| Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
|
| diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
|
| index 00d9b536584360a9ad989c72751bdd6e64319356..2c2743f05323fef4597a3d2a20367105ae942e11 100644
|
| --- a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
|
| +++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
|
| @@ -51,33 +51,33 @@ void AddToMean(complex<float> data, int count, complex<float>* mean) {
|
|
|
| static const int kWindowBlockSize = 10;
|
|
|
| -VarianceArray::VarianceArray(int freqs,
|
| +VarianceArray::VarianceArray(int num_freqs,
|
| StepType type,
|
| int window_size,
|
| float decay)
|
| - : running_mean_(new complex<float>[freqs]()),
|
| - running_mean_sq_(new complex<float>[freqs]()),
|
| - sub_running_mean_(new complex<float>[freqs]()),
|
| - sub_running_mean_sq_(new complex<float>[freqs]()),
|
| - variance_(new float[freqs]()),
|
| - conj_sum_(new float[freqs]()),
|
| - freqs_(freqs),
|
| + : running_mean_(new complex<float>[num_freqs]()),
|
| + running_mean_sq_(new complex<float>[num_freqs]()),
|
| + sub_running_mean_(new complex<float>[num_freqs]()),
|
| + sub_running_mean_sq_(new complex<float>[num_freqs]()),
|
| + variance_(new float[num_freqs]()),
|
| + conj_sum_(new float[num_freqs]()),
|
| + num_freqs_(num_freqs),
|
| window_size_(window_size),
|
| decay_(decay),
|
| history_cursor_(0),
|
| count_(0),
|
| array_mean_(0.0f),
|
| buffer_full_(false) {
|
| - history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]());
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + history_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]());
|
| + for (int i = 0; i < num_freqs_; ++i) {
|
| history_[i].reset(new complex<float>[window_size_]());
|
| }
|
| - subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]());
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]());
|
| + for (int i = 0; i < num_freqs_; ++i) {
|
| subhistory_[i].reset(new complex<float>[window_size_]());
|
| }
|
| - subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]());
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]());
|
| + for (int i = 0; i < num_freqs_; ++i) {
|
| subhistory_sq_[i].reset(new complex<float>[window_size_]());
|
| }
|
| switch (type) {
|
| @@ -104,7 +104,7 @@ VarianceArray::VarianceArray(int freqs,
|
| void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) {
|
| array_mean_ = 0.0f;
|
| ++count_;
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (int i = 0; i < num_freqs_; ++i) {
|
| complex<float> sample = data[i];
|
| if (!skip_fudge) {
|
| sample = zerofudge(sample);
|
| @@ -132,7 +132,7 @@ void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) {
|
| void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) {
|
| array_mean_ = 0.0f;
|
| ++count_;
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (int i = 0; i < num_freqs_; ++i) {
|
| complex<float> sample = data[i];
|
| sample = zerofudge(sample);
|
|
|
| @@ -159,7 +159,7 @@ void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) {
|
| void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
|
| int num = min(count_ + 1, window_size_);
|
| array_mean_ = 0.0f;
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (int i = 0; i < num_freqs_; ++i) {
|
| complex<float> mean;
|
| float conj_sum = 0.0f;
|
|
|
| @@ -192,7 +192,7 @@ void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
|
| // are recomputed from scratch at each of these transitions.
|
| void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) {
|
| int blocks = min(window_size_, history_cursor_ + 1);
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (int i = 0; i < num_freqs_; ++i) {
|
| AddToMean(data[i], count_ + 1, &sub_running_mean_[i]);
|
| AddToMean(data[i] * std::conj(data[i]), count_ + 1,
|
| &sub_running_mean_sq_[i]);
|
| @@ -228,7 +228,7 @@ void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data,
|
| // TODO(ekmeyerson) To mitigate potential divergence, add counter so that
|
| // after every so often sums are computed scratch by summing over all
|
| // elements instead of subtracting oldest and adding newest.
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (int i = 0; i < num_freqs_; ++i) {
|
| sub_running_mean_[i] += data[i];
|
| sub_running_mean_sq_[i] += data[i] * std::conj(data[i]);
|
| }
|
| @@ -239,7 +239,7 @@ void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data,
|
| if (count_ >= kWindowBlockSize) {
|
| count_ = 0;
|
|
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (int i = 0; i < num_freqs_; ++i) {
|
| running_mean_[i] -= subhistory_[i][history_cursor_];
|
| running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_];
|
|
|
| @@ -268,10 +268,11 @@ void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data,
|
| }
|
|
|
| void VarianceArray::Clear() {
|
| - memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_);
|
| - memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_);
|
| - memset(variance_.get(), 0, sizeof(*variance_.get()) * freqs_);
|
| - memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * freqs_);
|
| + memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * num_freqs_);
|
| + memset(running_mean_sq_.get(), 0,
|
| + sizeof(*running_mean_sq_.get()) * num_freqs_);
|
| + memset(variance_.get(), 0, sizeof(*variance_.get()) * num_freqs_);
|
| + memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * num_freqs_);
|
| history_cursor_ = 0;
|
| count_ = 0;
|
| array_mean_ = 0.0f;
|
| @@ -279,14 +280,14 @@ void VarianceArray::Clear() {
|
|
|
| void VarianceArray::ApplyScale(float scale) {
|
| array_mean_ = 0.0f;
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (int i = 0; i < num_freqs_; ++i) {
|
| variance_[i] *= scale * scale;
|
| array_mean_ += (variance_[i] - array_mean_) / (i + 1);
|
| }
|
| }
|
|
|
| GainApplier::GainApplier(int freqs, float change_limit)
|
| - : freqs_(freqs),
|
| + : num_freqs_(freqs),
|
| change_limit_(change_limit),
|
| target_(new float[freqs]()),
|
| current_(new float[freqs]()) {
|
| @@ -298,7 +299,7 @@ GainApplier::GainApplier(int freqs, float change_limit)
|
|
|
| void GainApplier::Apply(const complex<float>* in_block,
|
| complex<float>* out_block) {
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (int i = 0; i < num_freqs_; ++i) {
|
| float factor = sqrtf(fabsf(current_[i]));
|
| if (!std::isnormal(factor)) {
|
| factor = 1.0f;
|
|
|