Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(21)

Side by Side Diff: webrtc/modules/audio_coding/neteq/neteq_impl.cc

Issue 1228843002: Update audio code to use size_t more correctly, (Closed) Base URL: https://chromium.googlesource.com/external/webrtc@master
Patch Set: Review comments Created 5 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 #include "webrtc/modules/audio_coding/neteq/neteq_impl.h" 11 #include "webrtc/modules/audio_coding/neteq/neteq_impl.h"
12 12
13 #include <assert.h> 13 #include <assert.h>
14 #include <memory.h> // memset 14 #include <memory.h> // memset
15 15
16 #include <algorithm> 16 #include <algorithm>
17 17
18 #include "webrtc/base/logging.h" 18 #include "webrtc/base/logging.h"
19 #include "webrtc/base/safe_conversions.h"
19 #include "webrtc/common_audio/signal_processing/include/signal_processing_librar y.h" 20 #include "webrtc/common_audio/signal_processing/include/signal_processing_librar y.h"
20 #include "webrtc/modules/audio_coding/codecs/audio_decoder.h" 21 #include "webrtc/modules/audio_coding/codecs/audio_decoder.h"
21 #include "webrtc/modules/audio_coding/neteq/accelerate.h" 22 #include "webrtc/modules/audio_coding/neteq/accelerate.h"
22 #include "webrtc/modules/audio_coding/neteq/background_noise.h" 23 #include "webrtc/modules/audio_coding/neteq/background_noise.h"
23 #include "webrtc/modules/audio_coding/neteq/buffer_level_filter.h" 24 #include "webrtc/modules/audio_coding/neteq/buffer_level_filter.h"
24 #include "webrtc/modules/audio_coding/neteq/comfort_noise.h" 25 #include "webrtc/modules/audio_coding/neteq/comfort_noise.h"
25 #include "webrtc/modules/audio_coding/neteq/decision_logic.h" 26 #include "webrtc/modules/audio_coding/neteq/decision_logic.h"
26 #include "webrtc/modules/audio_coding/neteq/decoder_database.h" 27 #include "webrtc/modules/audio_coding/neteq/decoder_database.h"
27 #include "webrtc/modules/audio_coding/neteq/defines.h" 28 #include "webrtc/modules/audio_coding/neteq/defines.h"
28 #include "webrtc/modules/audio_coding/neteq/delay_manager.h" 29 #include "webrtc/modules/audio_coding/neteq/delay_manager.h"
(...skipping 68 matching lines...) Expand 10 before | Expand all | Expand 10 after
97 decoded_packet_timestamp_(0) { 98 decoded_packet_timestamp_(0) {
98 LOG(LS_INFO) << "NetEq config: " << config.ToString(); 99 LOG(LS_INFO) << "NetEq config: " << config.ToString();
99 int fs = config.sample_rate_hz; 100 int fs = config.sample_rate_hz;
100 if (fs != 8000 && fs != 16000 && fs != 32000 && fs != 48000) { 101 if (fs != 8000 && fs != 16000 && fs != 32000 && fs != 48000) {
101 LOG(LS_ERROR) << "Sample rate " << fs << " Hz not supported. " << 102 LOG(LS_ERROR) << "Sample rate " << fs << " Hz not supported. " <<
102 "Changing to 8000 Hz."; 103 "Changing to 8000 Hz.";
103 fs = 8000; 104 fs = 8000;
104 } 105 }
105 fs_hz_ = fs; 106 fs_hz_ = fs;
106 fs_mult_ = fs / 8000; 107 fs_mult_ = fs / 8000;
107 output_size_samples_ = kOutputSizeMs * 8 * fs_mult_; 108 output_size_samples_ = static_cast<size_t>(kOutputSizeMs * 8 * fs_mult_);
108 decoder_frame_length_ = 3 * output_size_samples_; 109 decoder_frame_length_ = 3 * output_size_samples_;
109 WebRtcSpl_Init(); 110 WebRtcSpl_Init();
110 if (create_components) { 111 if (create_components) {
111 SetSampleRateAndChannels(fs, 1); // Default is 1 channel. 112 SetSampleRateAndChannels(fs, 1); // Default is 1 channel.
112 } 113 }
113 } 114 }
114 115
115 NetEqImpl::~NetEqImpl() = default; 116 NetEqImpl::~NetEqImpl() = default;
116 117
117 int NetEqImpl::InsertPacket(const WebRtcRTPHeader& rtp_header, 118 int NetEqImpl::InsertPacket(const WebRtcRTPHeader& rtp_header,
(...skipping 29 matching lines...) Expand all
147 rtp_header, kSyncPayload, sizeof(kSyncPayload), receive_timestamp, true); 148 rtp_header, kSyncPayload, sizeof(kSyncPayload), receive_timestamp, true);
148 149
149 if (error != 0) { 150 if (error != 0) {
150 error_code_ = error; 151 error_code_ = error;
151 return kFail; 152 return kFail;
152 } 153 }
153 return kOK; 154 return kOK;
154 } 155 }
155 156
156 int NetEqImpl::GetAudio(size_t max_length, int16_t* output_audio, 157 int NetEqImpl::GetAudio(size_t max_length, int16_t* output_audio,
157 int* samples_per_channel, int* num_channels, 158 size_t* samples_per_channel, int* num_channels,
158 NetEqOutputType* type) { 159 NetEqOutputType* type) {
159 CriticalSectionScoped lock(crit_sect_.get()); 160 CriticalSectionScoped lock(crit_sect_.get());
160 LOG(LS_VERBOSE) << "GetAudio"; 161 LOG(LS_VERBOSE) << "GetAudio";
161 int error = GetAudioInternal(max_length, output_audio, samples_per_channel, 162 int error = GetAudioInternal(max_length, output_audio, samples_per_channel,
162 num_channels); 163 num_channels);
163 LOG(LS_VERBOSE) << "Produced " << *samples_per_channel << 164 LOG(LS_VERBOSE) << "Produced " << *samples_per_channel <<
164 " samples/channel for " << *num_channels << " channel(s)"; 165 " samples/channel for " << *num_channels << " channel(s)";
165 if (error != 0) { 166 if (error != 0) {
166 error_code_ = error; 167 error_code_ = error;
167 return kFail; 168 return kFail;
(...skipping 130 matching lines...) Expand 10 before | Expand all | Expand 10 after
298 // Deprecated. 299 // Deprecated.
299 // TODO(henrik.lundin) Delete. 300 // TODO(henrik.lundin) Delete.
