| Index: webrtc/modules/audio_coding/neteq/expand.cc
|
| diff --git a/webrtc/modules/audio_coding/neteq/expand.cc b/webrtc/modules/audio_coding/neteq/expand.cc
|
| index d01465ab603447394f98333b735ed9a848e5a99a..c163feee6defad402b914fedaa26c123348d7b47 100644
|
| --- a/webrtc/modules/audio_coding/neteq/expand.cc
|
| +++ b/webrtc/modules/audio_coding/neteq/expand.cc
|
| @@ -47,7 +47,7 @@ Expand::Expand(BackgroundNoise* background_noise,
|
| expand_duration_samples_(0),
|
| channel_parameters_(new ChannelParameters[num_channels_]) {
|
| assert(fs == 8000 || fs == 16000 || fs == 32000 || fs == 48000);
|
| - assert(fs <= kMaxSampleRate); // Should not be possible.
|
| + assert(fs <= static_cast<int>(kMaxSampleRate)); // Should not be possible.
|
| assert(num_channels_ > 0);
|
| memset(expand_lags_, 0, sizeof(expand_lags_));
|
| Reset();
|
| @@ -72,7 +72,7 @@ int Expand::Process(AudioMultiVector* output) {
|
| int16_t temp_data[kTempDataSize]; // TODO(hlundin) Remove this.
|
| int16_t* voiced_vector_storage = temp_data;
|
| int16_t* voiced_vector = &voiced_vector_storage[overlap_length_];
|
| - static const int kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
|
| + static const size_t kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
|
| int16_t unvoiced_array_memory[kNoiseLpcOrder + kMaxSampleRate / 8000 * 125];
|
| int16_t* unvoiced_vector = unvoiced_array_memory + kUnvoicedLpcOrder;
|
| int16_t* noise_vector = unvoiced_array_memory + kNoiseLpcOrder;
|
| @@ -87,7 +87,7 @@ int Expand::Process(AudioMultiVector* output) {
|
| } else {
|
| // This is not the first expansion, parameters are already estimated.
|
| // Extract a noise segment.
|
| - int16_t rand_length = max_lag_;
|
| + size_t rand_length = max_lag_;
|
| // This only applies to SWB where length could be larger than 256.
|
| assert(rand_length <= kMaxSampleRate / 8000 * 120 + 30);
|
| GenerateRandomVector(2, rand_length, random_vector);
|
| @@ -119,7 +119,7 @@ int Expand::Process(AudioMultiVector* output) {
|
| WebRtcSpl_ScaleAndAddVectorsWithRound(
|
| ¶meters.expand_vector0[expansion_vector_position], 3,
|
| ¶meters.expand_vector1[expansion_vector_position], 1, 2,
|
| - voiced_vector_storage, static_cast<int>(temp_length));
|
| + voiced_vector_storage, temp_length);
|
| } else if (current_lag_index_ == 2) {
|
| // Mix 1/2 of expand_vector0 with 1/2 of expand_vector1.
|
| assert(expansion_vector_position + temp_length <=
|
| @@ -129,7 +129,7 @@ int Expand::Process(AudioMultiVector* output) {
|
| WebRtcSpl_ScaleAndAddVectorsWithRound(
|
| ¶meters.expand_vector0[expansion_vector_position], 1,
|
| ¶meters.expand_vector1[expansion_vector_position], 1, 1,
|
| - voiced_vector_storage, static_cast<int>(temp_length));
|
| + voiced_vector_storage, temp_length);
|
| }
|
|
|
| // Get tapering window parameters. Values are in Q15.
