| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| (...skipping 33 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 44 return mean + (data - mean) / static_cast<float>(count); | 44 return mean + (data - mean) / static_cast<float>(count); |
| 45 } | 45 } |
| 46 | 46 |
| 47 void AddToMean(complex<float> data, int count, complex<float>* mean) { | 47 void AddToMean(complex<float> data, int count, complex<float>* mean) { |
| 48 (*mean) = NewMean(*mean, data, count); | 48 (*mean) = NewMean(*mean, data, count); |
| 49 } | 49 } |
| 50 | 50 |
| 51 | 51 |
| 52 static const int kWindowBlockSize = 10; | 52 static const int kWindowBlockSize = 10; |
| 53 | 53 |
| 54 VarianceArray::VarianceArray(int freqs, | 54 VarianceArray::VarianceArray(int num_freqs, |
| 55 StepType type, | 55 StepType type, |
| 56 int window_size, | 56 int window_size, |
| 57 float decay) | 57 float decay) |
| 58 : running_mean_(new complex<float>[freqs]()), | 58 : running_mean_(new complex<float>[num_freqs]()), |
| 59 running_mean_sq_(new complex<float>[freqs]()), | 59 running_mean_sq_(new complex<float>[num_freqs]()), |
| 60 sub_running_mean_(new complex<float>[freqs]()), | 60 sub_running_mean_(new complex<float>[num_freqs]()), |
| 61 sub_running_mean_sq_(new complex<float>[freqs]()), | 61 sub_running_mean_sq_(new complex<float>[num_freqs]()), |
| 62 variance_(new float[freqs]()), | 62 variance_(new float[num_freqs]()), |
| 63 conj_sum_(new float[freqs]()), | 63 conj_sum_(new float[num_freqs]()), |
| 64 freqs_(freqs), | 64 num_freqs_(num_freqs), |
| 65 window_size_(window_size), | 65 window_size_(window_size), |
| 66 decay_(decay), | 66 decay_(decay), |
| 67 history_cursor_(0), | 67 history_cursor_(0), |
| 68 count_(0), | 68 count_(0), |
| 69 array_mean_(0.0f), | 69 array_mean_(0.0f), |
| 70 buffer_full_(false) { | 70 buffer_full_(false) { |
| 71 history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 71 history_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); |
| 72 for (int i = 0; i < freqs_; ++i) { | 72 for (int i = 0; i < num_freqs_; ++i) { |
| 73 history_[i].reset(new complex<float>[window_size_]()); | 73 history_[i].reset(new complex<float>[window_size_]()); |
| 74 } | 74 } |
| 75 subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 75 subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); |
| 76 for (int i = 0; i < freqs_; ++i) { | 76 for (int i = 0; i < num_freqs_; ++i) { |
| 77 subhistory_[i].reset(new complex<float>[window_size_]()); | 77 subhistory_[i].reset(new complex<float>[window_size_]()); |
| 78 } | 78 } |
| 79 subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 79 subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); |
| 80 for (int i = 0; i < freqs_; ++i) { | 80 for (int i = 0; i < num_freqs_; ++i) { |
| 81 subhistory_sq_[i].reset(new complex<float>[window_size_]()); | 81 subhistory_sq_[i].reset(new complex<float>[window_size_]()); |
| 82 } | 82 } |
| 83 switch (type) { | 83 switch (type) { |
| 84 case kStepInfinite: | 84 case kStepInfinite: |
| 85 step_func_ = &VarianceArray::InfiniteStep; | 85 step_func_ = &VarianceArray::InfiniteStep; |
| 86 break; | 86 break; |
| 87 case kStepDecaying: | 87 case kStepDecaying: |
| 88 step_func_ = &VarianceArray::DecayStep; | 88 step_func_ = &VarianceArray::DecayStep; |
| 89 break; | 89 break; |
| 90 case kStepWindowed: | 90 case kStepWindowed: |
| 91 step_func_ = &VarianceArray::WindowedStep; | 91 step_func_ = &VarianceArray::WindowedStep; |
| 92 break; | 92 break; |
| 93 case kStepBlocked: | 93 case kStepBlocked: |
| 94 step_func_ = &VarianceArray::BlockedStep; | 94 step_func_ = &VarianceArray::BlockedStep; |
