| Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc | 
| diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc | 
| index 00d9b536584360a9ad989c72751bdd6e64319356..2c2743f05323fef4597a3d2a20367105ae942e11 100644 | 
| --- a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc | 
| +++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc | 
| @@ -51,33 +51,33 @@ void AddToMean(complex<float> data, int count, complex<float>* mean) { | 
|  | 
| static const int kWindowBlockSize = 10; | 
|  | 
| -VarianceArray::VarianceArray(int freqs, | 
| +VarianceArray::VarianceArray(int num_freqs, | 
| StepType type, | 
| int window_size, | 
| float decay) | 
| -    : running_mean_(new complex<float>[freqs]()), | 
| -      running_mean_sq_(new complex<float>[freqs]()), | 
| -      sub_running_mean_(new complex<float>[freqs]()), | 
| -      sub_running_mean_sq_(new complex<float>[freqs]()), | 
| -      variance_(new float[freqs]()), | 
| -      conj_sum_(new float[freqs]()), | 
| -      freqs_(freqs), | 
| +    : running_mean_(new complex<float>[num_freqs]()), | 
| +      running_mean_sq_(new complex<float>[num_freqs]()), | 
| +      sub_running_mean_(new complex<float>[num_freqs]()), | 
| +      sub_running_mean_sq_(new complex<float>[num_freqs]()), | 
| +      variance_(new float[num_freqs]()), | 
| +      conj_sum_(new float[num_freqs]()), | 
| +      num_freqs_(num_freqs), | 
| window_size_(window_size), | 
| decay_(decay), | 
| history_cursor_(0), | 
| count_(0), | 
| array_mean_(0.0f), | 
| buffer_full_(false) { | 
| -  history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 
| -  for (int i = 0; i < freqs_; ++i) { | 
| +  history_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); | 
| +  for (int i = 0; i < num_freqs_; ++i) { | 
| history_[i].reset(new complex<float>[window_size_]()); | 
| } | 
| -  subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 
| -  for (int i = 0; i < freqs_; ++i) { | 
| +  subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); | 
| +  for (int i = 0; i < num_freqs_; ++i) { | 
| subhistory_[i].reset(new complex<float>[window_size_]()); | 
| } | 
| -  subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 
| -  for (int i = 0; i < freqs_; ++i) { | 
| +  subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); | 
| +  for (int i = 0; i < num_freqs_; ++i) { | 
| subhistory_sq_[i].reset(new complex<float>[window_size_]()); | 
| } | 
| switch (type) { | 
| @@ -104,7 +104,7 @@ VarianceArray::VarianceArray(int freqs, | 
| void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { | 
| array_mean_ = 0.0f; | 
| ++count_; | 
| -  for (int i = 0; i < freqs_; ++i) { | 
| +  for (int i = 0; i < num_freqs_; ++i) { | 
| complex<float> sample = data[i]; | 
| if (!skip_fudge) { | 
| sample = zerofudge(sample); | 
| @@ -132,7 +132,7 @@ void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { | 
| void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { | 
| array_mean_ = 0.0f; | 
| ++count_; | 
| -  for (int i = 0; i < freqs_; ++i) { | 
| +  for (int i = 0; i < num_freqs_; ++i) { | 
| complex<float> sample = data[i]; | 
| sample = zerofudge(sample); | 
|  | 
| @@ -159,7 +159,7 @@ void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { | 
| void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { | 
| int num = min(count_ + 1, window_size_); | 
| array_mean_ = 0.0f; | 
| -  for (int i = 0; i < freqs_; ++i) { | 
| +  for (int i = 0; i < num_freqs_; ++i) { | 
| complex<float> mean; | 
| float conj_sum = 0.0f; | 
|  | 
| @@ -192,7 +192,7 @@ void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { | 
| // are recomputed from scratch at each of these transitions. | 
| void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { | 
| int blocks = min(window_size_, history_cursor_ + 1); | 
| -  for (int i = 0; i < freqs_; ++i) { | 
| +  for (int i = 0; i < num_freqs_; ++i) { | 
| AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); | 
| AddToMean(data[i] * std::conj(data[i]), count_ + 1, | 
| &sub_running_mean_sq_[i]); | 
| @@ -228,7 +228,7 @@ void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data, | 
| // TODO(ekmeyerson) To mitigate potential divergence, add counter so that | 
| // after every so often sums are computed scratch by summing over all | 
| // elements instead of subtracting oldest and adding newest. | 
| -  for (int i = 0; i < freqs_; ++i) { | 
| +  for (int i = 0; i < num_freqs_; ++i) { | 
| sub_running_mean_[i] += data[i]; | 
| sub_running_mean_sq_[i] += data[i] * std::conj(data[i]); | 
| } | 
| @@ -239,7 +239,7 @@ void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data, | 
| if (count_ >= kWindowBlockSize) { | 
| count_ = 0; | 
|  | 
| -    for (int i = 0; i < freqs_; ++i) { | 
| +    for (int i = 0; i < num_freqs_; ++i) { | 
| running_mean_[i] -= subhistory_[i][history_cursor_]; | 
| running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_]; | 
|  | 
| @@ -268,10 +268,11 @@ void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data, | 
| } | 
|  | 
| void VarianceArray::Clear() { | 
| -  memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_); | 
| -  memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_); | 
| -  memset(variance_.get(), 0, sizeof(*variance_.get()) * freqs_); | 
| -  memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * freqs_); | 
| +  memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * num_freqs_); | 
| +  memset(running_mean_sq_.get(), 0, | 
| +         sizeof(*running_mean_sq_.get()) * num_freqs_); | 
| +  memset(variance_.get(), 0, sizeof(*variance_.get()) * num_freqs_); | 
| +  memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * num_freqs_); | 
| history_cursor_ = 0; | 
| count_ = 0; | 
| array_mean_ = 0.0f; | 
| @@ -279,14 +280,14 @@ void VarianceArray::Clear() { | 
|  | 
| void VarianceArray::ApplyScale(float scale) { | 
| array_mean_ = 0.0f; | 
| -  for (int i = 0; i < freqs_; ++i) { | 
| +  for (int i = 0; i < num_freqs_; ++i) { | 
| variance_[i] *= scale * scale; | 
| array_mean_ += (variance_[i] - array_mean_) / (i + 1); | 
| } | 
| } | 
|  | 
| GainApplier::GainApplier(int freqs, float change_limit) | 
| -    : freqs_(freqs), | 
| +    : num_freqs_(freqs), | 
| change_limit_(change_limit), | 
| target_(new float[freqs]()), | 
| current_(new float[freqs]()) { | 
| @@ -298,7 +299,7 @@ GainApplier::GainApplier(int freqs, float change_limit) | 
|  | 
| void GainApplier::Apply(const complex<float>* in_block, | 
| complex<float>* out_block) { | 
| -  for (int i = 0; i < freqs_; ++i) { | 
| +  for (int i = 0; i < num_freqs_; ++i) { | 
| float factor = sqrtf(fabsf(current_[i])); | 
| if (!std::isnormal(factor)) { | 
| factor = 1.0f; | 
|  |