| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| (...skipping 48 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 59 return mean + (data - mean) / static_cast<float>(count); | 59 return mean + (data - mean) / static_cast<float>(count); |
| 60 } | 60 } |
| 61 | 61 |
| 62 void AddToMean(complex<float> data, int count, complex<float>* mean) { | 62 void AddToMean(complex<float> data, int count, complex<float>* mean) { |
| 63 (*mean) = NewMean(*mean, data, count); | 63 (*mean) = NewMean(*mean, data, count); |
| 64 } | 64 } |
| 65 | 65 |
| 66 | 66 |
| 67 static const int kWindowBlockSize = 10; | 67 static const int kWindowBlockSize = 10; |
| 68 | 68 |
| 69 VarianceArray::VarianceArray(int freqs, | 69 VarianceArray::VarianceArray(int num_freqs, |
| 70 StepType type, | 70 StepType type, |
| 71 int window_size, | 71 int window_size, |
| 72 float decay) | 72 float decay) |
| 73 : running_mean_(new complex<float>[freqs]()), | 73 : running_mean_(new complex<float>[num_freqs]()), |
| 74 running_mean_sq_(new complex<float>[freqs]()), | 74 running_mean_sq_(new complex<float>[num_freqs]()), |
| 75 sub_running_mean_(new complex<float>[freqs]()), | 75 sub_running_mean_(new complex<float>[num_freqs]()), |
| 76 sub_running_mean_sq_(new complex<float>[freqs]()), | 76 sub_running_mean_sq_(new complex<float>[num_freqs]()), |
| 77 variance_(new float[freqs]()), | 77 variance_(new float[num_freqs]()), |
| 78 conj_sum_(new float[freqs]()), | 78 conj_sum_(new float[num_freqs]()), |
| 79 freqs_(freqs), | 79 num_freqs_(num_freqs), |
| 80 window_size_(window_size), | 80 window_size_(window_size), |
| 81 decay_(decay), | 81 decay_(decay), |
| 82 history_cursor_(0), | 82 history_cursor_(0), |
| 83 count_(0), | 83 count_(0), |
| 84 array_mean_(0.0f), | 84 array_mean_(0.0f), |
| 85 buffer_full_(false) { | 85 buffer_full_(false) { |
| 86 history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 86 history_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); |
| 87 for (int i = 0; i < freqs_; ++i) { | 87 for (int i = 0; i < num_freqs_; ++i) { |
| 88 history_[i].reset(new complex<float>[window_size_]()); | 88 history_[i].reset(new complex<float>[window_size_]()); |
| 89 } | 89 } |
| 90 subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 90 subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); |
| 91 for (int i = 0; i < freqs_; ++i) { | 91 for (int i = 0; i < num_freqs_; ++i) { |
| 92 subhistory_[i].reset(new complex<float>[window_size_]()); | 92 subhistory_[i].reset(new complex<float>[window_size_]()); |
| 93 } | 93 } |
| 94 subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 94 subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); |
| 95 for (int i = 0; i < freqs_; ++i) { | 95 for (int i = 0; i < num_freqs_; ++i) { |
| 96 subhistory_sq_[i].reset(new complex<float>[window_size_]()); | 96 subhistory_sq_[i].reset(new complex<float>[window_size_]()); |
| 97 } | 97 } |
| 98 switch (type) { | 98 switch (type) { |
| 99 case kStepInfinite: | 99 case kStepInfinite: |
| 100 step_func_ = &VarianceArray::InfiniteStep; | 100 step_func_ = &VarianceArray::InfiniteStep; |
| 101 break; | 101 break; |
| 102 case kStepDecaying: | 102 case kStepDecaying: |
| 103 step_func_ = &VarianceArray::DecayStep; | 103 step_func_ = &VarianceArray::DecayStep; |
| 104 break; | 104 break; |
| 105 case kStepWindowed: | 105 case kStepWindowed: |
| 106 step_func_ = &VarianceArray::WindowedStep; | 106 step_func_ = &VarianceArray::WindowedStep; |
| 107 break; | 107 break; |
| 108 case kStepBlocked: | 108 case kStepBlocked: |