300 NetEqPlayoutMode NetEqImpl::PlayoutMode() const { 301 NetEqPlayoutMode NetEqImpl::PlayoutMode() const {
301 CriticalSectionScoped lock(crit_sect_.get()); 302 CriticalSectionScoped lock(crit_sect_.get());
302 return playout_mode_; 303 return playout_mode_;
303 } 304 }
304 305
305 int NetEqImpl::NetworkStatistics(NetEqNetworkStatistics* stats) { 306 int NetEqImpl::NetworkStatistics(NetEqNetworkStatistics* stats) {
306 CriticalSectionScoped lock(crit_sect_.get()); 307 CriticalSectionScoped lock(crit_sect_.get());
307 assert(decoder_database_.get()); 308 assert(decoder_database_.get());
308 const int total_samples_in_buffers = 309 const size_t total_samples_in_buffers =
309 packet_buffer_->NumSamplesInBuffer(decoder_database_.get(), 310 packet_buffer_->NumSamplesInBuffer(decoder_database_.get(),
310 decoder_frame_length_) + 311 decoder_frame_length_) +
311 static_cast<int>(sync_buffer_->FutureLength()); 312 sync_buffer_->FutureLength();
312 assert(delay_manager_.get()); 313 assert(delay_manager_.get());
313 assert(decision_logic_.get()); 314 assert(decision_logic_.get());
314 stats_.GetNetworkStatistics(fs_hz_, total_samples_in_buffers, 315 stats_.GetNetworkStatistics(fs_hz_, total_samples_in_buffers,
315 decoder_frame_length_, *delay_manager_.get(), 316 decoder_frame_length_, *delay_manager_.get(),
316 *decision_logic_.get(), stats); 317 *decision_logic_.get(), stats);
317 return 0; 318 return 0;
318 } 319 }
319 320
320 void NetEqImpl::WaitingTimes(std::vector<int>* waiting_times) { 321 void NetEqImpl::WaitingTimes(std::vector<int>* waiting_times) {
321 CriticalSectionScoped lock(crit_sect_.get()); 322 CriticalSectionScoped lock(crit_sect_.get());
(...skipping 274 matching lines...) Expand 10 before | Expand all | Expand 10 after
596 assert(decoder); // Should always get a valid object, since we have 597 assert(decoder); // Should always get a valid object, since we have
597 // already checked that the payload types are known. 598 // already checked that the payload types are known.
598 decoder->IncomingPacket(packet_list.front()->payload, 599 decoder->IncomingPacket(packet_list.front()->payload,
599 packet_list.front()->payload_length, 600 packet_list.front()->payload_length,
600 packet_list.front()->header.sequenceNumber, 601 packet_list.front()->header.sequenceNumber,
601 packet_list.front()->header.timestamp, 602 packet_list.front()->header.timestamp,
602 receive_timestamp); 603 receive_timestamp);
603 } 604 }
604 605
605 // Insert packets in buffer. 606 // Insert packets in buffer.
606 int temp_bufsize = packet_buffer_->NumPacketsInBuffer(); 607 size_t temp_bufsize = packet_buffer_->NumPacketsInBuffer();
607 ret = packet_buffer_->InsertPacketList( 608 ret = packet_buffer_->InsertPacketList(
608 &packet_list, 609 &packet_list,
609 *decoder_database_, 610 *decoder_database_,
610 &current_rtp_payload_type_, 611 &current_rtp_payload_type_,
611 &current_cng_rtp_payload_type_); 612 &current_cng_rtp_payload_type_);
612 if (ret == PacketBuffer::kFlushed) { 613 if (ret == PacketBuffer::kFlushed) {
613 // Reset DSP timestamp etc. if packet buffer flushed. 614 // Reset DSP timestamp etc. if packet buffer flushed.
614 new_codec_ = true; 615 new_codec_ = true;
615 update_sample_rate_and_channels = true; 616 update_sample_rate_and_channels = true;
616 } else if (ret != PacketBuffer::kOK) { 617 } else if (ret != PacketBuffer::kOK) {
(...skipping 41 matching lines...) Expand 10 before | Expand all | Expand 10 after
658 assert(dec_info); // Already checked that the payload type is known. 659 assert(dec_info); // Already checked that the payload type is known.
659 delay_manager_->LastDecoderType(dec_info->codec_type); 660 delay_manager_->LastDecoderType(dec_info->codec_type);
660 if (delay_manager_->last_pack_cng_or_dtmf() == 0) { 661 if (delay_manager_->last_pack_cng_or_dtmf() == 0) {
661 // Calculate the total speech length carried in each packet. 662 // Calculate the total speech length carried in each packet.
662 temp_bufsize = packet_buffer_->NumPacketsInBuffer() - temp_bufsize; 663 temp_bufsize = packet_buffer_->NumPacketsInBuffer() - temp_bufsize;
663 temp_bufsize *= decoder_frame_length_; 664 temp_bufsize *= decoder_frame_length_;
664 665
665 if ((temp_bufsize > 0) && 666 if ((temp_bufsize > 0) &&
666 (temp_bufsize != decision_logic_->packet_length_samples())) { 667 (temp_bufsize != decision_logic_->packet_length_samples())) {
667 decision_logic_->set_packet_length_samples(temp_bufsize); 668 decision_logic_->set_packet_length_samples(temp_bufsize);
668 delay_manager_->SetPacketAudioLength((1000 * temp_bufsize) / fs_hz_); 669 delay_manager_->SetPacketAudioLength(
670 static_cast<int>((1000 * temp_bufsize) / fs_hz_));
669 } 671 }
670 672
671 // Update statistics. 673 // Update statistics.
672 if ((int32_t) (main_header.timestamp - timestamp_) >= 0 && 674 if ((int32_t) (main_header.timestamp - timestamp_) >= 0 &&
673 !new_codec_) { 675 !new_codec_) {
674 // Only update statistics if incoming packet is not older than last played 676 // Only update statistics if incoming packet is not older than last played
675 // out packet, and if new codec flag is not set. 677 // out packet, and if new codec flag is not set.
676 delay_manager_->Update(main_header.sequenceNumber, main_header.timestamp, 678 delay_manager_->Update(main_header.sequenceNumber, main_header.timestamp,
677 fs_hz_); 679 fs_hz_);
678 } 680 }
679 } else if (delay_manager_->last_pack_cng_or_dtmf() == -1) { 681 } else if (delay_manager_->last_pack_cng_or_dtmf() == -1) {
680 // This is first "normal" packet after CNG or DTMF. 682 // This is first "normal" packet after CNG or DTMF.
681 // Reset packet time counter and measure time until next packet, 683 // Reset packet time counter and measure time until next packet,
682 // but don't update statistics. 684 // but don't update statistics.