|
| @@ -196,10 +196,10 @@ int Expand::Process(AudioMultiVector* output) {
|
| WebRtcSpl_AffineTransformVector(scaled_random_vector, random_vector,
|
| parameters.ar_gain, add_constant,
|
| parameters.ar_gain_scale,
|
| - static_cast<int>(current_lag));
|
| + current_lag);
|
| WebRtcSpl_FilterARFastQ12(scaled_random_vector, unvoiced_vector,
|
| parameters.ar_filter, kUnvoicedLpcOrder + 1,
|
| - static_cast<int>(current_lag));
|
| + current_lag);
|
| memcpy(parameters.ar_filter_state,
|
| &(unvoiced_vector[current_lag - kUnvoicedLpcOrder]),
|
| sizeof(int16_t) * kUnvoicedLpcOrder);
|
| @@ -212,7 +212,8 @@ int Expand::Process(AudioMultiVector* output) {
|
| // (>= 31 .. <= 63) * fs_mult => go from 1 to 0 in about 16 ms;
|
| // >= 64 * fs_mult => go from 1 to 0 in about 32 ms.
|
| // temp_shift = getbits(max_lag_) - 5.
|
| - int temp_shift = (31 - WebRtcSpl_NormW32(max_lag_)) - 5;
|
| + int temp_shift =
|
| + (31 - WebRtcSpl_NormW32(rtc::checked_cast<int32_t>(max_lag_))) - 5;
|
| int16_t mix_factor_increment = 256 >> temp_shift;
|
| if (stop_muting_) {
|
| mix_factor_increment = 0;
|
| @@ -237,7 +238,7 @@ int Expand::Process(AudioMultiVector* output) {
|
| WebRtcSpl_ScaleAndAddVectorsWithRound(
|
| voiced_vector + temp_length, parameters.current_voice_mix_factor,
|
| unvoiced_vector + temp_length, temp_scale, 14,
|
| - temp_data + temp_length, static_cast<int>(current_lag - temp_length));
|
| + temp_data + temp_length, current_lag - temp_length);
|
| }
|
|
|
| // Select muting slope depending on how many consecutive expands we have
|
| @@ -258,7 +259,7 @@ int Expand::Process(AudioMultiVector* output) {
|
| // Mute to the previous level, then continue with the muting.
|
| WebRtcSpl_AffineTransformVector(temp_data, temp_data,
|
| parameters.mute_factor, 8192,
|
| - 14, static_cast<int>(current_lag));
|
| + 14, current_lag);
|
|
|
| if (!stop_muting_) {
|
| DspHelper::MuteSignal(temp_data, parameters.mute_slope, current_lag);
|
| @@ -351,26 +352,26 @@ void Expand::AnalyzeSignal(int16_t* random_vector) {
|
| int32_t auto_correlation[kUnvoicedLpcOrder + 1];
|
| int16_t reflection_coeff[kUnvoicedLpcOrder];
|
| int16_t correlation_vector[kMaxSampleRate / 8000 * 102];
|
| - int best_correlation_index[kNumCorrelationCandidates];
|
| + size_t best_correlation_index[kNumCorrelationCandidates];
|
| int16_t best_correlation[kNumCorrelationCandidates];
|
| - int16_t best_distortion_index[kNumCorrelationCandidates];
|
| + size_t best_distortion_index[kNumCorrelationCandidates];
|
| int16_t best_distortion[kNumCorrelationCandidates];
|
| int32_t correlation_vector2[(99 * kMaxSampleRate / 8000) + 1];
|
| int32_t best_distortion_w32[kNumCorrelationCandidates];
|
| - static const int kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
|
| + static const size_t kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
|
| int16_t unvoiced_array_memory[kNoiseLpcOrder + kMaxSampleRate / 8000 * 125];
|
| int16_t* unvoiced_vector = unvoiced_array_memory + kUnvoicedLpcOrder;
|
|
|
| int fs_mult = fs_hz_ / 8000;
|
|
|
| // Pre-calculate common multiplications with fs_mult.