| 95 break; | 95 break; |
| 96 case kStepBlockBasedMovingAverage: | 96 case kStepBlockBasedMovingAverage: |
| 97 step_func_ = &VarianceArray::BlockBasedMovingAverage; | 97 step_func_ = &VarianceArray::BlockBasedMovingAverage; |
| 98 break; | 98 break; |
| 99 } | 99 } |
| 100 } | 100 } |
| 101 | 101 |
| 102 // Compute the variance with Welford's algorithm, adding some fudge to | 102 // Compute the variance with Welford's algorithm, adding some fudge to |
| 103 // the input in case of all-zeroes. | 103 // the input in case of all-zeroes. |
| 104 void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { | 104 void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { |
| 105 array_mean_ = 0.0f; | 105 array_mean_ = 0.0f; |
| 106 ++count_; | 106 ++count_; |
| 107 for (int i = 0; i < freqs_; ++i) { | 107 for (int i = 0; i < num_freqs_; ++i) { |
| 108 complex<float> sample = data[i]; | 108 complex<float> sample = data[i]; |
| 109 if (!skip_fudge) { | 109 if (!skip_fudge) { |
| 110 sample = zerofudge(sample); | 110 sample = zerofudge(sample); |
| 111 } | 111 } |
| 112 if (count_ == 1) { | 112 if (count_ == 1) { |
| 113 running_mean_[i] = sample; | 113 running_mean_[i] = sample; |
| 114 variance_[i] = 0.0f; | 114 variance_[i] = 0.0f; |
| 115 } else { | 115 } else { |
| 116 float old_sum = conj_sum_[i]; | 116 float old_sum = conj_sum_[i]; |
| 117 complex<float> old_mean = running_mean_[i]; | 117 complex<float> old_mean = running_mean_[i]; |
| 118 running_mean_[i] = | 118 running_mean_[i] = |
| 119 old_mean + (sample - old_mean) / static_cast<float>(count_); | 119 old_mean + (sample - old_mean) / static_cast<float>(count_); |
| 120 conj_sum_[i] = | 120 conj_sum_[i] = |
| 121 (old_sum + std::conj(sample - old_mean) * (sample - running_mean_[i])) | 121 (old_sum + std::conj(sample - old_mean) * (sample - running_mean_[i])) |
| 122 .real(); | 122 .real(); |
| 123 variance_[i] = | 123 variance_[i] = |
| 124 conj_sum_[i] / (count_ - 1); | 124 conj_sum_[i] / (count_ - 1); |
| 125 } | 125 } |
| 126 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | 126 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| 127 } | 127 } |
| 128 } | 128 } |
| 129 | 129 |
| 130 // Compute the variance from the beginning, with exponential decaying of the | 130 // Compute the variance from the beginning, with exponential decaying of the |
| 131 // series data. | 131 // series data. |
| 132 void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { | 132 void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { |
| 133 array_mean_ = 0.0f; | 133 array_mean_ = 0.0f; |
| 134 ++count_; | 134 ++count_; |
| 135 for (int i = 0; i < freqs_; ++i) { | 135 for (int i = 0; i < num_freqs_; ++i) { |
| 136 complex<float> sample = data[i]; | 136 complex<float> sample = data[i]; |
| 137 sample = zerofudge(sample); | 137 sample = zerofudge(sample); |
| 138 | 138 |
| 139 if (count_ == 1) { | 139 if (count_ == 1) { |
| 140 running_mean_[i] = sample; | 140 running_mean_[i] = sample; |
| 141 running_mean_sq_[i] = sample * std::conj(sample); | 141 running_mean_sq_[i] = sample * std::conj(sample); |
| 142 variance_[i] = 0.0f; | 142 variance_[i] = 0.0f; |
| 143 } else { | 143 } else { |
| 144 complex<float> prev = running_mean_[i]; | 144 complex<float> prev = running_mean_[i]; |
| 145 complex<float> prev2 = running_mean_sq_[i]; | 145 complex<float> prev2 = running_mean_sq_[i]; |
| 146 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample; | 146 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample; |
| 147 running_mean_sq_[i] = | 147 running_mean_sq_[i] = |