| 109 step_func_ = &VarianceArray::BlockedStep; | 109 step_func_ = &VarianceArray::BlockedStep; |
| 110 break; | 110 break; |
| 111 case kStepBlockBasedMovingAverage: | 111 case kStepBlockBasedMovingAverage: |
| 112 step_func_ = &VarianceArray::BlockBasedMovingAverage; | 112 step_func_ = &VarianceArray::BlockBasedMovingAverage; |
| 113 break; | 113 break; |
| 114 } | 114 } |
| 115 } | 115 } |
| 116 | 116 |
| 117 // Compute the variance with Welford's algorithm, adding some fudge to | 117 // Compute the variance with Welford's algorithm, adding some fudge to |
| 118 // the input in case of all-zeroes. | 118 // the input in case of all-zeroes. |
| 119 void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { | 119 void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { |
| 120 array_mean_ = 0.0f; | 120 array_mean_ = 0.0f; |
| 121 ++count_; | 121 ++count_; |
| 122 for (int i = 0; i < freqs_; ++i) { | 122 for (int i = 0; i < num_freqs_; ++i) { |
| 123 complex<float> sample = data[i]; | 123 complex<float> sample = data[i]; |
| 124 if (!skip_fudge) { | 124 if (!skip_fudge) { |
| 125 sample = zerofudge(sample); | 125 sample = zerofudge(sample); |
| 126 } | 126 } |
| 127 if (count_ == 1) { | 127 if (count_ == 1) { |
| 128 running_mean_[i] = sample; | 128 running_mean_[i] = sample; |
| 129 variance_[i] = 0.0f; | 129 variance_[i] = 0.0f; |
| 130 } else { | 130 } else { |
| 131 float old_sum = conj_sum_[i]; | 131 float old_sum = conj_sum_[i]; |
| 132 complex<float> old_mean = running_mean_[i]; | 132 complex<float> old_mean = running_mean_[i]; |
| (...skipping 10 matching lines...) Expand all Loading... |
| 143 } | 143 } |
| 144 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | 144 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| 145 } | 145 } |
| 146 } | 146 } |
| 147 | 147 |
| 148 // Compute the variance from the beginning, with exponential decaying of the | 148 // Compute the variance from the beginning, with exponential decaying of the |
| 149 // series data. | 149 // series data. |
| 150 void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { | 150 void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { |
| 151 array_mean_ = 0.0f; | 151 array_mean_ = 0.0f; |
| 152 ++count_; | 152 ++count_; |
| 153 for (int i = 0; i < freqs_; ++i) { | 153 for (int i = 0; i < num_freqs_; ++i) { |
| 154 complex<float> sample = data[i]; | 154 complex<float> sample = data[i]; |
| 155 sample = zerofudge(sample); | 155 sample = zerofudge(sample); |
| 156 | 156 |
| 157 if (count_ == 1) { | 157 if (count_ == 1) { |
| 158 running_mean_[i] = sample; | 158 running_mean_[i] = sample; |
| 159 running_mean_sq_[i] = sample * std::conj(sample); | 159 running_mean_sq_[i] = sample * std::conj(sample); |
| 160 variance_[i] = 0.0f; | 160 variance_[i] = 0.0f; |
| 161 } else { | 161 } else { |
| 162 complex<float> prev = running_mean_[i]; | 162 complex<float> prev = running_mean_[i]; |
| 163 complex<float> prev2 = running_mean_sq_[i]; | 163 complex<float> prev2 = running_mean_sq_[i]; |
| 164 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample; | 164 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample; |
| 165 running_mean_sq_[i] = | 165 running_mean_sq_[i] = |
| 166 decay_ * prev2 + (1.0f - decay_) * sample * std::conj(sample); | 166 decay_ * prev2 + (1.0f - decay_) * sample * std::conj(sample); |
| 167 // variance_[i] = decay_ * variance_[i] + (1.0f - decay_) * ( | 167 // variance_[i] = decay_ * variance_[i] + (1.0f - decay_) * ( |
| 168 // (sample - running_mean_[i]) * std::conj(sample - | 168 // (sample - running_mean_[i]) * std::conj(sample - |