683 delay_manager_->set_last_pack_cng_or_dtmf(0); 685 delay_manager_->set_last_pack_cng_or_dtmf(0);
684 delay_manager_->ResetPacketIatCount(); 686 delay_manager_->ResetPacketIatCount();
685 } 687 }
686 return 0; 688 return 0;
687 } 689 }
688 690
689 int NetEqImpl::GetAudioInternal(size_t max_length, 691 int NetEqImpl::GetAudioInternal(size_t max_length,
690 int16_t* output, 692 int16_t* output,
691 int* samples_per_channel, 693 size_t* samples_per_channel,
692 int* num_channels) { 694 int* num_channels) {
693 PacketList packet_list; 695 PacketList packet_list;
694 DtmfEvent dtmf_event; 696 DtmfEvent dtmf_event;
695 Operations operation; 697 Operations operation;
696 bool play_dtmf; 698 bool play_dtmf;
697 int return_value = GetDecision(&operation, &packet_list, &dtmf_event, 699 int return_value = GetDecision(&operation, &packet_list, &dtmf_event,
698 &play_dtmf); 700 &play_dtmf);
699 if (return_value != 0) { 701 if (return_value != 0) {
700 assert(false); 702 assert(false);
701 last_mode_ = kModeError; 703 last_mode_ = kModeError;
702 return return_value; 704 return return_value;
703 } 705 }
704 LOG(LS_VERBOSE) << "GetDecision returned operation=" << operation << 706 LOG(LS_VERBOSE) << "GetDecision returned operation=" << operation <<
705 " and " << packet_list.size() << " packet(s)"; 707 " and " << packet_list.size() << " packet(s)";
706 708
707 AudioDecoder::SpeechType speech_type; 709 AudioDecoder::SpeechType speech_type;
708 int length = 0; 710 int length = 0;
709 int decode_return_value = Decode(&packet_list, &operation, 711 int decode_return_value = Decode(&packet_list, &operation,
710 &length, &speech_type); 712 &length, &speech_type);
711 713
712 assert(vad_.get()); 714 assert(vad_.get());
713 bool sid_frame_available = 715 bool sid_frame_available =
714 (operation == kRfc3389Cng && !packet_list.empty()); 716 (operation == kRfc3389Cng && !packet_list.empty());
715 vad_->Update(decoded_buffer_.get(), length, speech_type, 717 vad_->Update(decoded_buffer_.get(), static_cast<size_t>(length), speech_type,
716 sid_frame_available, fs_hz_); 718 sid_frame_available, fs_hz_);
717 719
718 algorithm_buffer_->Clear(); 720 algorithm_buffer_->Clear();
719 switch (operation) { 721 switch (operation) {
720 case kNormal: { 722 case kNormal: {
721 DoNormal(decoded_buffer_.get(), length, speech_type, play_dtmf); 723 DoNormal(decoded_buffer_.get(), length, speech_type, play_dtmf);
722 break; 724 break;
723 } 725 }
724 case kMerge: { 726 case kMerge: {
725 DoMerge(decoded_buffer_.get(), length, speech_type, play_dtmf); 727 DoMerge(decoded_buffer_.get(), length, speech_type, play_dtmf);
(...skipping 78 matching lines...) Expand 10 before | Expand all | Expand 10 after
804 // Copy from |algorithm_buffer| to |sync_buffer_|. 806 // Copy from |algorithm_buffer| to |sync_buffer_|.
805 sync_buffer_->PushBack(*algorithm_buffer_); 807 sync_buffer_->PushBack(*algorithm_buffer_);
806 808
807 // Extract data from |sync_buffer_| to |output|. 809 // Extract data from |sync_buffer_| to |output|.
808 size_t num_output_samples_per_channel = output_size_samples_; 810 size_t num_output_samples_per_channel = output_size_samples_;
809 size_t num_output_samples = output_size_samples_ * sync_buffer_->Channels(); 811 size_t num_output_samples = output_size_samples_ * sync_buffer_->Channels();
810 if (num_output_samples > max_length) { 812 if (num_output_samples > max_length) {
811 LOG(LS_WARNING) << "Output array is too short. " << max_length << " < " << 813 LOG(LS_WARNING) << "Output array is too short. " << max_length << " < " <<
812 output_size_samples_ << " * " << sync_buffer_->Channels(); 814 output_size_samples_ << " * " << sync_buffer_->Channels();
813 num_output_samples = max_length; 815 num_output_samples = max_length;
814 num_output_samples_per_channel = static_cast<int>( 816 num_output_samples_per_channel = max_length / sync_buffer_->Channels();
815 max_length / sync_buffer_->Channels());
816 } 817 }
817 const int samples_from_sync = 818 const size_t samples_from_sync =
818 static_cast<int>(sync_buffer_->GetNextAudioInterleaved( 819 sync_buffer_->GetNextAudioInterleaved(num_output_samples_per_channel,
819 num_output_samples_per_channel, output)); 820 output);
820 *num_channels = static_cast<int>(sync_buffer_->Channels()); 821 *num_channels = static_cast<int>(sync_buffer_->Channels());
821 LOG(LS_VERBOSE) << "Sync buffer (" << *num_channels << " channel(s)):" << 822 LOG(LS_VERBOSE) << "Sync buffer (" << *num_channels << " channel(s)):" <<
822 " insert " << algorithm_buffer_->Size() << " samples, extract " << 823 " insert " << algorithm_buffer_->Size() << " samples, extract " <<
823 samples_from_sync << " samples"; 824 samples_from_sync << " samples";
824 if (samples_from_sync != output_size_samples_) { 825 if (samples_from_sync != output_size_samples_) {
825 LOG(LS_ERROR) << "samples_from_sync (" << samples_from_sync 826 LOG(LS_ERROR) << "samples_from_sync (" << samples_from_sync
826 << ") != output_size_samples_ (" << output_size_samples_ 827 << ") != output_size_samples_ (" << output_size_samples_
827 << ")"; 828 << ")";
828 // TODO(minyue): treatment of under-run, filling zeros 829 // TODO(minyue): treatment of under-run, filling zeros
829 memset(output, 0, num_output_samples * sizeof(int16_t)); 830 memset(output, 0, num_output_samples * sizeof(int16_t));
(...skipping 85 matching lines...) Expand 10 before | Expand all | Expand 10 after
915 } 916 }
916 917
917 assert(expand_.get()); 918 assert(expand_.get());
918 const int samples_left = static_cast<int>(sync_buffer_->FutureLength() - 919 const int samples_left = static_cast<int>(sync_buffer_->FutureLength() -
919 expand_->overlap_length()); 920 expand_->overlap_length());
920 if (last_mode_ == kModeAccelerateSuccess || 921 if (last_mode_ == kModeAccelerateSuccess ||
921 last_mode_ == kModeAccelerateLowEnergy || 922 last_mode_ == kModeAccelerateLowEnergy ||
922 last_mode_ == kModePreemptiveExpandSuccess || 923 last_mode_ == kModePreemptiveExpandSuccess ||
923 last_mode_ == kModePreemptiveExpandLowEnergy) { 924 last_mode_ == kModePreemptiveExpandLowEnergy) {
924 // Subtract (samples_left + output_size_samples_) from sampleMemory. 925 // Subtract (samples_left + output_size_samples_) from sampleMemory.