|
| - int fs_mult_4 = fs_mult * 4;
|
| - int fs_mult_20 = fs_mult * 20;
|
| - int fs_mult_120 = fs_mult * 120;
|
| - int fs_mult_dist_len = fs_mult * kDistortionLength;
|
| - int fs_mult_lpc_analysis_len = fs_mult * kLpcAnalysisLength;
|
| + size_t fs_mult_4 = static_cast<size_t>(fs_mult * 4);
|
| + size_t fs_mult_20 = static_cast<size_t>(fs_mult * 20);
|
| + size_t fs_mult_120 = static_cast<size_t>(fs_mult * 120);
|
| + size_t fs_mult_dist_len = fs_mult * kDistortionLength;
|
| + size_t fs_mult_lpc_analysis_len = fs_mult * kLpcAnalysisLength;
|
|
|
| - const size_t signal_length = 256 * fs_mult;
|
| + const size_t signal_length = static_cast<size_t>(256 * fs_mult);
|
| const int16_t* audio_history =
|
| &(*sync_buffer_)[0][sync_buffer_->Size() - signal_length];
|
|
|
| @@ -379,7 +380,7 @@ void Expand::AnalyzeSignal(int16_t* random_vector) {
|
|
|
| // Calculate correlation in downsampled domain (4 kHz sample rate).
|
| int correlation_scale;
|
| - int correlation_length = 51; // TODO(hlundin): Legacy bit-exactness.
|
| + size_t correlation_length = 51; // TODO(hlundin): Legacy bit-exactness.
|
| // If it is decided to break bit-exactness |correlation_length| should be
|
| // initialized to the return value of Correlation().
|
| Correlation(audio_history, signal_length, correlation_vector,
|
| @@ -398,11 +399,11 @@ void Expand::AnalyzeSignal(int16_t* random_vector) {
|
|
|
| // Calculate distortion around the |kNumCorrelationCandidates| best lags.
|
| int distortion_scale = 0;
|
| - for (int i = 0; i < kNumCorrelationCandidates; i++) {
|
| - int16_t min_index = std::max(fs_mult_20,
|
| - best_correlation_index[i] - fs_mult_4);
|
| - int16_t max_index = std::min(fs_mult_120 - 1,
|
| - best_correlation_index[i] + fs_mult_4);
|
| + for (size_t i = 0; i < kNumCorrelationCandidates; i++) {
|
| + size_t min_index = std::max(fs_mult_20,
|
| + best_correlation_index[i] - fs_mult_4);
|
| + size_t max_index = std::min(fs_mult_120 - 1,
|
| + best_correlation_index[i] + fs_mult_4);
|
| best_distortion_index[i] = DspHelper::MinDistortion(
|
| &(audio_history[signal_length - fs_mult_dist_len]), min_index,
|
| max_index, fs_mult_dist_len, &best_distortion_w32[i]);
|
| @@ -416,8 +417,8 @@ void Expand::AnalyzeSignal(int16_t* random_vector) {
|
| // Find the maximizing index |i| of the cost function
|
| // f[i] = best_correlation[i] / best_distortion[i].
|
| int32_t best_ratio = std::numeric_limits<int32_t>::min();
|
| - int best_index = std::numeric_limits<int>::max();
|
| - for (int i = 0; i < kNumCorrelationCandidates; ++i) {
|
| + size_t best_index = std::numeric_limits<size_t>::max();
|
| + for (size_t i = 0; i < kNumCorrelationCandidates; ++i) {
|
| int32_t ratio;
|
| if (best_distortion[i] > 0) {
|
| ratio = (best_correlation[i] << 16) / best_distortion[i];
|
| @@ -432,19 +433,20 @@ void Expand::AnalyzeSignal(int16_t* random_vector) {
|
| }
|
| }
|
|
|
| - int distortion_lag = best_distortion_index[best_index];
|
| - int correlation_lag = best_correlation_index[best_index];
|
| + size_t distortion_lag = best_distortion_index[best_index];
|
| + size_t correlation_lag = best_correlation_index[best_index];
|
| max_lag_ = std::max(distortion_lag, correlation_lag);
|
|
|
| // Calculate the exact best correlation in the range between
|
| // |correlation_lag| and |distortion_lag|.
