragmentationHeader* frag_header, |
| 123 uint8_t* enc_buffer_with_nal, size_t enc_buffer_with_nal_length) { |
| 124 DCHECK_GE(enc_buffer_with_nal_length, |
| 125 RTPDefragmentizeBufferLengthWithNAL(encoded_image, frag_header)); |
| 126 const unsigned char nal_header[] = { 0, 0, 0, 1 }; |
| 127 for (size_t i = 0; i < frag_header->fragmentationVectorSize; ++i) { |
| 128 DCHECK_LE(frag_header->fragmentationOffset[i] + |
| 129 frag_header->fragmentationLength[i], |
| 130 encoded_image._length); |
| 131 |
| 132 // Insert a NAL header constant {0,0,0,1}. |
| 133 memcpy(enc_buffer_with_nal, nal_header, 4); |
| 134 // Copy fragment data. |
| 135 memcpy(enc_buffer_with_nal + 4, |
| 136 encoded_image._buffer + frag_header->fragmentationOffset[i], |
| 137 frag_header->fragmentationLength[i]); |
| 138 |
| 139 enc_buffer_with_nal += (4 + frag_header->fragmentationLength[i]); |
| 140 } |
| 141 } |
| 142 |
| 143 size_t H264EncoderImpl::RTPDefragmentizeBufferLengthWithNAL( |
| 144 const EncodedImage& encoded_image, |
| 145 const webrtc::RTPFragmentationHeader* frag_header) { |
| 146 return encoded_image._length + |
| 147 4 * static_cast<size_t>(frag_header->fragmentationVectorSize); |
| 148 } |
| 149 |
| 150 H264EncoderImpl::H264EncoderImpl() |
| 151 : openh264_encoder_(nullptr), |
| 152 encoded_image_callback_(nullptr) { |
| 153 } |
| 154 |
| 155 H264EncoderImpl::~H264EncoderImpl() { |
| 156 Release(); |
| 157 } |
| 158 |
| 159 int32_t H264EncoderImpl::InitEncode(const VideoCodec* codec_settings, |
| 160 int32_t /*number_of_cores*/, |
| 161 size_t /*max_payload_size*/) { |
| 162 if (!codec_settings || |
| 163 codec_settings->codecType != VideoCodecType::kVideoCodecH264) { |
| 164 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| 165 } |
| 166 if (codec_settings->maxFramerate == 0) |
| 167 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| 168 if (codec_settings->width < 1 || codec_settings->height < 1) |
| 169 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| 170 |
| 171 int release_ret = Release(); |
| 172 if (release_ret != WEBRTC_VIDEO_CODEC_OK) |
| 173 return release_ret; |
| 174 DCHECK(!openh264_encoder_); |
| 175 |
| 176 // Create encoder. |
| 177 if (WelsCreateSVCEncoder(&openh264_encoder_) != 0) { |
| 178 // Failed to create encoder. |
| 179 LOG(LS_ERROR) << "Failed to create OpenH264 encoder"; |
| 180 DCHECK(!openh264_encoder_); |
| 181 return WEBRTC_VIDEO_CODEC_ERROR; |
| 182 } |
| 183 DCHECK(openh264_encoder_); |
| 184 if (&codec_settings_ != codec_settings) |
| 185 codec_settings_ = *codec_settings; |
| 186 |
| 187 if (codec_settings_.targetBitrate == 0) |
| 188 codec_settings_.targetBitrate = codec_settings_.startBitrate; |
| 189 |
| 190 // Note: H264 codec specifics are ignored: |
| 191 // - codec_settings->codecSpecific.H264.frameDroppingOn |
| 192 // - codec_settings->codecSpecific.H264.keyFrameInterval |
| 193 |
| 194 // Initialization parameters. |
| 195 // There are two ways to initialize. There is SEncParamBase (cleared with |
| 196 // memset(&p, 0, sizeof(SEncParamBase)) used in Initialize, and SEncParamExt |
| 197 // which is a superset of SEncParamBase (cleared with GetDefaultParams) used |
| 198 // in InitializeExt. We use SEncParamBase/Initialize. |
| 199 SEncParamBase init_params; |
| 200 memset(&init_params, 0, sizeof(SEncParamBase)); |
| 201 if (codec_settings_.mode == kRealtimeVideo) { |
| 202 init_params.iUsageType = CAMERA_VIDEO_REAL_TIME; |