925 decision_logic_->AddSampleMemory(-(samples_left + output_size_samples_)); 926 decision_logic_->AddSampleMemory(
927 -(samples_left + rtc::checked_cast<int>(output_size_samples_)));
926 } 928 }
927 929
928 // Check if it is time to play a DTMF event. 930 // Check if it is time to play a DTMF event.
929 if (dtmf_buffer_->GetEvent( 931 if (dtmf_buffer_->GetEvent(
930 static_cast<uint32_t>( 932 static_cast<uint32_t>(
931 end_timestamp + decision_logic_->generated_noise_samples()), 933 end_timestamp + decision_logic_->generated_noise_samples()),
932 dtmf_event)) { 934 dtmf_event)) {
933 *play_dtmf = true; 935 *play_dtmf = true;
934 } 936 }
935 937
936 // Get instruction. 938 // Get instruction.
937 assert(sync_buffer_.get()); 939 assert(sync_buffer_.get());
938 assert(expand_.get()); 940 assert(expand_.get());
939 *operation = decision_logic_->GetDecision(*sync_buffer_, 941 *operation = decision_logic_->GetDecision(*sync_buffer_,
940 *expand_, 942 *expand_,
941 decoder_frame_length_, 943 decoder_frame_length_,
942 header, 944 header,
943 last_mode_, 945 last_mode_,
944 *play_dtmf, 946 *play_dtmf,
945 &reset_decoder_); 947 &reset_decoder_);
946 948
947 // Check if we already have enough samples in the |sync_buffer_|. If so, 949 // Check if we already have enough samples in the |sync_buffer_|. If so,
948 // change decision to normal, unless the decision was merge, accelerate, or 950 // change decision to normal, unless the decision was merge, accelerate, or
949 // preemptive expand. 951 // preemptive expand.
950 if (samples_left >= output_size_samples_ && *operation != kMerge && 952 if (samples_left >= rtc::checked_cast<int>(output_size_samples_) &&
951 *operation != kAccelerate && *operation != kFastAccelerate && 953 *operation != kMerge &&
954 *operation != kAccelerate &&
955 *operation != kFastAccelerate &&
952 *operation != kPreemptiveExpand) { 956 *operation != kPreemptiveExpand) {
953 *operation = kNormal; 957 *operation = kNormal;
954 return 0; 958 return 0;
955 } 959 }
956 960
957 decision_logic_->ExpandDecision(*operation); 961 decision_logic_->ExpandDecision(*operation);
958 962
959 // Check conditions for reset. 963 // Check conditions for reset.
960 if (new_codec_ || *operation == kUndefined) { 964 if (new_codec_ || *operation == kUndefined) {
961 // The only valid reason to get kUndefined is that new_codec_ is set. 965 // The only valid reason to get kUndefined is that new_codec_ is set.
(...skipping 27 matching lines...) Expand all
989 // new value. 993 // new value.
990 sync_buffer_->IncreaseEndTimestamp(timestamp_ - end_timestamp); 994 sync_buffer_->IncreaseEndTimestamp(timestamp_ - end_timestamp);
991 end_timestamp = timestamp_; 995 end_timestamp = timestamp_;
992 new_codec_ = false; 996 new_codec_ = false;
993 decision_logic_->SoftReset(); 997 decision_logic_->SoftReset();
994 buffer_level_filter_->Reset(); 998 buffer_level_filter_->Reset();
995 delay_manager_->Reset(); 999 delay_manager_->Reset();
996 stats_.ResetMcu(); 1000 stats_.ResetMcu();
997 } 1001 }
998 1002
999 int required_samples = output_size_samples_; 1003 size_t required_samples = output_size_samples_;
1000 const int samples_10_ms = 80 * fs_mult_; 1004 const size_t samples_10_ms = static_cast<size_t>(80 * fs_mult_);
1001 const int samples_20_ms = 2 * samples_10_ms; 1005 const size_t samples_20_ms = 2 * samples_10_ms;
1002 const int samples_30_ms = 3 * samples_10_ms; 1006 const size_t samples_30_ms = 3 * samples_10_ms;
1003 1007
1004 switch (*operation) { 1008 switch (*operation) {
1005 case kExpand: { 1009 case kExpand: {
1006 timestamp_ = end_timestamp; 1010 timestamp_ = end_timestamp;
1007 return 0; 1011 return 0;
1008 } 1012 }
1009 case kRfc3389CngNoPacket: 1013 case kRfc3389CngNoPacket:
1010 case kCodecInternalCng: { 1014 case kCodecInternalCng: {
1011 return 0; 1015 return 0;
1012 } 1016 }
1013 case kDtmf: { 1017 case kDtmf: {
1014 // TODO(hlundin): Write test for this. 1018 // TODO(hlundin): Write test for this.
1015 // Update timestamp. 1019 // Update timestamp.
1016 timestamp_ = end_timestamp; 1020 timestamp_ = end_timestamp;
1017 if (decision_logic_->generated_noise_samples() > 0 && 1021 if (decision_logic_->generated_noise_samples() > 0 &&
1018 last_mode_ != kModeDtmf) { 1022 last_mode_ != kModeDtmf) {
1019 // Make a jump in timestamp due to the recently played comfort noise. 1023 // Make a jump in timestamp due to the recently played comfort noise.
1020 uint32_t timestamp_jump = 1024 uint32_t timestamp_jump =
1021 static_cast<uint32_t>(decision_logic_->generated_noise_samples()); 1025 static_cast<uint32_t>(decision_logic_->generated_noise_samples());
1022 sync_buffer_->IncreaseEndTimestamp(timestamp_jump); 1026 sync_buffer_->IncreaseEndTimestamp(timestamp_jump);
1023 timestamp_ += timestamp_jump; 1027 timestamp_ += timestamp_jump;
1024 } 1028 }
1025 decision_logic_->set_generated_noise_samples(0); 1029 decision_logic_->set_generated_noise_samples(0);
1026 return 0; 1030 return 0;
1027 } 1031 }
1028 case kAccelerate: 1032 case kAccelerate:
1029 case kFastAccelerate: { 1033 case kFastAccelerate: {
1030 // In order to do an accelerate we need at least 30 ms of audio data. 1034 // In order to do an accelerate we need at least 30 ms of audio data.