| 148 decay_ * prev2 + (1.0f - decay_) * sample * std::conj(sample); | 148 decay_ * prev2 + (1.0f - decay_) * sample * std::conj(sample); |
| 149 variance_[i] = (running_mean_sq_[i] - | 149 variance_[i] = (running_mean_sq_[i] - |
| 150 running_mean_[i] * std::conj(running_mean_[i])).real(); | 150 running_mean_[i] * std::conj(running_mean_[i])).real(); |
| 151 } | 151 } |
| 152 | 152 |
| 153 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | 153 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| 154 } | 154 } |
| 155 } | 155 } |
| 156 | 156 |
| 157 // Windowed variance computation. On each step, the variances for the | 157 // Windowed variance computation. On each step, the variances for the |
| 158 // window are recomputed from scratch, using Welford's algorithm. | 158 // window are recomputed from scratch, using Welford's algorithm. |
| 159 void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { | 159 void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { |
| 160 int num = min(count_ + 1, window_size_); | 160 int num = min(count_ + 1, window_size_); |
| 161 array_mean_ = 0.0f; | 161 array_mean_ = 0.0f; |
| 162 for (int i = 0; i < freqs_; ++i) { | 162 for (int i = 0; i < num_freqs_; ++i) { |
| 163 complex<float> mean; | 163 complex<float> mean; |
| 164 float conj_sum = 0.0f; | 164 float conj_sum = 0.0f; |
| 165 | 165 |
| 166 history_[i][history_cursor_] = data[i]; | 166 history_[i][history_cursor_] = data[i]; |
| 167 | 167 |
| 168 mean = history_[i][history_cursor_]; | 168 mean = history_[i][history_cursor_]; |
| 169 variance_[i] = 0.0f; | 169 variance_[i] = 0.0f; |
| 170 for (int j = 1; j < num; ++j) { | 170 for (int j = 1; j < num; ++j) { |
| 171 complex<float> sample = | 171 complex<float> sample = |
| 172 zerofudge(history_[i][(history_cursor_ + j) % window_size_]); | 172 zerofudge(history_[i][(history_cursor_ + j) % window_size_]); |
| (...skipping 12 matching lines...) Expand all Loading... |
| 185 ++count_; | 185 ++count_; |
| 186 } | 186 } |
| 187 | 187 |
| 188 // Variance with a window of blocks. Within each block, the variances are | 188 // Variance with a window of blocks. Within each block, the variances are |
| 189 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. | 189 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. |
| 190 // Once a block is filled with kWindowBlockSize samples, it is added to the | 190 // Once a block is filled with kWindowBlockSize samples, it is added to the |
| 191 // history window and a new block is started. The variances for the window | 191 // history window and a new block is started. The variances for the window |
| 192 // are recomputed from scratch at each of these transitions. | 192 // are recomputed from scratch at each of these transitions. |
| 193 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { | 193 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { |
| 194 int blocks = min(window_size_, history_cursor_ + 1); | 194 int blocks = min(window_size_, history_cursor_ + 1); |
| 195 for (int i = 0; i < freqs_; ++i) { | 195 for (int i = 0; i < num_freqs_; ++i) { |
| 196 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); | 196 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); |
| 197 AddToMean(data[i] * std::conj(data[i]), count_ + 1, | 197 AddToMean(data[i] * std::conj(data[i]), count_ + 1, |
| 198 &sub_running_mean_sq_[i]); | 198 &sub_running_mean_sq_[i]); |
| 199 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; | 199 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; |
| 200 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; | 200 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; |
