| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| (...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 51 void ResampleTest(bool int_format); | 51 void ResampleTest(bool int_format); |
| 52 | 52 |
| 53 int input_rate_; | 53 int input_rate_; |
| 54 int output_rate_; | 54 int output_rate_; |
| 55 double rms_error_; | 55 double rms_error_; |
| 56 double low_freq_error_; | 56 double low_freq_error_; |
| 57 }; | 57 }; |
| 58 | 58 |
| 59 class ZeroSource : public SincResamplerCallback { | 59 class ZeroSource : public SincResamplerCallback { |
| 60 public: | 60 public: |
| 61 void Run(int frames, float* destination) { | 61 void Run(size_t frames, float* destination) { |
| 62 std::memset(destination, 0, sizeof(float) * frames); | 62 std::memset(destination, 0, sizeof(float) * frames); |
| 63 } | 63 } |
| 64 }; | 64 }; |
| 65 | 65 |
| 66 void PushSincResamplerTest::ResampleBenchmarkTest(bool int_format) { | 66 void PushSincResamplerTest::ResampleBenchmarkTest(bool int_format) { |
| 67 const int input_samples = input_rate_ / 100; | 67 const size_t input_samples = static_cast<size_t>(input_rate_ / 100); |
| 68 const int output_samples = output_rate_ / 100; | 68 const size_t output_samples = static_cast<size_t>(output_rate_ / 100); |
| 69 const int kResampleIterations = 500000; | 69 const int kResampleIterations = 500000; |
| 70 | 70 |
| 71 // Source for data to be resampled. | 71 // Source for data to be resampled. |
| 72 ZeroSource resampler_source; | 72 ZeroSource resampler_source; |
| 73 | 73 |
| 74 rtc::scoped_ptr<float[]> resampled_destination(new float[output_samples]); | 74 rtc::scoped_ptr<float[]> resampled_destination(new float[output_samples]); |
| 75 rtc::scoped_ptr<float[]> source(new float[input_samples]); | 75 rtc::scoped_ptr<float[]> source(new float[input_samples]); |
| 76 rtc::scoped_ptr<int16_t[]> source_int(new int16_t[input_samples]); | 76 rtc::scoped_ptr<int16_t[]> source_int(new int16_t[input_samples]); |
| 77 rtc::scoped_ptr<int16_t[]> destination_int(new int16_t[output_samples]); | 77 rtc::scoped_ptr<int16_t[]> destination_int(new int16_t[output_samples]); |
| 78 | 78 |
| 79 resampler_source.Run(input_samples, source.get()); | 79 resampler_source.Run(input_samples, source.get()); |
| 80 for (int i = 0; i < input_samples; ++i) { | 80 for (size_t i = 0; i < input_samples; ++i) { |
| 81 source_int[i] = static_cast<int16_t>(floor(32767 * source[i] + 0.5)); | 81 source_int[i] = static_cast<int16_t>(floor(32767 * source[i] + 0.5)); |
| 82 } | 82 } |
| 83 | 83 |
| 84 printf("Benchmarking %d iterations of %d Hz -> %d Hz:\n", | 84 printf("Benchmarking %d iterations of %d Hz -> %d Hz:\n", |
| 85 kResampleIterations, input_rate_, output_rate_); | 85 kResampleIterations, input_rate_, output_rate_); |
| 86 const double io_ratio = input_rate_ / static_cast<double>(output_rate_); | 86 const double io_ratio = input_rate_ / static_cast<double>(output_rate_); |
| 87 SincResampler sinc_resampler(io_ratio, SincResampler::kDefaultRequestSize, | 87 SincResampler sinc_resampler(io_ratio, SincResampler::kDefaultRequestSize, |
| 88 &resampler_source); | 88 &resampler_source); |
| 89 TickTime start = TickTime::Now(); | 89 TickTime start = TickTime::Now(); |
| 90 for (int i = 0; i < kResampleIterations; ++i) { | 90 for (int i = 0; i < kResampleIterations; ++i) { |
| (...skipping 36 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 127 | 127 |
| 128 TEST_P(PushSincResamplerTest, DISABLED_BenchmarkFloat) { | 128 TEST_P(PushSincResamplerTest, DISABLED_BenchmarkFloat) { |
| 129 ResampleBenchmarkTest(false); | 129 ResampleBenchmarkTest(false); |
| 130 } | 130 } |
| 131 | 131 |
| 132 // Tests resampling using a given input and output sample rate. | 132 // Tests resampling using a given input and output sample rate. |
| 133 void PushSincResamplerTest::ResampleTest(bool int_format) { | 133 void PushSincResamplerTest::ResampleTest(bool int_format) { |
| 134 // Make comparisons using one second of data. | 134 // Make comparisons using one second of data. |
| 135 static const double kTestDurationSecs = 1; | 135 static const double kTestDurationSecs = 1; |
| 136 // 10 ms blocks. | 136 // 10 ms blocks. |
| 137 const int kNumBlocks = kTestDurationSecs * 100; | 137 const size_t kNumBlocks = static_cast<size_t>(kTestDurationSecs * 100); |
| 138 const int input_block_size = input_rate_ / 100; | 138 const size_t input_block_size = static_cast<size_t>(input_rate_ / 100); |
| 139 const int output_block_size = output_rate_ / 100; | 139 const size_t output_block_size = static_cast<size_t>(output_rate_ / 100); |