| 169 // running_mean_[i])).real(); | 169 // running_mean_[i])).real(); |
| 170 variance_[i] = (running_mean_sq_[i] - | 170 variance_[i] = (running_mean_sq_[i] - |
| 171 running_mean_[i] * std::conj(running_mean_[i])).real(); | 171 running_mean_[i] * std::conj(running_mean_[i])).real(); |
| 172 } | 172 } |
| 173 | 173 |
| 174 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | 174 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| 175 } | 175 } |
| 176 } | 176 } |
| 177 | 177 |
| 178 // Windowed variance computation. On each step, the variances for the | 178 // Windowed variance computation. On each step, the variances for the |
| 179 // window are recomputed from scratch, using Welford's algorithm. | 179 // window are recomputed from scratch, using Welford's algorithm. |
| 180 void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { | 180 void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { |
| 181 int num = min(count_ + 1, window_size_); | 181 int num = min(count_ + 1, window_size_); |
| 182 array_mean_ = 0.0f; | 182 array_mean_ = 0.0f; |
| 183 for (int i = 0; i < freqs_; ++i) { | 183 for (int i = 0; i < num_freqs_; ++i) { |
| 184 complex<float> mean; | 184 complex<float> mean; |
| 185 float conj_sum = 0.0f; | 185 float conj_sum = 0.0f; |
| 186 | 186 |
| 187 history_[i][history_cursor_] = data[i]; | 187 history_[i][history_cursor_] = data[i]; |
| 188 | 188 |
| 189 mean = history_[i][history_cursor_]; | 189 mean = history_[i][history_cursor_]; |
| 190 variance_[i] = 0.0f; | 190 variance_[i] = 0.0f; |
| 191 for (int j = 1; j < num; ++j) { | 191 for (int j = 1; j < num; ++j) { |
| 192 complex<float> sample = | 192 complex<float> sample = |
| 193 zerofudge(history_[i][(history_cursor_ + j) % window_size_]); | 193 zerofudge(history_[i][(history_cursor_ + j) % window_size_]); |
| (...skipping 12 matching lines...) Expand all Loading... |
| 206 ++count_; | 206 ++count_; |
| 207 } | 207 } |
| 208 | 208 |
| 209 // Variance with a window of blocks. Within each block, the variances are | 209 // Variance with a window of blocks. Within each block, the variances are |
| 210 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. | 210 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. |
| 211 // Once a block is filled with kWindowBlockSize samples, it is added to the | 211 // Once a block is filled with kWindowBlockSize samples, it is added to the |
| 212 // history window and a new block is started. The variances for the window | 212 // history window and a new block is started. The variances for the window |
| 213 // are recomputed from scratch at each of these transitions. | 213 // are recomputed from scratch at each of these transitions. |
| 214 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { | 214 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { |
| 215 int blocks = min(window_size_, history_cursor_ + 1); | 215 int blocks = min(window_size_, history_cursor_ + 1); |
| 216 for (int i = 0; i < freqs_; ++i) { | 216 for (int i = 0; i < num_freqs_; ++i) { |
| 217 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); | 217 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); |
| 218 AddToMean(data[i] * std::conj(data[i]), count_ + 1, | 218 AddToMean(data[i] * std::conj(data[i]), count_ + 1, |
| 219 &sub_running_mean_sq_[i]); | 219 &sub_running_mean_sq_[i]); |
| 220 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; | 220 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; |
| 221 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; | 221 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; |
| 222 | 222 |