|
| correlation_length =
|
| - std::max(std::min(distortion_lag + 10, fs_mult_120), 60 * fs_mult);
|
| + std::max(std::min(distortion_lag + 10, fs_mult_120),
|
| + static_cast<size_t>(60 * fs_mult));
|
|
|
| - int start_index = std::min(distortion_lag, correlation_lag);
|
| - int correlation_lags =
|
| - WEBRTC_SPL_ABS_W16((distortion_lag-correlation_lag)) + 1;
|
| - assert(correlation_lags <= 99 * fs_mult + 1); // Cannot be larger.
|
| + size_t start_index = std::min(distortion_lag, correlation_lag);
|
| + size_t correlation_lags = static_cast<size_t>(
|
| + WEBRTC_SPL_ABS_W16((distortion_lag-correlation_lag)) + 1);
|
| + assert(correlation_lags <= static_cast<size_t>(99 * fs_mult + 1));
|
|
|
| for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
|
| ChannelParameters& parameters = channel_parameters_[channel_ix];
|
| @@ -454,7 +456,7 @@ void Expand::AnalyzeSignal(int16_t* random_vector) {
|
| - correlation_lags],
|
| correlation_length + start_index + correlation_lags - 1);
|
| correlation_scale = (31 - WebRtcSpl_NormW32(signal_max * signal_max)) +
|
| - (31 - WebRtcSpl_NormW32(correlation_length)) - 31;
|
| + (31 - WebRtcSpl_NormW32(static_cast<int32_t>(correlation_length))) - 31;
|
| correlation_scale = std::max(0, correlation_scale);
|
|
|
| // Calculate the correlation, store in |correlation_vector2|.
|
| @@ -465,7 +467,8 @@ void Expand::AnalyzeSignal(int16_t* random_vector) {
|
| correlation_length, correlation_lags, correlation_scale, -1);
|
|
|
| // Find maximizing index.
|
| - best_index = WebRtcSpl_MaxIndexW32(correlation_vector2, correlation_lags);
|
| + best_index = static_cast<size_t>(
|
| + WebRtcSpl_MaxIndexW32(correlation_vector2, correlation_lags));
|
| int32_t max_correlation = correlation_vector2[best_index];
|
| // Compensate index with start offset.
|
| best_index = best_index + start_index;
|
| @@ -508,7 +511,7 @@ void Expand::AnalyzeSignal(int16_t* random_vector) {
|
|
|
| // Extract the two vectors expand_vector0 and expand_vector1 from
|
| // |audio_history|.
|
| - int16_t expansion_length = static_cast<int16_t>(max_lag_ + overlap_length_);
|
| + size_t expansion_length = max_lag_ + overlap_length_;
|
| const int16_t* vector1 = &(audio_history[signal_length - expansion_length]);
|
| const int16_t* vector2 = vector1 - distortion_lag;
|
| // Normalize the second vector to the same energy as the first.
|
| @@ -527,15 +530,15 @@ void Expand::AnalyzeSignal(int16_t* random_vector) {
|
| // Calculate scaled_energy1 / scaled_energy2 in Q13.
|
| int32_t energy_ratio = WebRtcSpl_DivW32W16(
|
| WEBRTC_SPL_SHIFT_W32(energy1, -scaled_energy1),
|
| - energy2 >> scaled_energy2);
|
| + static_cast<int16_t>(energy2 >> scaled_energy2));
|
| // Calculate sqrt ratio in Q13 (sqrt of en1/en2 in Q26).
|
| - amplitude_ratio = WebRtcSpl_SqrtFloor(energy_ratio << 13);
|
| + amplitude_ratio =
|
| + static_cast<int16_t>(WebRtcSpl_SqrtFloor(energy_ratio << 13));
|
| // Copy the two vectors and give them the same energy.
|
| parameters.expand_vector0.Clear();
|
| parameters.expand_vector0.PushBack(vector1, expansion_length);
|
| parameters.expand_vector1.Clear();
|
| - if (parameters.expand_vector1.Size() <
|
| - static_cast<size_t>(expansion_length)) {
|
| + if (parameters.expand_vector1.Size() < expansion_length) {
|
| parameters.expand_vector1.Extend(
|
| expansion_length - parameters.expand_vector1.Size());
|
| }
|
| @@ -626,7 +629,7 @@ void Expand::AnalyzeSignal(int16_t* random_vector) {
|
|
|
| if (channel_ix == 0) {
|
| // Extract a noise segment.
