| Index: webrtc/modules/audio_coding/neteq/neteq_impl_unittest.cc
|
| diff --git a/webrtc/modules/audio_coding/neteq/neteq_impl_unittest.cc b/webrtc/modules/audio_coding/neteq/neteq_impl_unittest.cc
|
| index 05a8de25cb37958c674a8961eaf562595d721f8e..006a5ad542397cb839b2fe70bd5e59c093fbdbc8 100644
|
| --- a/webrtc/modules/audio_coding/neteq/neteq_impl_unittest.cc
|
| +++ b/webrtc/modules/audio_coding/neteq/neteq_impl_unittest.cc
|
| @@ -384,7 +384,7 @@ TEST_F(NetEqImplTest, InsertPacketsUntilBufferIsFull) {
|
| neteq_->RegisterPayloadType(kDecoderPCM16B, kPayloadType));
|
|
|
| // Insert packets. The buffer should not flush.
|
| - for (int i = 1; i <= config_.max_packets_in_buffer; ++i) {
|
| + for (size_t i = 1; i <= config_.max_packets_in_buffer; ++i) {
|
| EXPECT_EQ(NetEq::kOK,
|
| neteq_->InsertPacket(
|
| rtp_header, payload, kPayloadLengthBytes, kReceiveTime));
|
| @@ -398,7 +398,7 @@ TEST_F(NetEqImplTest, InsertPacketsUntilBufferIsFull) {
|
| EXPECT_EQ(NetEq::kOK,
|
| neteq_->InsertPacket(
|
| rtp_header, payload, kPayloadLengthBytes, kReceiveTime));
|
| - EXPECT_EQ(1, packet_buffer_->NumPacketsInBuffer());
|
| + EXPECT_EQ(1u, packet_buffer_->NumPacketsInBuffer());
|
| const RTPHeader* test_header = packet_buffer_->NextRtpHeader();
|
| EXPECT_EQ(rtp_header.header.timestamp, test_header->timestamp);
|
| EXPECT_EQ(rtp_header.header.sequenceNumber, test_header->sequenceNumber);
|
| @@ -413,7 +413,8 @@ TEST_F(NetEqImplTest, VerifyTimestampPropagation) {
|
| const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
| const int kSampleRateHz = 8000;
|
| - const int kPayloadLengthSamples = 10 * kSampleRateHz / 1000; // 10 ms.
|
| + const size_t kPayloadLengthSamples =
|
| + static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
|
| const size_t kPayloadLengthBytes = kPayloadLengthSamples;
|
| uint8_t payload[kPayloadLengthBytes] = {0};
|
| WebRtcRTPHeader rtp_header;
|
| @@ -466,9 +467,9 @@ TEST_F(NetEqImplTest, VerifyTimestampPropagation) {
|
| rtp_header, payload, kPayloadLengthBytes, kReceiveTime));
|
|
|
| // Pull audio once.
|
| - const int kMaxOutputSize = 10 * kSampleRateHz / 1000;
|
| + const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
|
| int16_t output[kMaxOutputSize];
|
| - int samples_per_channel;
|
| + size_t samples_per_channel;
|
| int num_channels;
|
| NetEqOutputType type;
|
| EXPECT_EQ(
|
| @@ -480,7 +481,8 @@ TEST_F(NetEqImplTest, VerifyTimestampPropagation) {
|
| EXPECT_EQ(kOutputNormal, type);
|
|
|
| // Start with a simple check that the fake decoder is behaving as expected.
|
| - EXPECT_EQ(kPayloadLengthSamples, decoder_.next_value() - 1);
|
| + EXPECT_EQ(kPayloadLengthSamples,
|
| + static_cast<size_t>(decoder_.next_value() - 1));
|
|
|
| // The value of the last of the output samples is the same as the number of
|
| // samples played from the decoded packet. Thus, this number + the RTP
|
| @@ -500,7 +502,7 @@ TEST_F(NetEqImplTest, VerifyTimestampPropagation) {
|
| // Check that the number of samples still to play from the sync buffer add
|
| // up with what was already played out.