| 223 variance_[i] = | 223 variance_[i] = |
| 224 (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - | 224 (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - |
| 225 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * | 225 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * |
| 226 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) | 226 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) |
| (...skipping 15 matching lines...) Expand all Loading... |
| 242 count_ = 0; | 242 count_ = 0; |
| 243 } | 243 } |
| 244 } | 244 } |
| 245 | 245 |
| 246 // Recomputes variances for each window from scratch based on previous window. | 246 // Recomputes variances for each window from scratch based on previous window. |
| 247 void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data, | 247 void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data, |
| 248 bool /*dummy*/) { | 248 bool /*dummy*/) { |
| 249 // TODO(ekmeyerson) To mitigate potential divergence, add counter so that | 249 // TODO(ekmeyerson) To mitigate potential divergence, add counter so that |
| 250 // after every so often sums are computed scratch by summing over all | 250 // after every so often sums are computed scratch by summing over all |
| 251 // elements instead of subtracting oldest and adding newest. | 251 // elements instead of subtracting oldest and adding newest. |
| 252 for (int i = 0; i < freqs_; ++i) { | 252 for (int i = 0; i < num_freqs_; ++i) { |
| 253 sub_running_mean_[i] += data[i]; | 253 sub_running_mean_[i] += data[i]; |
| 254 sub_running_mean_sq_[i] += data[i] * std::conj(data[i]); | 254 sub_running_mean_sq_[i] += data[i] * std::conj(data[i]); |
| 255 } | 255 } |
| 256 ++count_; | 256 ++count_; |
| 257 | 257 |
| 258 // TODO(ekmeyerson) Make kWindowBlockSize nonconstant to allow | 258 // TODO(ekmeyerson) Make kWindowBlockSize nonconstant to allow |
| 259 // experimentation with different block size,window size pairs. | 259 // experimentation with different block size,window size pairs. |
| 260 if (count_ >= kWindowBlockSize) { | 260 if (count_ >= kWindowBlockSize) { |
| 261 count_ = 0; | 261 count_ = 0; |
| 262 | 262 |
| 263 for (int i = 0; i < freqs_; ++i) { | 263 for (int i = 0; i < num_freqs_; ++i) { |
| 264 running_mean_[i] -= subhistory_[i][history_cursor_]; | 264 running_mean_[i] -= subhistory_[i][history_cursor_]; |
| 265 running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_]; | 265 running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_]; |
| 266 | 266 |
| 267 float scale = 1.f / kWindowBlockSize; | 267 float scale = 1.f / kWindowBlockSize; |
| 268 subhistory_[i][history_cursor_] = sub_running_mean_[i] * scale; | 268 subhistory_[i][history_cursor_] = sub_running_mean_[i] * scale; |
| 269 subhistory_sq_[i][history_cursor_] = sub_running_mean_sq_[i] * scale; | 269 subhistory_sq_[i][history_cursor_] = sub_running_mean_sq_[i] * scale; |
| 270 | 270 |
| 271 sub_running_mean_[i] = std::complex<float>(0.0f, 0.0f); | 271 sub_running_mean_[i] = std::complex<float>(0.0f, 0.0f); |
| 272 sub_running_mean_sq_[i] = std::complex<float>(0.0f, 0.0f); | 272 sub_running_mean_sq_[i] = std::complex<float>(0.0f, 0.0f); |
| 273 | 273 |
| 274 running_mean_[i] += subhistory_[i][history_cursor_]; | 274 running_mean_[i] += subhistory_[i][history_cursor_]; |
| 275 running_mean_sq_[i] += subhistory_sq_[i][history_cursor_]; | 275 running_mean_sq_[i] += subhistory_sq_[i][history_cursor_]; |
| 276 | 276 |
| 277 scale = 1.f / (buffer_full_ ? window_size_ : history_cursor_ + 1); | 277 scale = 1.f / (buffer_full_ ? window_size_ : history_cursor_ + 1); |