1031 if (samples_left >= samples_30_ms) { 1035 if (samples_left >= static_cast<int>(samples_30_ms)) {
1032 // Already have enough data, so we do not need to extract any more. 1036 // Already have enough data, so we do not need to extract any more.
1033 decision_logic_->set_sample_memory(samples_left); 1037 decision_logic_->set_sample_memory(samples_left);
1034 decision_logic_->set_prev_time_scale(true); 1038 decision_logic_->set_prev_time_scale(true);
1035 return 0; 1039 return 0;
1036 } else if (samples_left >= samples_10_ms && 1040 } else if (samples_left >= static_cast<int>(samples_10_ms) &&
1037 decoder_frame_length_ >= samples_30_ms) { 1041 decoder_frame_length_ >= samples_30_ms) {
1038 // Avoid decoding more data as it might overflow the playout buffer. 1042 // Avoid decoding more data as it might overflow the playout buffer.
1039 *operation = kNormal; 1043 *operation = kNormal;
1040 return 0; 1044 return 0;
1041 } else if (samples_left < samples_20_ms && 1045 } else if (samples_left < static_cast<int>(samples_20_ms) &&
1042 decoder_frame_length_ < samples_30_ms) { 1046 decoder_frame_length_ < samples_30_ms) {
1043 // Build up decoded data by decoding at least 20 ms of audio data. Do 1047 // Build up decoded data by decoding at least 20 ms of audio data. Do
1044 // not perform accelerate yet, but wait until we only need to do one 1048 // not perform accelerate yet, but wait until we only need to do one
1045 // decoding. 1049 // decoding.
1046 required_samples = 2 * output_size_samples_; 1050 required_samples = 2 * output_size_samples_;
1047 *operation = kNormal; 1051 *operation = kNormal;
1048 } 1052 }
1049 // If none of the above is true, we have one of two possible situations: 1053 // If none of the above is true, we have one of two possible situations:
1050 // (1) 20 ms <= samples_left < 30 ms and decoder_frame_length_ < 30 ms; or 1054 // (1) 20 ms <= samples_left < 30 ms and decoder_frame_length_ < 30 ms; or
1051 // (2) samples_left < 10 ms and decoder_frame_length_ >= 30 ms. 1055 // (2) samples_left < 10 ms and decoder_frame_length_ >= 30 ms.
1052 // In either case, we move on with the accelerate decision, and decode one 1056 // In either case, we move on with the accelerate decision, and decode one
1053 // frame now. 1057 // frame now.
1054 break; 1058 break;
1055 } 1059 }
1056 case kPreemptiveExpand: { 1060 case kPreemptiveExpand: {
1057 // In order to do a preemptive expand we need at least 30 ms of decoded 1061 // In order to do a preemptive expand we need at least 30 ms of decoded
1058 // audio data. 1062 // audio data.
1059 if ((samples_left >= samples_30_ms) || 1063 if ((samples_left >= static_cast<int>(samples_30_ms)) ||
1060 (samples_left >= samples_10_ms && 1064 (samples_left >= static_cast<int>(samples_10_ms) &&
1061 decoder_frame_length_ >= samples_30_ms)) { 1065 decoder_frame_length_ >= samples_30_ms)) {
1062 // Already have enough data, so we do not need to extract any more. 1066 // Already have enough data, so we do not need to extract any more.
1063 // Or, avoid decoding more data as it might overflow the playout buffer. 1067 // Or, avoid decoding more data as it might overflow the playout buffer.
1064 // Still try preemptive expand, though. 1068 // Still try preemptive expand, though.
1065 decision_logic_->set_sample_memory(samples_left); 1069 decision_logic_->set_sample_memory(samples_left);
1066 decision_logic_->set_prev_time_scale(true); 1070 decision_logic_->set_prev_time_scale(true);
1067 return 0; 1071 return 0;
1068 } 1072 }
1069 if (samples_left < samples_20_ms && 1073 if (samples_left < static_cast<int>(samples_20_ms) &&
1070 decoder_frame_length_ < samples_30_ms) { 1074 decoder_frame_length_ < samples_30_ms) {
1071 // Build up decoded data by decoding at least 20 ms of audio data. 1075 // Build up decoded data by decoding at least 20 ms of audio data.
1072 // Still try to perform preemptive expand. 1076 // Still try to perform preemptive expand.
1073 required_samples = 2 * output_size_samples_; 1077 required_samples = 2 * output_size_samples_;
1074 } 1078 }
1075 // Move on with the preemptive expand decision. 1079 // Move on with the preemptive expand decision.
1076 break; 1080 break;
1077 } 1081 }
1078 case kMerge: { 1082 case kMerge: {
1079 required_samples = 1083 required_samples =
(...skipping 36 matching lines...) Expand 10 before | Expand all | Expand 10 after
1116 } 1120 }
1117 1121
1118 if (*operation == kAccelerate || *operation == kFastAccelerate || 1122 if (*operation == kAccelerate || *operation == kFastAccelerate ||
1119 *operation == kPreemptiveExpand) { 1123 *operation == kPreemptiveExpand) {
1120 decision_logic_->set_sample_memory(samples_left + extracted_samples); 1124 decision_logic_->set_sample_memory(samples_left + extracted_samples);
1121 decision_logic_->set_prev_time_scale(true); 1125 decision_logic_->set_prev_time_scale(true);
1122 } 1126 }
1123 1127
1124 if (*operation == kAccelerate || *operation == kFastAccelerate) { 1128 if (*operation == kAccelerate || *operation == kFastAccelerate) {
1125 // Check that we have enough data (30ms) to do accelerate. 1129 // Check that we have enough data (30ms) to do accelerate.
1126 if (extracted_samples + samples_left < samples_30_ms) { 1130 if (extracted_samples + samples_left < static_cast<int>(samples_30_ms)) {
1127 // TODO(hlundin): Write test for this. 1131 // TODO(hlundin): Write test for this.
1128 // Not enough, do normal operation instead. 1132 // Not enough, do normal operation instead.
1129 *operation = kNormal; 1133 *operation = kNormal;
1130 } 1134 }
1131 } 1135 }
1132 1136
1133 timestamp_ = end_timestamp; 1137 timestamp_ = end_timestamp;
1134 return 0; 1138 return 0;
1135 } 1139 }
1136 1140
(...skipping 130 matching lines...) Expand 10 before | Expand all | Expand 10 after
1267 // Decode to silence with the same frame size as the last decode. 1271 // Decode to silence with the same frame size as the last decode.
