Index: webrtc/base/bind.h.pump |
diff --git a/webrtc/base/bind.h.pump b/webrtc/base/bind.h.pump |
index 11767abe5044443ea282c09d26ca9264cc117b02..9a4bc664c39145c416c13f01073f3da10ced71f4 100644 |
--- a/webrtc/base/bind.h.pump |
+++ b/webrtc/base/bind.h.pump |
@@ -12,12 +12,13 @@ |
// /home/build/google3/third_party/gtest/scripts/pump.py bind.h.pump |
// Bind() is an overloaded function that converts method calls into function |
-// objects (aka functors). It captures any arguments to the method by value |
-// when Bind is called, producing a stateful, nullary function object. Care |
-// should be taken about the lifetime of objects captured by Bind(); the |
-// returned functor knows nothing about the lifetime of the method's object or |
-// any arguments passed by pointer, and calling the functor with a destroyed |
-// object will surely do bad things. |
+// objects (aka functors). The method object is captured as a scoped_refptr<> if |
+// possible, and as a raw pointer otherwise. Any arguments to the method are |
+// captured by value. The return value of Bind is a stateful, nullary function |
+// object. Care should be taken about the lifetime of objects captured by |
+// Bind(); the returned functor knows nothing about the lifetime of a non |
+// ref-counted method object or any arguments passed by pointer, and calling the |
+// functor with a destroyed object will surely do bad things. |
// |
// Example usage: |
// struct Foo { |
@@ -34,10 +35,33 @@ |
// cout << rtc::Bind(&Foo::Test3, &foo, 3)() << endl; |
// cout << rtc::Bind(&Foo::Test4, &foo, 7, 8.5f)() << endl; |
// } |
+// |
+// Example usage of ref counted objects: |
+// struct Bar { |
+// int AddRef(); |
+// int Release(); |
+// |
+// void Test() {} |
+// void BindThis() { |
+// // The functor passed to AsyncInvoke() will keep this object alive. |
+// invoker.AsyncInvoke(rtc::Bind(&Bar::Test, this)); |
+// } |
+// }; |
+// |
+// int main() { |
+// rtc::scoped_refptr<Bar> bar = new rtc::RefCountedObject<Bar>(); |
+// auto functor = rtc::Bind(&Bar::Test, bar); |
+// bar = nullptr; |
+// // The functor stores an internal scoped_refptr<Bar>, so this is safe. |
+// functor(); |
+// } |
+// |
#ifndef WEBRTC_BASE_BIND_H_ |
#define WEBRTC_BASE_BIND_H_ |
+#include "webrtc/base/scoped_ref_ptr.h" |
+ |
#define NONAME |
namespace rtc { |
@@ -49,6 +73,57 @@ namespace detail { |
// references stripped. This trick allows the compiler to dictate the Bind |
// parameter types rather than deduce them. |
template <class T> struct identity { typedef T type; }; |
+ |
+// IsRefCounted<T>::value will be true for types that can be used in |
+// rtc::scoped_refptr<T>, i.e. types that implements nullary functions AddRef() |
+// and Release(), regardless of their return types. AddRef() and Release() can |
+// be defined in T or any superclass of T. |
+template <typename T> |
+class IsRefCounted { |
+ // This is a complex implementation detail done with SFINAE. |
+ |
+ // Define types such that sizeof(Yes) != sizeof(No). |
+ struct Yes { char dummy[1]; }; |
+ struct No { char dummy[2]; }; |
+ // Define two overloaded template functions with return types of different |
+ // size. This way, we can use sizeof() on the return type to determine which |
+ // function the compiler would have chosen. One function will be preferred |
+ // over the other if it is possible to create it without compiler errors, |
+ // otherwise the compiler will simply remove it, and default to the less |
+ // preferred function. |
+ template <typename R> |
+ static Yes test(R* r, decltype(r->AddRef(), r->Release(), 42)); |
+ template <typename C> static No test(...); |
+ |
+public: |
+ // Trick the compiler to tell if it's possible to call AddRef() and Release(). |
+ static const bool value = sizeof(test<T>((T*)nullptr, 42)) == sizeof(Yes); |
+}; |
+ |
+// TernaryTypeOperator is a helper class to select a type based on a static bool |
+// value. |
+template <bool condition, typename IfTrueT, typename IfFalseT> |
+struct TernaryTypeOperator {}; |
+ |
+template <typename IfTrueT, typename IfFalseT> |
+struct TernaryTypeOperator<true, IfTrueT, IfFalseT> { |
+ typedef IfTrueT type; |
+}; |
+ |
+template <typename IfTrueT, typename IfFalseT> |
+struct TernaryTypeOperator<false, IfTrueT, IfFalseT> { |
+ typedef IfFalseT type; |
+}; |
+ |
+// PointerType<T>::type will be scoped_refptr<T> for ref counted types, and T* |
+// otherwise. |
+template <class T> |
+struct PointerType { |
+ typedef typename TernaryTypeOperator<IsRefCounted<T>::value, |
+ scoped_refptr<T>, |
+ T*>::type type; |
+}; |
+ |
} // namespace detail |
$var n = 6 |
@@ -68,7 +143,7 @@ class MethodFunctor$i { |
return (object_->*method_)($for j , [[p$(j)_]]); } |
private: |
MethodT method_; |
- ObjectT* object_;$for j [[ |
+ typename detail::PointerType<ObjectT>::type object_;$for j [[ |
P$j p$(j)_;]] |
@@ -116,6 +191,18 @@ Bind(FP_T(method), const ObjectT* object$for j [[, |
} |
#undef FP_T |
+#define FP_T(x) R (ObjectT::*x)($for j , [[P$j]]) |
+ |
+template <class ObjectT, class R$for j [[, |
+ class P$j]]> |
+MethodFunctor$i<ObjectT, FP_T(NONAME), R$for j [[, P$j]]> |
+Bind(FP_T(method), const scoped_refptr<ObjectT>& object$for j [[, |
+ typename detail::identity<P$j>::type p$j]]) { |
+ return MethodFunctor$i<ObjectT, FP_T(NONAME), R$for j [[, P$j]]>( |
+ method, object.get()$for j [[, p$j]]); |
+} |
+ |
+#undef FP_T |
#define FP_T(x) R (*x)($for j , [[P$j]]) |
template <class R$for j [[, |