| Index: webrtc/base/bind.h.pump
|
| diff --git a/webrtc/base/bind.h.pump b/webrtc/base/bind.h.pump
|
| index 11767abe5044443ea282c09d26ca9264cc117b02..9a4bc664c39145c416c13f01073f3da10ced71f4 100644
|
| --- a/webrtc/base/bind.h.pump
|
| +++ b/webrtc/base/bind.h.pump
|
| @@ -12,12 +12,13 @@
|
| // /home/build/google3/third_party/gtest/scripts/pump.py bind.h.pump
|
|
|
| // Bind() is an overloaded function that converts method calls into function
|
| -// objects (aka functors). It captures any arguments to the method by value
|
| -// when Bind is called, producing a stateful, nullary function object. Care
|
| -// should be taken about the lifetime of objects captured by Bind(); the
|
| -// returned functor knows nothing about the lifetime of the method's object or
|
| -// any arguments passed by pointer, and calling the functor with a destroyed
|
| -// object will surely do bad things.
|
| +// objects (aka functors). The method object is captured as a scoped_refptr<> if
|
| +// possible, and as a raw pointer otherwise. Any arguments to the method are
|
| +// captured by value. The return value of Bind is a stateful, nullary function
|
| +// object. Care should be taken about the lifetime of objects captured by
|
| +// Bind(); the returned functor knows nothing about the lifetime of a non
|
| +// ref-counted method object or any arguments passed by pointer, and calling the
|
| +// functor with a destroyed object will surely do bad things.
|
| //
|
| // Example usage:
|
| // struct Foo {
|
| @@ -34,10 +35,33 @@
|
| // cout << rtc::Bind(&Foo::Test3, &foo, 3)() << endl;
|
| // cout << rtc::Bind(&Foo::Test4, &foo, 7, 8.5f)() << endl;
|
| // }
|
| +//
|
| +// Example usage of ref counted objects:
|
| +// struct Bar {
|
| +// int AddRef();
|
| +// int Release();
|
| +//
|
| +// void Test() {}
|
| +// void BindThis() {
|
| +// // The functor passed to AsyncInvoke() will keep this object alive.
|
| +// invoker.AsyncInvoke(rtc::Bind(&Bar::Test, this));
|
| +// }
|
| +// };
|
| +//
|
| +// int main() {
|
| +// rtc::scoped_refptr<Bar> bar = new rtc::RefCountedObject<Bar>();
|
| +// auto functor = rtc::Bind(&Bar::Test, bar);
|
| +// bar = nullptr;
|
| +// // The functor stores an internal scoped_refptr<Bar>, so this is safe.
|
| +// functor();
|
| +// }
|
| +//
|
|
|
| #ifndef WEBRTC_BASE_BIND_H_
|
| #define WEBRTC_BASE_BIND_H_
|
|
|
| +#include "webrtc/base/scoped_ref_ptr.h"
|
| +
|
| #define NONAME
|
|
|
| namespace rtc {
|
| @@ -49,6 +73,57 @@ namespace detail {
|
| // references stripped. This trick allows the compiler to dictate the Bind
|
| // parameter types rather than deduce them.
|
| template <class T> struct identity { typedef T type; };
|
| +
|
| +// IsRefCounted<T>::value will be true for types that can be used in
|
| +// rtc::scoped_refptr<T>, i.e. types that implements nullary functions AddRef()
|
| +// and Release(), regardless of their return types. AddRef() and Release() can
|
| +// be defined in T or any superclass of T.
|
| +template <typename T>
|
| +class IsRefCounted {
|
| + // This is a complex implementation detail done with SFINAE.
|
| +
|
| + // Define types such that sizeof(Yes) != sizeof(No).
|
| + struct Yes { char dummy[1]; };
|
| + struct No { char dummy[2]; };
|
| + // Define two overloaded template functions with return types of different
|
| + // size. This way, we can use sizeof() on the return type to determine which
|
| + // function the compiler would have chosen. One function will be preferred
|
| + // over the other if it is possible to create it without compiler errors,
|
| + // otherwise the compiler will simply remove it, and default to the less
|
| + // preferred function.
|
| + template <typename R>
|
| + static Yes test(R* r, decltype(r->AddRef(), r->Release(), 42));
|
| + template <typename C> static No test(...);
|
| +
|
| +public:
|
| + // Trick the compiler to tell if it's possible to call AddRef() and Release().
|
| + static const bool value = sizeof(test<T>((T*)nullptr, 42)) == sizeof(Yes);
|
| +};
|
| +
|
| +// TernaryTypeOperator is a helper class to select a type based on a static bool
|
| +// value.
|
| +template <bool condition, typename IfTrueT, typename IfFalseT>
|
| +struct TernaryTypeOperator {};
|
| +
|
| +template <typename IfTrueT, typename IfFalseT>
|
| +struct TernaryTypeOperator<true, IfTrueT, IfFalseT> {
|
| + typedef IfTrueT type;
|
| +};
|
| +
|
| +template <typename IfTrueT, typename IfFalseT>
|
| +struct TernaryTypeOperator<false, IfTrueT, IfFalseT> {
|
| + typedef IfFalseT type;
|
| +};
|
| +
|
| +// PointerType<T>::type will be scoped_refptr<T> for ref counted types, and T*
|
| +// otherwise.
|
| +template <class T>
|
| +struct PointerType {
|
| + typedef typename TernaryTypeOperator<IsRefCounted<T>::value,
|
| + scoped_refptr<T>,
|
| + T*>::type type;
|
| +};
|
| +
|
| } // namespace detail
|
|
|
| $var n = 6
|
| @@ -68,7 +143,7 @@ class MethodFunctor$i {
|
| return (object_->*method_)($for j , [[p$(j)_]]); }
|
| private:
|
| MethodT method_;
|
| - ObjectT* object_;$for j [[
|
| + typename detail::PointerType<ObjectT>::type object_;$for j [[
|
|
|
| P$j p$(j)_;]]
|
|
|
| @@ -116,6 +191,18 @@ Bind(FP_T(method), const ObjectT* object$for j [[,
|
| }
|
|
|
| #undef FP_T
|
| +#define FP_T(x) R (ObjectT::*x)($for j , [[P$j]])
|
| +
|
| +template <class ObjectT, class R$for j [[,
|
| + class P$j]]>
|
| +MethodFunctor$i<ObjectT, FP_T(NONAME), R$for j [[, P$j]]>
|
| +Bind(FP_T(method), const scoped_refptr<ObjectT>& object$for j [[,
|
| + typename detail::identity<P$j>::type p$j]]) {
|
| + return MethodFunctor$i<ObjectT, FP_T(NONAME), R$for j [[, P$j]]>(
|
| + method, object.get()$for j [[, p$j]]);
|
| +}
|
| +
|
| +#undef FP_T
|
| #define FP_T(x) R (*x)($for j , [[P$j]])
|
|
|
| template <class R$for j [[,
|
|
|