| 203 } else if (codec_settings_.mode == kScreensharing) { |
| 204 init_params.iUsageType = SCREEN_CONTENT_REAL_TIME; |
| 205 } else { |
| 206 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| 207 } |
| 208 init_params.iPicWidth = codec_settings_.width; |
| 209 init_params.iPicHeight = codec_settings_.height; |
| 210 // iTargetBitrate is in bit/s, targetBitrate is in kbit/s. |
| 211 init_params.iTargetBitrate = codec_settings_.targetBitrate * 1000; |
| 212 // Rate Control mode |
| 213 init_params.iRCMode = RC_QUALITY_MODE; |
| 214 init_params.fMaxFrameRate = static_cast<float>(codec_settings_.maxFramerate); |
| 215 |
| 216 // Initialize. |
| 217 if (openh264_encoder_->Initialize(&init_params) != 0) { |
| 218 // Failed to initialize. |
| 219 LOG(LS_ERROR) << "Failed to initialize OpenH264 encoder"; |
| 220 Release(); |
| 221 return WEBRTC_VIDEO_CODEC_ERROR; |
| 222 } |
| 223 |
| 224 // Initialize encoded image. |
| 225 // Default buffer size: size of unencoded data (should be large enough). |
| 226 encoded_image_._size = CalcBufferSize( |
| 227 VideoType::kI420, codec_settings_.width, codec_settings_.height); |
| 228 encoded_image_._buffer = new uint8_t[encoded_image_._size]; |
| 229 encoded_image_._completeFrame = true; |
| 230 encoded_image_._encodedWidth = 0; |
| 231 encoded_image_._encodedHeight = 0; |
| 232 encoded_image_._length = 0; |
| 233 return WEBRTC_VIDEO_CODEC_OK; |
| 234 } |
| 235 |
| 236 int32_t H264EncoderImpl::Release() { |
| 237 if (openh264_encoder_) { |
| 238 int uninit_ret = openh264_encoder_->Uninitialize(); |
| 239 if (uninit_ret != 0) { |
| 240 LOG(LS_WARNING) << "OpenH264 encoder's Uninitialize() returned " |
| 241 << "unsuccessful: " << uninit_ret; |
| 242 } |
| 243 WelsDestroySVCEncoder(openh264_encoder_); |
| 244 openh264_encoder_ = nullptr; |
| 245 } |
| 246 if (encoded_image_._buffer != nullptr) { |
| 247 delete[] encoded_image_._buffer; |
| 248 encoded_image_._buffer = nullptr; |
| 249 } |
| 250 return WEBRTC_VIDEO_CODEC_OK; |
| 251 } |
| 252 |
| 253 int32_t H264EncoderImpl::RegisterEncodeCompleteCallback( |
| 254 EncodedImageCallback* callback) { |
| 255 encoded_image_callback_ = callback; |
| 256 return WEBRTC_VIDEO_CODEC_OK; |
| 257 } |
| 258 |
| 259 int32_t H264EncoderImpl::SetRates(uint32_t bitrate, uint32_t framerate) { |
| 260 if (bitrate <= 0 || framerate <= 0) { |
| 261 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| 262 } |
| 263 codec_settings_.targetBitrate = bitrate; |
| 264 codec_settings_.maxFramerate = framerate; |
| 265 return WEBRTC_VIDEO_CODEC_OK; |
| 266 } |
| 267 |
| 268 int32_t H264EncoderImpl::Encode( |
| 269 const VideoFrame& frame, const CodecSpecificInfo* codec_specific_info, |
| 270 const std::vector<VideoFrameType>* frame_types) { |
| 271 if (!IsInitialized()) |
| 272 return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| 273 if (frame.IsZeroSize()) |
| 274 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| 275 if (!encoded_image_callback_) { |
| 276 LOG(LS_WARNING) << "InitEncode() has been called, but a callback function " |
| 277 << "has not been set with RegisterEncodeCompleteCallback()"; |
| 278 return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| 279 } |
| 280 |
| 281 // Make |codec_settings_|'s size reflect the latest frame's size. |
| 282 if (codec_settings_.width != frame.width() || |
| 283 codec_settings_.height != frame.height()) { |
| 284 codec_settings_.width = frame.width(); |