1268 LOG(LS_VERBOSE) << "Decoding sync-packet: " << 1272 LOG(LS_VERBOSE) << "Decoding sync-packet: " <<
1269 " ts=" << packet->header.timestamp << 1273 " ts=" << packet->header.timestamp <<
1270 ", sn=" << packet->header.sequenceNumber << 1274 ", sn=" << packet->header.sequenceNumber <<
1271 ", pt=" << static_cast<int>(packet->header.payloadType) << 1275 ", pt=" << static_cast<int>(packet->header.payloadType) <<
1272 ", ssrc=" << packet->header.ssrc << 1276 ", ssrc=" << packet->header.ssrc <<
1273 ", len=" << packet->payload_length; 1277 ", len=" << packet->payload_length;
1274 memset(&decoded_buffer_[*decoded_length], 0, 1278 memset(&decoded_buffer_[*decoded_length], 0,
1275 decoder_frame_length_ * decoder->Channels() * 1279 decoder_frame_length_ * decoder->Channels() *
1276 sizeof(decoded_buffer_[0])); 1280 sizeof(decoded_buffer_[0]));
1277 decode_length = decoder_frame_length_; 1281 decode_length = rtc::checked_cast<int>(decoder_frame_length_);
1278 } else if (!packet->primary) { 1282 } else if (!packet->primary) {
1279 // This is a redundant payload; call the special decoder method. 1283 // This is a redundant payload; call the special decoder method.
1280 LOG(LS_VERBOSE) << "Decoding packet (redundant):" << 1284 LOG(LS_VERBOSE) << "Decoding packet (redundant):" <<
1281 " ts=" << packet->header.timestamp << 1285 " ts=" << packet->header.timestamp <<
1282 ", sn=" << packet->header.sequenceNumber << 1286 ", sn=" << packet->header.sequenceNumber <<
1283 ", pt=" << static_cast<int>(packet->header.payloadType) << 1287 ", pt=" << static_cast<int>(packet->header.payloadType) <<
1284 ", ssrc=" << packet->header.ssrc << 1288 ", ssrc=" << packet->header.ssrc <<
1285 ", len=" << packet->payload_length; 1289 ", len=" << packet->payload_length;
1286 decode_length = decoder->DecodeRedundant( 1290 decode_length = decoder->DecodeRedundant(
1287 packet->payload, packet->payload_length, fs_hz_, 1291 packet->payload, packet->payload_length, fs_hz_,
(...skipping 12 matching lines...) Expand all
1300 &decoded_buffer_[*decoded_length], speech_type); 1304 &decoded_buffer_[*decoded_length], speech_type);
1301 } 1305 }
1302 1306
1303 delete[] packet->payload; 1307 delete[] packet->payload;
1304 delete packet; 1308 delete packet;
1305 packet = NULL; 1309 packet = NULL;
1306 if (decode_length > 0) { 1310 if (decode_length > 0) {
1307 *decoded_length += decode_length; 1311 *decoded_length += decode_length;
1308 // Update |decoder_frame_length_| with number of samples per channel. 1312 // Update |decoder_frame_length_| with number of samples per channel.
1309 decoder_frame_length_ = 1313 decoder_frame_length_ =
1310 decode_length / static_cast<int>(decoder->Channels()); 1314 static_cast<size_t>(decode_length) / decoder->Channels();
1311 LOG(LS_VERBOSE) << "Decoded " << decode_length << " samples (" 1315 LOG(LS_VERBOSE) << "Decoded " << decode_length << " samples ("
1312 << decoder->Channels() << " channel(s) -> " 1316 << decoder->Channels() << " channel(s) -> "
1313 << decoder_frame_length_ << " samples per channel)"; 1317 << decoder_frame_length_ << " samples per channel)";
1314 } else if (decode_length < 0) { 1318 } else if (decode_length < 0) {
1315 // Error. 1319 // Error.
1316 LOG(LS_WARNING) << "Decode " << decode_length << " " << payload_length; 1320 LOG(LS_WARNING) << "Decode " << decode_length << " " << payload_length;
1317 *decoded_length = -1; 1321 *decoded_length = -1;
1318 PacketBuffer::DeleteAllPackets(packet_list); 1322 PacketBuffer::DeleteAllPackets(packet_list);
1319 break; 1323 break;
1320 } 1324 }
(...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after
1359 1363
1360 if (!play_dtmf) { 1364 if (!play_dtmf) {
1361 dtmf_tone_generator_->Reset(); 1365 dtmf_tone_generator_->Reset();
1362 } 1366 }
1363 } 1367 }
1364 1368
1365 void NetEqImpl::DoMerge(int16_t* decoded_buffer, size_t decoded_length, 1369 void NetEqImpl::DoMerge(int16_t* decoded_buffer, size_t decoded_length,
1366 AudioDecoder::SpeechType speech_type, bool play_dtmf) { 1370 AudioDecoder::SpeechType speech_type, bool play_dtmf) {
1367 assert(mute_factor_array_.get()); 1371 assert(mute_factor_array_.get());
1368 assert(merge_.get()); 1372 assert(merge_.get());
1369 int new_length = merge_->Process(decoded_buffer, decoded_length, 1373 size_t new_length = merge_->Process(decoded_buffer, decoded_length,
1370 mute_factor_array_.get(), 1374 mute_factor_array_.get(),
1371 algorithm_buffer_.get()); 1375 algorithm_buffer_.get());
1372 int expand_length_correction = new_length - 1376 size_t expand_length_correction = new_length -
1373 static_cast<int>(decoded_length / algorithm_buffer_->Channels()); 1377 decoded_length / algorithm_buffer_->Channels();
1374 1378
1375 // Update in-call and post-call statistics. 1379 // Update in-call and post-call statistics.
1376 if (expand_->MuteFactor(0) == 0) { 1380 if (expand_->MuteFactor(0) == 0) {
1377 // Expand generates only noise. 1381 // Expand generates only noise.
1378 stats_.ExpandedNoiseSamples(expand_length_correction); 1382 stats_.ExpandedNoiseSamples(expand_length_correction);
1379 } else { 1383 } else {
1380 // Expansion generates more than only noise. 1384 // Expansion generates more than only noise.
1381 stats_.ExpandedVoiceSamples(expand_length_correction); 1385 stats_.ExpandedVoiceSamples(expand_length_correction);
1382 } 1386 }
1383 1387
1384 last_mode_ = kModeMerge; 1388 last_mode_ = kModeMerge;
1385 // If last packet was decoded as an inband CNG, set mode to CNG instead. 1389 // If last packet was decoded as an inband CNG, set mode to CNG instead.