|
| EXPECT_EQ(kPayloadLengthSamples - output[samples_per_channel - 1],
|
| - static_cast<int>(sync_buffer->FutureLength()));
|
| + sync_buffer->FutureLength());
|
| }
|
|
|
| TEST_F(NetEqImplTest, ReorderedPacket) {
|
| @@ -510,7 +512,8 @@ TEST_F(NetEqImplTest, ReorderedPacket) {
|
| const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
| const int kSampleRateHz = 8000;
|
| - const int kPayloadLengthSamples = 10 * kSampleRateHz / 1000; // 10 ms.
|
| + const size_t kPayloadLengthSamples =
|
| + static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
|
| const size_t kPayloadLengthBytes = kPayloadLengthSamples;
|
| uint8_t payload[kPayloadLengthBytes] = {0};
|
| WebRtcRTPHeader rtp_header;
|
| @@ -544,9 +547,9 @@ TEST_F(NetEqImplTest, ReorderedPacket) {
|
| rtp_header, payload, kPayloadLengthBytes, kReceiveTime));
|
|
|
| // Pull audio once.
|
| - const int kMaxOutputSize = 10 * kSampleRateHz / 1000;
|
| + const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
|
| int16_t output[kMaxOutputSize];
|
| - int samples_per_channel;
|
| + size_t samples_per_channel;
|
| int num_channels;
|
| NetEqOutputType type;
|
| EXPECT_EQ(
|
| @@ -606,7 +609,8 @@ TEST_F(NetEqImplTest, FirstPacketUnknown) {
|
| const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
| const int kSampleRateHz = 8000;
|
| - const int kPayloadLengthSamples = 10 * kSampleRateHz / 1000; // 10 ms.
|
| + const size_t kPayloadLengthSamples =
|
| + static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
|
| const size_t kPayloadLengthBytes = kPayloadLengthSamples;
|
| uint8_t payload[kPayloadLengthBytes] = {0};
|
| WebRtcRTPHeader rtp_header;
|
| @@ -623,9 +627,9 @@ TEST_F(NetEqImplTest, FirstPacketUnknown) {
|
| EXPECT_EQ(NetEq::kUnknownRtpPayloadType, neteq_->LastError());
|
|
|
| // Pull audio once.
|
| - const int kMaxOutputSize = 10 * kSampleRateHz / 1000;
|
| + const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
|
| int16_t output[kMaxOutputSize];
|
| - int samples_per_channel;
|
| + size_t samples_per_channel;
|
| int num_channels;
|
| NetEqOutputType type;
|
| EXPECT_EQ(NetEq::kOK,
|
| @@ -641,7 +645,7 @@ TEST_F(NetEqImplTest, FirstPacketUnknown) {
|
| neteq_->RegisterPayloadType(kDecoderPCM16B, kPayloadType));
|
|
|
| // Insert 10 packets.
|
| - for (int i = 0; i < 10; ++i) {
|
| + for (size_t i = 0; i < 10; ++i) {
|
| rtp_header.header.sequenceNumber++;
|
| rtp_header.header.timestamp += kPayloadLengthSamples;
|
| EXPECT_EQ(NetEq::kOK,
|
| @@ -651,7 +655,7 @@ TEST_F(NetEqImplTest, FirstPacketUnknown) {
|
| }
|
|
|
| // Pull audio repeatedly and make sure we get normal output, that is not PLC.
|
| - for (int i = 0; i < 3; ++i) {
|
| + for (size_t i = 0; i < 3; ++i) {
|
| EXPECT_EQ(NetEq::kOK,
|
| neteq_->GetAudio(kMaxOutputSize, output, &samples_per_channel,
|
| &num_channels, &type));
|
| @@ -672,8 +676,9 @@ TEST_F(NetEqImplTest, CodecInternalCng) {
|
| const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
| const int kSampleRateKhz = 48;
|
| - const int kPayloadLengthSamples = 20 * kSampleRateKhz; // 20 ms.