| 285 codec_settings_.height = frame.height(); |
| 286 } |
| 287 |
| 288 // Set encoder options. |
| 289 int video_format = EVideoFormatType::videoFormatI420; |
| 290 openh264_encoder_->SetOption(ENCODER_OPTION_DATAFORMAT, |
| 291 &video_format); |
| 292 SBitrateInfo target_bitrate; |
| 293 memset(&target_bitrate, 0, sizeof(SBitrateInfo)); |
| 294 target_bitrate.iLayer = SPATIAL_LAYER_ALL, |
| 295 target_bitrate.iBitrate = codec_settings_.targetBitrate * 1000; |
| 296 openh264_encoder_->SetOption(ENCODER_OPTION_BITRATE, |
| 297 &target_bitrate); |
| 298 float max_framerate = static_cast<float>(codec_settings_.maxFramerate); |
| 299 openh264_encoder_->SetOption(ENCODER_OPTION_FRAME_RATE, |
| 300 &max_framerate); |
| 301 |
| 302 if (OPENH264_ENCODER_LOGGING) { |
| 303 int trace_level = WELS_LOG_DETAIL; |
| 304 openh264_encoder_->SetOption(ENCODER_OPTION_TRACE_LEVEL, |
| 305 &trace_level); |
| 306 } |
| 307 |
| 308 // EncodeFrame input. |
| 309 SSourcePicture picture; |
| 310 memset(&picture, 0, sizeof(SSourcePicture)); |
| 311 picture.iPicWidth = frame.width(); |
| 312 picture.iPicHeight = frame.height(); |
| 313 picture.iColorFormat = video_format; |
| 314 picture.uiTimeStamp = frame.timestamp(); |
| 315 picture.iStride[0] = frame.stride(kYPlane); |
| 316 picture.iStride[1] = frame.stride(kUPlane); |
| 317 picture.iStride[2] = frame.stride(kVPlane); |
| 318 picture.pData[0] = const_cast<uint8_t*>(frame.buffer(kYPlane)); |
| 319 picture.pData[1] = const_cast<uint8_t*>(frame.buffer(kUPlane)); |
| 320 picture.pData[2] = const_cast<uint8_t*>(frame.buffer(kVPlane)); |
| 321 |
| 322 // EncodeFrame output. |
| 323 SFrameBSInfo info; |
| 324 memset(&info, 0, sizeof(SFrameBSInfo)); |
| 325 |
| 326 // Encode! |
| 327 if (openh264_encoder_->EncodeFrame(&picture, &info) != 0) { |
| 328 LOG(LS_ERROR) << "OpenH264 frame encoding failed (EncodeFrame)"; |
| 329 return WEBRTC_VIDEO_CODEC_ERROR; |
| 330 } |
| 331 |
| 332 encoded_image_._encodedWidth = frame.width(); |
| 333 encoded_image_._encodedHeight = frame.height(); |
| 334 encoded_image_._timeStamp = frame.timestamp(); |
| 335 encoded_image_.capture_time_ms_ = frame.render_time_ms(); |
| 336 encoded_image_._frameType = EVideoFrameType_to_VideoFrameType( |
| 337 info.eFrameType); |
| 338 |
| 339 // Split encoded image up into fragments. This also updates |encoded_image_|. |
| 340 RTPFragmentationHeader frag_header; |
| 341 RTPFragmentize(&encoded_image_, frame, &info, &frag_header); |
| 342 |
| 343 // Encoder can skip frames to save bandwidth in which case |
| 344 // |encoded_image_._length| == 0. |
| 345 if (encoded_image_._length > 0) { |
| 346 // Deliver encoded image. |
| 347 encoded_image_callback_->Encoded(encoded_image_, codec_specific_info, |
| 348 &frag_header); |
| 349 } |
| 350 return WEBRTC_VIDEO_CODEC_OK; |
| 351 } |
| 352 |
| 353 bool H264EncoderImpl::IsInitialized() { |
| 354 return openh264_encoder_ != nullptr; |
| 355 } |
| 356 |
| 357 int32_t H264EncoderImpl::SetChannelParameters( |
| 358 uint32_t packet_loss, int64_t rtt) { |
| 359 return WEBRTC_VIDEO_CODEC_OK; |
| 360 } |
| 361 |
| 362 int32_t H264EncoderImpl::SetPeriodicKeyFrames(bool enable) { |
| 363 return WEBRTC_VIDEO_CODEC_OK; |
| 364 } |
| 365 |
| 366 int32_t H264EncoderImpl::CodecConfigParameters(uint8_t* buffer, int32_t size) { |
| 367 return WEBRTC_VIDEO_CODEC_OK; |
| 368 } |
| 369 |
| 370 void H264EncoderImpl::OnDroppedFrame() { |
| 371 } |
| 372 |
| 373 } // namespace webrtc |
OLD | NEW |