| 140 const int input_samples = kTestDurationSecs * input_rate_; | 140 const size_t input_samples = |
| 141 const int output_samples = kTestDurationSecs * output_rate_; | 141 static_cast<size_t>(kTestDurationSecs * input_rate_); |
| 142 const size_t output_samples = |
| 143 static_cast<size_t>(kTestDurationSecs * output_rate_); |
| 142 | 144 |
| 143 // Nyquist frequency for the input sampling rate. | 145 // Nyquist frequency for the input sampling rate. |
| 144 const double input_nyquist_freq = 0.5 * input_rate_; | 146 const double input_nyquist_freq = 0.5 * input_rate_; |
| 145 | 147 |
| 146 // Source for data to be resampled. | 148 // Source for data to be resampled. |
| 147 SinusoidalLinearChirpSource resampler_source( | 149 SinusoidalLinearChirpSource resampler_source( |
| 148 input_rate_, input_samples, input_nyquist_freq, 0); | 150 input_rate_, input_samples, input_nyquist_freq, 0); |
| 149 | 151 |
| 150 PushSincResampler resampler(input_block_size, output_block_size); | 152 PushSincResampler resampler(input_block_size, output_block_size); |
| 151 | 153 |
| 152 // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to | 154 // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to |
| 153 // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes. | 155 // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes. |
| 154 rtc::scoped_ptr<float[]> resampled_destination(new float[output_samples]); | 156 rtc::scoped_ptr<float[]> resampled_destination(new float[output_samples]); |
| 155 rtc::scoped_ptr<float[]> pure_destination(new float[output_samples]); | 157 rtc::scoped_ptr<float[]> pure_destination(new float[output_samples]); |
| 156 rtc::scoped_ptr<float[]> source(new float[input_samples]); | 158 rtc::scoped_ptr<float[]> source(new float[input_samples]); |
| 157 rtc::scoped_ptr<int16_t[]> source_int(new int16_t[input_block_size]); | 159 rtc::scoped_ptr<int16_t[]> source_int(new int16_t[input_block_size]); |
| 158 rtc::scoped_ptr<int16_t[]> destination_int(new int16_t[output_block_size]); | 160 rtc::scoped_ptr<int16_t[]> destination_int(new int16_t[output_block_size]); |
| 159 | 161 |
| 160 // The sinc resampler has an implicit delay of approximately half the kernel | 162 // The sinc resampler has an implicit delay of approximately half the kernel |
| 161 // size at the input sample rate. By moving to a push model, this delay | 163 // size at the input sample rate. By moving to a push model, this delay |
| 162 // becomes explicit and is managed by zero-stuffing in PushSincResampler. We | 164 // becomes explicit and is managed by zero-stuffing in PushSincResampler. We |
| 163 // deal with it in the test by delaying the "pure" source to match. It must be | 165 // deal with it in the test by delaying the "pure" source to match. It must be |
| 164 // checked before the first call to Resample(), because ChunkSize() will | 166 // checked before the first call to Resample(), because ChunkSize() will |
| 165 // change afterwards. | 167 // change afterwards. |
| 166 const int output_delay_samples = output_block_size - | 168 const size_t output_delay_samples = output_block_size - |
| 167 resampler.get_resampler_for_testing()->ChunkSize(); | 169 resampler.get_resampler_for_testing()->ChunkSize(); |
| 168 | 170 |
| 169 // Generate resampled signal. | 171 // Generate resampled signal. |
| 170 // With the PushSincResampler, we produce the signal block-by-10ms-block | 172 // With the PushSincResampler, we produce the signal block-by-10ms-block |
| 171 // rather than in a single pass, to exercise how it will be used in WebRTC. | 173 // rather than in a single pass, to exercise how it will be used in WebRTC. |
| 172 resampler_source.Run(input_samples, source.get()); | 174 resampler_source.Run(input_samples, source.get()); |
| 173 if (int_format) { | 175 if (int_format) { |
| 174 for (int i = 0; i < kNumBlocks; ++i) { | 176 for (size_t i = 0; i < kNumBlocks; ++i) { |
| 175 FloatToS16(&source[i * input_block_size], input_block_size, | 177 FloatToS16(&source[i * input_block_size], input_block_size, |
| 176 source_int.get()); | 178 source_int.get()); |
| 177 EXPECT_EQ(output_block_size, | 179 EXPECT_EQ(output_block_size, |
| 178 resampler.Resample(source_int.get(), | 180 resampler.Resample(source_int.get(), |
| 179 input_block_size, | 181 input_block_size, |
| 180 destination_int.get(), | 182 destination_int.get(), |
| 181 output_block_size)); | 183 output_block_size)); |
| 182 S16ToFloat(destination_int.get(), output_block_size, | 184 S16ToFloat(destination_int.get(), output_block_size, |