1386 if (speech_type == AudioDecoder::kComfortNoise) { 1390 if (speech_type == AudioDecoder::kComfortNoise) {
1387 last_mode_ = kModeCodecInternalCng; 1391 last_mode_ = kModeCodecInternalCng;
1388 } 1392 }
1389 expand_->Reset(); 1393 expand_->Reset();
1390 if (!play_dtmf) { 1394 if (!play_dtmf) {
1391 dtmf_tone_generator_->Reset(); 1395 dtmf_tone_generator_->Reset();
1392 } 1396 }
1393 } 1397 }
1394 1398
1395 int NetEqImpl::DoExpand(bool play_dtmf) { 1399 int NetEqImpl::DoExpand(bool play_dtmf) {
1396 while ((sync_buffer_->FutureLength() - expand_->overlap_length()) < 1400 while ((sync_buffer_->FutureLength() - expand_->overlap_length()) <
1397 static_cast<size_t>(output_size_samples_)) { 1401 output_size_samples_) {
1398 algorithm_buffer_->Clear(); 1402 algorithm_buffer_->Clear();
1399 int return_value = expand_->Process(algorithm_buffer_.get()); 1403 int return_value = expand_->Process(algorithm_buffer_.get());
1400 int length = static_cast<int>(algorithm_buffer_->Size()); 1404 size_t length = algorithm_buffer_->Size();
1401 1405
1402 // Update in-call and post-call statistics. 1406 // Update in-call and post-call statistics.
1403 if (expand_->MuteFactor(0) == 0) { 1407 if (expand_->MuteFactor(0) == 0) {
1404 // Expand operation generates only noise. 1408 // Expand operation generates only noise.
1405 stats_.ExpandedNoiseSamples(length); 1409 stats_.ExpandedNoiseSamples(length);
1406 } else { 1410 } else {
1407 // Expand operation generates more than only noise. 1411 // Expand operation generates more than only noise.
1408 stats_.ExpandedVoiceSamples(length); 1412 stats_.ExpandedVoiceSamples(length);
1409 } 1413 }
1410 1414
(...skipping 10 matching lines...) Expand all
1421 dtmf_tone_generator_->Reset(); 1425 dtmf_tone_generator_->Reset();
1422 } 1426 }
1423 return 0; 1427 return 0;
1424 } 1428 }
1425 1429
1426 int NetEqImpl::DoAccelerate(int16_t* decoded_buffer, 1430 int NetEqImpl::DoAccelerate(int16_t* decoded_buffer,
1427 size_t decoded_length, 1431 size_t decoded_length,
1428 AudioDecoder::SpeechType speech_type, 1432 AudioDecoder::SpeechType speech_type,
1429 bool play_dtmf, 1433 bool play_dtmf,
1430 bool fast_accelerate) { 1434 bool fast_accelerate) {
1431 const size_t required_samples = 240 * fs_mult_; // Must have 30 ms. 1435 const size_t required_samples =
1436 static_cast<size_t>(240 * fs_mult_); // Must have 30 ms.
1432 size_t borrowed_samples_per_channel = 0; 1437 size_t borrowed_samples_per_channel = 0;
1433 size_t num_channels = algorithm_buffer_->Channels(); 1438 size_t num_channels = algorithm_buffer_->Channels();
1434 size_t decoded_length_per_channel = decoded_length / num_channels; 1439 size_t decoded_length_per_channel = decoded_length / num_channels;
1435 if (decoded_length_per_channel < required_samples) { 1440 if (decoded_length_per_channel < required_samples) {
1436 // Must move data from the |sync_buffer_| in order to get 30 ms. 1441 // Must move data from the |sync_buffer_| in order to get 30 ms.
1437 borrowed_samples_per_channel = static_cast<int>(required_samples - 1442 borrowed_samples_per_channel = static_cast<int>(required_samples -
1438 decoded_length_per_channel); 1443 decoded_length_per_channel);
1439 memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels], 1444 memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
1440 decoded_buffer, 1445 decoded_buffer,
1441 sizeof(int16_t) * decoded_length); 1446 sizeof(int16_t) * decoded_length);
1442 sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel, 1447 sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
1443 decoded_buffer); 1448 decoded_buffer);
1444 decoded_length = required_samples * num_channels; 1449 decoded_length = required_samples * num_channels;
1445 } 1450 }
1446 1451
1447 int16_t samples_removed; 1452 size_t samples_removed;
1448 Accelerate::ReturnCodes return_code = 1453 Accelerate::ReturnCodes return_code =
1449 accelerate_->Process(decoded_buffer, decoded_length, fast_accelerate, 1454 accelerate_->Process(decoded_buffer, decoded_length, fast_accelerate,
1450 algorithm_buffer_.get(), &samples_removed); 1455 algorithm_buffer_.get(), &samples_removed);
1451 stats_.AcceleratedSamples(samples_removed); 1456 stats_.AcceleratedSamples(samples_removed);
1452 switch (return_code) { 1457 switch (return_code) {
1453 case Accelerate::kSuccess: 1458 case Accelerate::kSuccess:
1454 last_mode_ = kModeAccelerateSuccess; 1459 last_mode_ = kModeAccelerateSuccess;
1455 break; 1460 break;
1456 case Accelerate::kSuccessLowEnergy: 1461 case Accelerate::kSuccessLowEnergy:
1457 last_mode_ = kModeAccelerateLowEnergy; 1462 last_mode_ = kModeAccelerateLowEnergy;
(...skipping 36 matching lines...) Expand 10 before | Expand all | Expand 10 after
1494 dtmf_tone_generator_->Reset(); 1499 dtmf_tone_generator_->Reset();
1495 } 1500 }
1496 expand_->Reset(); 1501 expand_->Reset();
1497 return 0; 1502 return 0;
1498 } 1503 }
1499 1504
1500 int NetEqImpl::DoPreemptiveExpand(int16_t* decoded_buffer, 1505 int NetEqImpl::DoPreemptiveExpand(int16_t* decoded_buffer,
1501 size_t decoded_length, 1506 size_t decoded_length,
1502 AudioDecoder::SpeechType speech_type, 1507 AudioDecoder::SpeechType speech_type,
1503 bool play_dtmf) { 1508 bool play_dtmf) {
1504 const size_t required_samples = 240 * fs_mult_; // Must have 30 ms. 1509 const size_t required_samples =
1510 static_cast<size_t>(240 * fs_mult_); // Must have 30 ms.
