Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(28)

Unified Diff: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc

Issue 1230503003: Update a ton of audio code to use size_t more correctly and in general reduce (Closed) Base URL: https://chromium.googlesource.com/external/webrtc@master
Patch Set: Resync Created 5 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
index 2c2743f05323fef4597a3d2a20367105ae942e11..7da9b957a422488957c00efd2f67b007dce617c0 100644
--- a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
+++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
@@ -40,20 +40,20 @@ complex<float> zerofudge(complex<float> c) {
return complex<float>(AddDitherIfZero(c.real()), AddDitherIfZero(c.imag()));
}
-complex<float> NewMean(complex<float> mean, complex<float> data, int count) {
+complex<float> NewMean(complex<float> mean, complex<float> data, size_t count) {
return mean + (data - mean) / static_cast<float>(count);
}
-void AddToMean(complex<float> data, int count, complex<float>* mean) {
+void AddToMean(complex<float> data, size_t count, complex<float>* mean) {
(*mean) = NewMean(*mean, data, count);
}
-static const int kWindowBlockSize = 10;
+static const size_t kWindowBlockSize = 10;
-VarianceArray::VarianceArray(int num_freqs,
+VarianceArray::VarianceArray(size_t num_freqs,
StepType type,
- int window_size,
+ size_t window_size,
float decay)
: running_mean_(new complex<float>[num_freqs]()),
running_mean_sq_(new complex<float>[num_freqs]()),
@@ -69,15 +69,15 @@ VarianceArray::VarianceArray(int num_freqs,
array_mean_(0.0f),
buffer_full_(false) {
history_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]());
- for (int i = 0; i < num_freqs_; ++i) {
+ for (size_t i = 0; i < num_freqs_; ++i) {
history_[i].reset(new complex<float>[window_size_]());
}
subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]());
- for (int i = 0; i < num_freqs_; ++i) {
+ for (size_t i = 0; i < num_freqs_; ++i) {
subhistory_[i].reset(new complex<float>[window_size_]());
}
subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]());
- for (int i = 0; i < num_freqs_; ++i) {
+ for (size_t i = 0; i < num_freqs_; ++i) {
subhistory_sq_[i].reset(new complex<float>[window_size_]());
}
switch (type) {
@@ -104,7 +104,7 @@ VarianceArray::VarianceArray(int num_freqs,
void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) {
array_mean_ = 0.0f;
++count_;
- for (int i = 0; i < num_freqs_; ++i) {
+ for (size_t i = 0; i < num_freqs_; ++i) {
complex<float> sample = data[i];
if (!skip_fudge) {
sample = zerofudge(sample);
@@ -132,7 +132,7 @@ void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) {
void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) {
array_mean_ = 0.0f;
++count_;
- for (int i = 0; i < num_freqs_; ++i) {
+ for (size_t i = 0; i < num_freqs_; ++i) {
complex<float> sample = data[i];
sample = zerofudge(sample);
@@ -157,9 +157,9 @@ void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) {
// Windowed variance computation. On each step, the variances for the
// window are recomputed from scratch, using Welford's algorithm.
void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
- int num = min(count_ + 1, window_size_);
+ size_t num = min(count_ + 1, window_size_);
array_mean_ = 0.0f;
- for (int i = 0; i < num_freqs_; ++i) {
+ for (size_t i = 0; i < num_freqs_; ++i) {
complex<float> mean;
float conj_sum = 0.0f;
@@ -167,7 +167,7 @@ void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
mean = history_[i][history_cursor_];
variance_[i] = 0.0f;
- for (int j = 1; j < num; ++j) {
+ for (size_t j = 1; j < num; ++j) {
complex<float> sample =
zerofudge(history_[i][(history_cursor_ + j) % window_size_]);
sample = history_[i][(history_cursor_ + j) % window_size_];
@@ -191,8 +191,8 @@ void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
// history window and a new block is started. The variances for the window
// are recomputed from scratch at each of these transitions.
void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) {
- int blocks = min(window_size_, history_cursor_ + 1);
- for (int i = 0; i < num_freqs_; ++i) {
+ size_t blocks = min(window_size_, history_cursor_ + 1);
+ for (size_t i = 0; i < num_freqs_; ++i) {
AddToMean(data[i], count_ + 1, &sub_running_mean_[i]);
AddToMean(data[i] * std::conj(data[i]), count_ + 1,
&sub_running_mean_sq_[i]);
@@ -209,7 +209,7 @@ void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) {
sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
running_mean_[i] = complex<float>(0.0f, 0.0f);
running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
- for (int j = 0; j < min(window_size_, history_cursor_); ++j) {
+ for (size_t j = 0; j < min(window_size_, history_cursor_); ++j) {
AddToMean(subhistory_[i][j], j + 1, &running_mean_[i]);
AddToMean(subhistory_sq_[i][j], j + 1, &running_mean_sq_[i]);
}
@@ -228,7 +228,7 @@ void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data,
// TODO(ekmeyerson) To mitigate potential divergence, add counter so that
// after every so often sums are computed scratch by summing over all
// elements instead of subtracting oldest and adding newest.
- for (int i = 0; i < num_freqs_; ++i) {
+ for (size_t i = 0; i < num_freqs_; ++i) {
sub_running_mean_[i] += data[i];
sub_running_mean_sq_[i] += data[i] * std::conj(data[i]);
}
@@ -239,7 +239,7 @@ void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data,
if (count_ >= kWindowBlockSize) {
count_ = 0;
- for (int i = 0; i < num_freqs_; ++i) {
+ for (size_t i = 0; i < num_freqs_; ++i) {
running_mean_[i] -= subhistory_[i][history_cursor_];
running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_];
@@ -280,18 +280,18 @@ void VarianceArray::Clear() {
void VarianceArray::ApplyScale(float scale) {
array_mean_ = 0.0f;
- for (int i = 0; i < num_freqs_; ++i) {
+ for (size_t i = 0; i < num_freqs_; ++i) {
variance_[i] *= scale * scale;
array_mean_ += (variance_[i] - array_mean_) / (i + 1);
}
}
-GainApplier::GainApplier(int freqs, float change_limit)
+GainApplier::GainApplier(size_t freqs, float change_limit)
: num_freqs_(freqs),
change_limit_(change_limit),
target_(new float[freqs]()),
current_(new float[freqs]()) {
- for (int i = 0; i < freqs; ++i) {
+ for (size_t i = 0; i < freqs; ++i) {
target_[i] = 1.0f;
current_[i] = 1.0f;
}
@@ -299,7 +299,7 @@ GainApplier::GainApplier(int freqs, float change_limit)
void GainApplier::Apply(const complex<float>* in_block,
complex<float>* out_block) {
- for (int i = 0; i < num_freqs_; ++i) {
+ for (size_t i = 0; i < num_freqs_; ++i) {
float factor = sqrtf(fabsf(current_[i]));
if (!std::isnormal(factor)) {
factor = 1.0f;

Powered by Google App Engine
This is Rietveld 408576698