| 201 | 201 |
| 202 variance_[i] = | 202 variance_[i] = |
| 203 (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - | 203 (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - |
| 204 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * | 204 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * |
| 205 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) | 205 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) |
| (...skipping 15 matching lines...) Expand all Loading... |
| 221 count_ = 0; | 221 count_ = 0; |
| 222 } | 222 } |
| 223 } | 223 } |
| 224 | 224 |
| 225 // Recomputes variances for each window from scratch based on previous window. | 225 // Recomputes variances for each window from scratch based on previous window. |
| 226 void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data, | 226 void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data, |
| 227 bool /*dummy*/) { | 227 bool /*dummy*/) { |
| 228 // TODO(ekmeyerson) To mitigate potential divergence, add counter so that | 228 // TODO(ekmeyerson) To mitigate potential divergence, add counter so that |
| 229 // after every so often sums are computed scratch by summing over all | 229 // after every so often sums are computed scratch by summing over all |
| 230 // elements instead of subtracting oldest and adding newest. | 230 // elements instead of subtracting oldest and adding newest. |
| 231 for (int i = 0; i < freqs_; ++i) { | 231 for (int i = 0; i < num_freqs_; ++i) { |
| 232 sub_running_mean_[i] += data[i]; | 232 sub_running_mean_[i] += data[i]; |
| 233 sub_running_mean_sq_[i] += data[i] * std::conj(data[i]); | 233 sub_running_mean_sq_[i] += data[i] * std::conj(data[i]); |
| 234 } | 234 } |
| 235 ++count_; | 235 ++count_; |
| 236 | 236 |
| 237 // TODO(ekmeyerson) Make kWindowBlockSize nonconstant to allow | 237 // TODO(ekmeyerson) Make kWindowBlockSize nonconstant to allow |
| 238 // experimentation with different block size,window size pairs. | 238 // experimentation with different block size,window size pairs. |
| 239 if (count_ >= kWindowBlockSize) { | 239 if (count_ >= kWindowBlockSize) { |
| 240 count_ = 0; | 240 count_ = 0; |
| 241 | 241 |
| 242 for (int i = 0; i < freqs_; ++i) { | 242 for (int i = 0; i < num_freqs_; ++i) { |
| 243 running_mean_[i] -= subhistory_[i][history_cursor_]; | 243 running_mean_[i] -= subhistory_[i][history_cursor_]; |
| 244 running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_]; | 244 running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_]; |
| 245 | 245 |
| 246 float scale = 1.f / kWindowBlockSize; | 246 float scale = 1.f / kWindowBlockSize; |
| 247 subhistory_[i][history_cursor_] = sub_running_mean_[i] * scale; | 247 subhistory_[i][history_cursor_] = sub_running_mean_[i] * scale; |
| 248 subhistory_sq_[i][history_cursor_] = sub_running_mean_sq_[i] * scale; | 248 subhistory_sq_[i][history_cursor_] = sub_running_mean_sq_[i] * scale; |
| 249 | 249 |
| 250 sub_running_mean_[i] = std::complex<float>(0.0f, 0.0f); | 250 sub_running_mean_[i] = std::complex<float>(0.0f, 0.0f); |
| 251 sub_running_mean_sq_[i] = std::complex<float>(0.0f, 0.0f); | 251 sub_running_mean_sq_[i] = std::complex<float>(0.0f, 0.0f); |
| 252 | 252 |
| 253 running_mean_[i] += subhistory_[i][history_cursor_]; | 253 running_mean_[i] += subhistory_[i][history_cursor_]; |
| 254 running_mean_sq_[i] += subhistory_sq_[i][history_cursor_]; | 254 running_mean_sq_[i] += subhistory_sq_[i][history_cursor_]; |
| 255 | 255 |
| 256 scale = 1.f / (buffer_full_ ? window_size_ : history_cursor_ + 1); | 256 scale = 1.f / (buffer_full_ ? window_size_ : history_cursor_ + 1); |