|
| - const int kPayloadLengthBytes = 10;
|
| + const size_t kPayloadLengthSamples =
|
| + static_cast<size_t>(20 * kSampleRateKhz); // 20 ms.
|
| + const size_t kPayloadLengthBytes = 10;
|
| uint8_t payload[kPayloadLengthBytes] = {0};
|
| int16_t dummy_output[kPayloadLengthSamples] = {0};
|
|
|
| @@ -736,9 +741,9 @@ TEST_F(NetEqImplTest, CodecInternalCng) {
|
| neteq_->InsertPacket(
|
| rtp_header, payload, kPayloadLengthBytes, kReceiveTime));
|
|
|
| - const int kMaxOutputSize = 10 * kSampleRateKhz;
|
| + const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateKhz);
|
| int16_t output[kMaxOutputSize];
|
| - int samples_per_channel;
|
| + size_t samples_per_channel;
|
| int num_channels;
|
| uint32_t timestamp;
|
| uint32_t last_timestamp;
|
| @@ -762,7 +767,7 @@ TEST_F(NetEqImplTest, CodecInternalCng) {
|
| &num_channels, &type));
|
| EXPECT_TRUE(neteq_->GetPlayoutTimestamp(&last_timestamp));
|
|
|
| - for (int i = 1; i < 6; ++i) {
|
| + for (size_t i = 1; i < 6; ++i) {
|
| ASSERT_EQ(kMaxOutputSize, samples_per_channel);
|
| EXPECT_EQ(1, num_channels);
|
| EXPECT_EQ(expected_type[i - 1], type);
|
| @@ -783,7 +788,7 @@ TEST_F(NetEqImplTest, CodecInternalCng) {
|
| neteq_->InsertPacket(
|
| rtp_header, payload, kPayloadLengthBytes, kReceiveTime));
|
|
|
| - for (int i = 6; i < 8; ++i) {
|
| + for (size_t i = 6; i < 8; ++i) {
|
| ASSERT_EQ(kMaxOutputSize, samples_per_channel);
|
| EXPECT_EQ(1, num_channels);
|
| EXPECT_EQ(expected_type[i - 1], type);
|
| @@ -811,7 +816,8 @@ TEST_F(NetEqImplTest, UnsupportedDecoder) {
|
| const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
| const int kSampleRateHz = 8000;
|
|
|
| - const int kPayloadLengthSamples = 10 * kSampleRateHz / 1000; // 10 ms.
|
| + const size_t kPayloadLengthSamples =
|
| + static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
|
| const size_t kPayloadLengthBytes = 1;
|
| uint8_t payload[kPayloadLengthBytes]= {0};
|
| int16_t dummy_output[kPayloadLengthSamples * kChannels] = {0};
|
| @@ -852,7 +858,8 @@ TEST_F(NetEqImplTest, UnsupportedDecoder) {
|
| dummy_output +
|
| kPayloadLengthSamples * kChannels),
|
| SetArgPointee<4>(AudioDecoder::kSpeech),
|
| - Return(kPayloadLengthSamples * kChannels)));
|
| + Return(static_cast<int>(
|
| + kPayloadLengthSamples * kChannels))));
|
|
|
| EXPECT_CALL(decoder_, PacketDuration(Pointee(kSecondPayloadValue),
|
| kPayloadLengthBytes))
|
| @@ -879,9 +886,10 @@ TEST_F(NetEqImplTest, UnsupportedDecoder) {
|
| neteq_->InsertPacket(
|
| rtp_header, payload, kPayloadLengthBytes, kReceiveTime));
|
|
|
| - const int kMaxOutputSize = 10 * kSampleRateHz / 1000 * kChannels;
|
| + const size_t kMaxOutputSize =
|
| + static_cast<size_t>(10 * kSampleRateHz / 1000 * kChannels);
|
| int16_t output[kMaxOutputSize];
|
| - int samples_per_channel;
|
| + size_t samples_per_channel;
|
| int num_channels;
|
| NetEqOutputType type;
|
|
|
|
|