|
| - int16_t noise_length;
|
| + size_t noise_length;
|
| if (distortion_lag < 40) {
|
| noise_length = 2 * distortion_lag + 30;
|
| } else {
|
| @@ -768,7 +771,7 @@ void Expand::Correlation(const int16_t* input,
|
| int* output_scale) const {
|
| // Set parameters depending on sample rate.
|
| const int16_t* filter_coefficients;
|
| - int16_t num_coefficients;
|
| + size_t num_coefficients;
|
| int16_t downsampling_factor;
|
| if (fs_hz_ == 8000) {
|
| num_coefficients = 3;
|
| @@ -790,14 +793,14 @@ void Expand::Correlation(const int16_t* input,
|
|
|
| // Correlate from lag 10 to lag 60 in downsampled domain.
|
| // (Corresponds to 20-120 for narrow-band, 40-240 for wide-band, and so on.)
|
| - static const int kCorrelationStartLag = 10;
|
| - static const int kNumCorrelationLags = 54;
|
| - static const int kCorrelationLength = 60;
|
| + static const size_t kCorrelationStartLag = 10;
|
| + static const size_t kNumCorrelationLags = 54;
|
| + static const size_t kCorrelationLength = 60;
|
| // Downsample to 4 kHz sample rate.
|
| - static const int kDownsampledLength = kCorrelationStartLag
|
| + static const size_t kDownsampledLength = kCorrelationStartLag
|
| + kNumCorrelationLags + kCorrelationLength;
|
| int16_t downsampled_input[kDownsampledLength];
|
| - static const int kFilterDelay = 0;
|
| + static const size_t kFilterDelay = 0;
|
| WebRtcSpl_DownsampleFast(
|
| input + input_length - kDownsampledLength * downsampling_factor,
|
| kDownsampledLength * downsampling_factor, downsampled_input,
|
| @@ -859,9 +862,9 @@ void Expand::GenerateBackgroundNoise(int16_t* random_vector,
|
| bool too_many_expands,
|
| size_t num_noise_samples,
|
| int16_t* buffer) {
|
| - static const int kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
|
| + static const size_t kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
|
| int16_t scaled_random_vector[kMaxSampleRate / 8000 * 125];
|
| - assert(num_noise_samples <= static_cast<size_t>(kMaxSampleRate / 8000 * 125));
|
| + assert(num_noise_samples <= (kMaxSampleRate / 8000 * 125));
|
| int16_t* noise_samples = &buffer[kNoiseLpcOrder];
|
| if (background_noise_->initialized()) {
|
| // Use background noise parameters.
|
| @@ -879,12 +882,12 @@ void Expand::GenerateBackgroundNoise(int16_t* random_vector,
|
| scaled_random_vector, random_vector,
|
| background_noise_->Scale(channel), dc_offset,
|
| background_noise_->ScaleShift(channel),
|
| - static_cast<int>(num_noise_samples));
|
| + num_noise_samples);
|
|
|
| WebRtcSpl_FilterARFastQ12(scaled_random_vector, noise_samples,
|
| background_noise_->Filter(channel),
|
| kNoiseLpcOrder + 1,
|
| - static_cast<int>(num_noise_samples));
|
| + num_noise_samples);
|
|
|
| background_noise_->SetFilterState(
|
| channel,
|
| @@ -931,7 +934,7 @@ void Expand::GenerateBackgroundNoise(int16_t* random_vector,
|
| // kBgnFade has reached 0.
|
| WebRtcSpl_AffineTransformVector(noise_samples, noise_samples,
|
| bgn_mute_factor, 8192, 14,
|
| - static_cast<int>(num_noise_samples));
|
| + num_noise_samples);
|
| }
|
| }
|
| // Update mute_factor in BackgroundNoise class.
|
|
|