| 183 &resampled_destination[i * output_block_size]); | 185 &resampled_destination[i * output_block_size]); |
| 184 } | 186 } |
| 185 } else { | 187 } else { |
| 186 for (int i = 0; i < kNumBlocks; ++i) { | 188 for (size_t i = 0; i < kNumBlocks; ++i) { |
| 187 EXPECT_EQ( | 189 EXPECT_EQ( |
| 188 output_block_size, | 190 output_block_size, |
| 189 resampler.Resample(&source[i * input_block_size], | 191 resampler.Resample(&source[i * input_block_size], |
| 190 input_block_size, | 192 input_block_size, |
| 191 &resampled_destination[i * output_block_size], | 193 &resampled_destination[i * output_block_size], |
| 192 output_block_size)); | 194 output_block_size)); |
| 193 } | 195 } |
| 194 } | 196 } |
| 195 | 197 |
| 196 // Generate pure signal. | 198 // Generate pure signal. |
| 197 SinusoidalLinearChirpSource pure_source( | 199 SinusoidalLinearChirpSource pure_source( |
| 198 output_rate_, output_samples, input_nyquist_freq, output_delay_samples); | 200 output_rate_, output_samples, input_nyquist_freq, output_delay_samples); |
| 199 pure_source.Run(output_samples, pure_destination.get()); | 201 pure_source.Run(output_samples, pure_destination.get()); |
| 200 | 202 |
| 201 // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which | 203 // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which |
| 202 // we refer to as low and high. | 204 // we refer to as low and high. |
| 203 static const double kLowFrequencyNyquistRange = 0.7; | 205 static const double kLowFrequencyNyquistRange = 0.7; |
| 204 static const double kHighFrequencyNyquistRange = 0.9; | 206 static const double kHighFrequencyNyquistRange = 0.9; |
| 205 | 207 |
| 206 // Calculate Root-Mean-Square-Error and maximum error for the resampling. | 208 // Calculate Root-Mean-Square-Error and maximum error for the resampling. |
| 207 double sum_of_squares = 0; | 209 double sum_of_squares = 0; |
| 208 double low_freq_max_error = 0; | 210 double low_freq_max_error = 0; |
| 209 double high_freq_max_error = 0; | 211 double high_freq_max_error = 0; |
| 210 int minimum_rate = std::min(input_rate_, output_rate_); | 212 int minimum_rate = std::min(input_rate_, output_rate_); |
| 211 double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate; | 213 double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate; |
| 212 double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate; | 214 double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate; |
| 213 | 215 |
| 214 for (int i = 0; i < output_samples; ++i) { | 216 for (size_t i = 0; i < output_samples; ++i) { |
| 215 double error = fabs(resampled_destination[i] - pure_destination[i]); | 217 double error = fabs(resampled_destination[i] - pure_destination[i]); |
| 216 | 218 |
| 217 if (pure_source.Frequency(i) < low_frequency_range) { | 219 if (pure_source.Frequency(i) < low_frequency_range) { |
| 218 if (error > low_freq_max_error) | 220 if (error > low_freq_max_error) |
| 219 low_freq_max_error = error; | 221 low_freq_max_error = error; |
| 220 } else if (pure_source.Frequency(i) < high_frequency_range) { | 222 } else if (pure_source.Frequency(i) < high_frequency_range) { |
| 221 if (error > high_freq_max_error) | 223 if (error > high_freq_max_error) |
| 222 high_freq_max_error = error; | 224 high_freq_max_error = error; |
| 223 } | 225 } |
| 224 // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange. | 226 // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange. |
| (...skipping 99 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 324 // To 32 kHz | 326 // To 32 kHz |
| 325 ::testing::make_tuple(8000, 32000, kResamplingRMSError, -70.30), | 327 ::testing::make_tuple(8000, 32000, kResamplingRMSError, -70.30), |
| 326 ::testing::make_tuple(16000, 32000, kResamplingRMSError, -75.51), | 328 ::testing::make_tuple(16000, 32000, kResamplingRMSError, -75.51), |
| 327 ::testing::make_tuple(32000, 32000, kResamplingRMSError, -75.51), | 329 ::testing::make_tuple(32000, 32000, kResamplingRMSError, -75.51), |
| 328 ::testing::make_tuple(44100, 32000, -16.44, -51.10), | 330 ::testing::make_tuple(44100, 32000, -16.44, -51.10), |
| 329 ::testing::make_tuple(48000, 32000, -16.90, -44.03), | 331 ::testing::make_tuple(48000, 32000, -16.90, -44.03), |
| 330 ::testing::make_tuple(96000, 32000, -19.61, -18.04), | 332 ::testing::make_tuple(96000, 32000, -19.61, -18.04), |
| 331 ::testing::make_tuple(192000, 32000, -21.02, -10.94))); | 333 ::testing::make_tuple(192000, 32000, -21.02, -10.94))); |
| 332 | 334 |
| 333 } // namespace webrtc | 335 } // namespace webrtc |
| OLD | NEW |