| 278 variance_[i] = std::real(running_mean_sq_[i] * scale - | 278 variance_[i] = std::real(running_mean_sq_[i] * scale - |
| 279 running_mean_[i] * scale * | 279 running_mean_[i] * scale * |
| 280 std::conj(running_mean_[i]) * scale); | 280 std::conj(running_mean_[i]) * scale); |
| 281 } | 281 } |
| 282 | 282 |
| 283 ++history_cursor_; | 283 ++history_cursor_; |
| 284 if (history_cursor_ >= window_size_) { | 284 if (history_cursor_ >= window_size_) { |
| 285 buffer_full_ = true; | 285 buffer_full_ = true; |
| 286 history_cursor_ = 0; | 286 history_cursor_ = 0; |
| 287 } | 287 } |
| 288 } | 288 } |
| 289 } | 289 } |
| 290 | 290 |
| 291 void VarianceArray::Clear() { | 291 void VarianceArray::Clear() { |
| 292 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_); | 292 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * num_freqs_); |
| 293 memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_); | 293 memset(running_mean_sq_.get(), 0, |
| 294 memset(variance_.get(), 0, sizeof(*variance_.get()) * freqs_); | 294 sizeof(*running_mean_sq_.get()) * num_freqs_); |
| 295 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * freqs_); | 295 memset(variance_.get(), 0, sizeof(*variance_.get()) * num_freqs_); |
| 296 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * num_freqs_); |
| 296 history_cursor_ = 0; | 297 history_cursor_ = 0; |
| 297 count_ = 0; | 298 count_ = 0; |
| 298 array_mean_ = 0.0f; | 299 array_mean_ = 0.0f; |
| 299 } | 300 } |
| 300 | 301 |
| 301 void VarianceArray::ApplyScale(float scale) { | 302 void VarianceArray::ApplyScale(float scale) { |
| 302 array_mean_ = 0.0f; | 303 array_mean_ = 0.0f; |
| 303 for (int i = 0; i < freqs_; ++i) { | 304 for (int i = 0; i < num_freqs_; ++i) { |
| 304 variance_[i] *= scale * scale; | 305 variance_[i] *= scale * scale; |
| 305 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | 306 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| 306 } | 307 } |
| 307 } | 308 } |
| 308 | 309 |
| 309 GainApplier::GainApplier(int freqs, float change_limit) | 310 GainApplier::GainApplier(int freqs, float change_limit) |
| 310 : freqs_(freqs), | 311 : num_freqs_(freqs), |
| 311 change_limit_(change_limit), | 312 change_limit_(change_limit), |
| 312 target_(new float[freqs]()), | 313 target_(new float[freqs]()), |
| 313 current_(new float[freqs]()) { | 314 current_(new float[freqs]()) { |
| 314 for (int i = 0; i < freqs; ++i) { | 315 for (int i = 0; i < freqs; ++i) { |
| 315 target_[i] = 1.0f; | 316 target_[i] = 1.0f; |
| 316 current_[i] = 1.0f; | 317 current_[i] = 1.0f; |
| 317 } | 318 } |
| 318 } | 319 } |
| 319 | 320 |
| 320 void GainApplier::Apply(const complex<float>* in_block, | 321 void GainApplier::Apply(const complex<float>* in_block, |
| 321 complex<float>* out_block) { | 322 complex<float>* out_block) { |
| 322 for (int i = 0; i < freqs_; ++i) { | 323 for (int i = 0; i < num_freqs_; ++i) { |
| 323 float factor = sqrtf(fabsf(current_[i])); | 324 float factor = sqrtf(fabsf(current_[i])); |
| 324 if (!std::isnormal(factor)) { | 325 if (!std::isnormal(factor)) { |
| 325 factor = 1.0f; | 326 factor = 1.0f; |
| 326 } | 327 } |
| 327 out_block[i] = factor * in_block[i]; | 328 out_block[i] = factor * in_block[i]; |
| 328 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); | 329 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); |
| 329 } | 330 } |
| 330 } | 331 } |
| 331 | 332 |
| 332 } // namespace intelligibility | 333 } // namespace intelligibility |
| 333 | 334 |
| 334 } // namespace webrtc | 335 } // namespace webrtc |
| OLD | NEW |