| 257 variance_[i] = std::real(running_mean_sq_[i] * scale - | 257 variance_[i] = std::real(running_mean_sq_[i] * scale - |
| 258 running_mean_[i] * scale * | 258 running_mean_[i] * scale * |
| 259 std::conj(running_mean_[i]) * scale); | 259 std::conj(running_mean_[i]) * scale); |
| 260 } | 260 } |
| 261 | 261 |
| 262 ++history_cursor_; | 262 ++history_cursor_; |
| 263 if (history_cursor_ >= window_size_) { | 263 if (history_cursor_ >= window_size_) { |
| 264 buffer_full_ = true; | 264 buffer_full_ = true; |
| 265 history_cursor_ = 0; | 265 history_cursor_ = 0; |
| 266 } | 266 } |
| 267 } | 267 } |
| 268 } | 268 } |
| 269 | 269 |
| 270 void VarianceArray::Clear() { | 270 void VarianceArray::Clear() { |
| 271 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_); | 271 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * num_freqs_); |
| 272 memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_); | 272 memset(running_mean_sq_.get(), 0, |
| 273 memset(variance_.get(), 0, sizeof(*variance_.get()) * freqs_); | 273 sizeof(*running_mean_sq_.get()) * num_freqs_); |
| 274 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * freqs_); | 274 memset(variance_.get(), 0, sizeof(*variance_.get()) * num_freqs_); |
| 275 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * num_freqs_); |
| 275 history_cursor_ = 0; | 276 history_cursor_ = 0; |
| 276 count_ = 0; | 277 count_ = 0; |
| 277 array_mean_ = 0.0f; | 278 array_mean_ = 0.0f; |
| 278 } | 279 } |
| 279 | 280 |
| 280 void VarianceArray::ApplyScale(float scale) { | 281 void VarianceArray::ApplyScale(float scale) { |
| 281 array_mean_ = 0.0f; | 282 array_mean_ = 0.0f; |
| 282 for (int i = 0; i < freqs_; ++i) { | 283 for (int i = 0; i < num_freqs_; ++i) { |
| 283 variance_[i] *= scale * scale; | 284 variance_[i] *= scale * scale; |
| 284 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | 285 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| 285 } | 286 } |
| 286 } | 287 } |
| 287 | 288 |
| 288 GainApplier::GainApplier(int freqs, float change_limit) | 289 GainApplier::GainApplier(int freqs, float change_limit) |
| 289 : freqs_(freqs), | 290 : num_freqs_(freqs), |
| 290 change_limit_(change_limit), | 291 change_limit_(change_limit), |
| 291 target_(new float[freqs]()), | 292 target_(new float[freqs]()), |
| 292 current_(new float[freqs]()) { | 293 current_(new float[freqs]()) { |
| 293 for (int i = 0; i < freqs; ++i) { | 294 for (int i = 0; i < freqs; ++i) { |
| 294 target_[i] = 1.0f; | 295 target_[i] = 1.0f; |
| 295 current_[i] = 1.0f; | 296 current_[i] = 1.0f; |
| 296 } | 297 } |
| 297 } | 298 } |
| 298 | 299 |
| 299 void GainApplier::Apply(const complex<float>* in_block, | 300 void GainApplier::Apply(const complex<float>* in_block, |
| 300 complex<float>* out_block) { | 301 complex<float>* out_block) { |
| 301 for (int i = 0; i < freqs_; ++i) { | 302 for (int i = 0; i < num_freqs_; ++i) { |
| 302 float factor = sqrtf(fabsf(current_[i])); | 303 float factor = sqrtf(fabsf(current_[i])); |
| 303 if (!std::isnormal(factor)) { | 304 if (!std::isnormal(factor)) { |
| 304 factor = 1.0f; | 305 factor = 1.0f; |
| 305 } | 306 } |
| 306 out_block[i] = factor * in_block[i]; | 307 out_block[i] = factor * in_block[i]; |
| 307 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); | 308 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); |
| 308 } | 309 } |
| 309 } | 310 } |
| 310 | 311 |
| 311 } // namespace intelligibility | 312 } // namespace intelligibility |
| 312 | 313 |
| 313 } // namespace webrtc | 314 } // namespace webrtc |
| OLD | NEW |