1505 size_t num_channels = algorithm_buffer_->Channels(); 1511 size_t num_channels = algorithm_buffer_->Channels();
1506 int borrowed_samples_per_channel = 0; 1512 size_t borrowed_samples_per_channel = 0;
1507 int old_borrowed_samples_per_channel = 0; 1513 size_t old_borrowed_samples_per_channel = 0;
1508 size_t decoded_length_per_channel = decoded_length / num_channels; 1514 size_t decoded_length_per_channel = decoded_length / num_channels;
1509 if (decoded_length_per_channel < required_samples) { 1515 if (decoded_length_per_channel < required_samples) {
1510 // Must move data from the |sync_buffer_| in order to get 30 ms. 1516 // Must move data from the |sync_buffer_| in order to get 30 ms.
1511 borrowed_samples_per_channel = static_cast<int>(required_samples - 1517 borrowed_samples_per_channel =
1512 decoded_length_per_channel); 1518 required_samples - decoded_length_per_channel;
1513 // Calculate how many of these were already played out. 1519 // Calculate how many of these were already played out.
1514 const int future_length = static_cast<int>(sync_buffer_->FutureLength());
1515 old_borrowed_samples_per_channel = 1520 old_borrowed_samples_per_channel =
1516 (borrowed_samples_per_channel > future_length) ? 1521 (borrowed_samples_per_channel > sync_buffer_->FutureLength()) ?
1517 (borrowed_samples_per_channel - future_length) : 0; 1522 (borrowed_samples_per_channel - sync_buffer_->FutureLength()) : 0;
1518 memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels], 1523 memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
1519 decoded_buffer, 1524 decoded_buffer,
1520 sizeof(int16_t) * decoded_length); 1525 sizeof(int16_t) * decoded_length);
1521 sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel, 1526 sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
1522 decoded_buffer); 1527 decoded_buffer);
1523 decoded_length = required_samples * num_channels; 1528 decoded_length = required_samples * num_channels;
1524 } 1529 }
1525 1530
1526 int16_t samples_added; 1531 size_t samples_added;
1527 PreemptiveExpand::ReturnCodes return_code = preemptive_expand_->Process( 1532 PreemptiveExpand::ReturnCodes return_code = preemptive_expand_->Process(
1528 decoded_buffer, static_cast<int>(decoded_length), 1533 decoded_buffer, decoded_length,
1529 old_borrowed_samples_per_channel, 1534 old_borrowed_samples_per_channel,
1530 algorithm_buffer_.get(), &samples_added); 1535 algorithm_buffer_.get(), &samples_added);
1531 stats_.PreemptiveExpandedSamples(samples_added); 1536 stats_.PreemptiveExpandedSamples(samples_added);
1532 switch (return_code) { 1537 switch (return_code) {
1533 case PreemptiveExpand::kSuccess: 1538 case PreemptiveExpand::kSuccess:
1534 last_mode_ = kModePreemptiveExpandSuccess; 1539 last_mode_ = kModePreemptiveExpandSuccess;
1535 break; 1540 break;
1536 case PreemptiveExpand::kSuccessLowEnergy: 1541 case PreemptiveExpand::kSuccessLowEnergy:
1537 last_mode_ = kModePreemptiveExpandLowEnergy; 1542 last_mode_ = kModePreemptiveExpandLowEnergy;
1538 break; 1543 break;
(...skipping 173 matching lines...) Expand 10 before | Expand all | Expand 10 after
1712 expand_->Reset(); 1717 expand_->Reset();
1713 last_mode_ = kModeDtmf; 1718 last_mode_ = kModeDtmf;
1714 1719
1715 // Set to false because the DTMF is already in the algorithm buffer. 1720 // Set to false because the DTMF is already in the algorithm buffer.
1716 *play_dtmf = false; 1721 *play_dtmf = false;
1717 return 0; 1722 return 0;
1718 } 1723 }
1719 1724
1720 void NetEqImpl::DoAlternativePlc(bool increase_timestamp) { 1725 void NetEqImpl::DoAlternativePlc(bool increase_timestamp) {
1721 AudioDecoder* decoder = decoder_database_->GetActiveDecoder(); 1726 AudioDecoder* decoder = decoder_database_->GetActiveDecoder();
1722 int length; 1727 size_t length;
1723 if (decoder && decoder->HasDecodePlc()) { 1728 if (decoder && decoder->HasDecodePlc()) {
1724 // Use the decoder's packet-loss concealment. 1729 // Use the decoder's packet-loss concealment.
1725 // TODO(hlundin): Will probably need a longer buffer for multi-channel. 1730 // TODO(hlundin): Will probably need a longer buffer for multi-channel.
1726 int16_t decoded_buffer[kMaxFrameSize]; 1731 int16_t decoded_buffer[kMaxFrameSize];
1727 length = decoder->DecodePlc(1, decoded_buffer); 1732 length = decoder->DecodePlc(1, decoded_buffer);
1728 if (length > 0) { 1733 if (length > 0)
1729 algorithm_buffer_->PushBackInterleaved(decoded_buffer, length); 1734 algorithm_buffer_->PushBackInterleaved(decoded_buffer, length);
1730 } else {
1731 length = 0;
1732 }
1733 } else { 1735 } else {
1734 // Do simple zero-stuffing. 1736 // Do simple zero-stuffing.
1735 length = output_size_samples_; 1737 length = output_size_samples_;
1736 algorithm_buffer_->Zeros(length); 1738 algorithm_buffer_->Zeros(length);
1737 // By not advancing the timestamp, NetEq inserts samples. 1739 // By not advancing the timestamp, NetEq inserts samples.
1738 stats_.AddZeros(length); 1740 stats_.AddZeros(length);
1739 } 1741 }
1740 if (increase_timestamp) { 1742 if (increase_timestamp) {
1741 sync_buffer_->IncreaseEndTimestamp(static_cast<uint32_t>(length)); 1743 sync_buffer_->IncreaseEndTimestamp(static_cast<uint32_t>(length));
1742 } 1744 }
1743 expand_->Reset(); 1745 expand_->Reset();
1744 } 1746 }
1745 1747
1746 int NetEqImpl::DtmfOverdub(const DtmfEvent& dtmf_event, size_t num_channels, 1748 int NetEqImpl::DtmfOverdub(const DtmfEvent& dtmf_event, size_t num_channels,
1747 int16_t* output) const { 1749 int16_t* output) const {
1748 size_t out_index = 0; 1750 size_t out_index = 0;
1749 int overdub_length = output_size_samples_; // Default value. 1751 size_t overdub_length = output_size_samples_; // Default value.
1750 1752
1751 if (sync_buffer_->dtmf_index() > sync_buffer_->next_index()) { 1753 if (sync_buffer_->dtmf_index() > sync_buffer_->next_index()) {
1752 // Special operation for transition from "DTMF only" to "DTMF overdub". 1754 // Special operation for transition from "DTMF only" to "DTMF overdub".
1753 out_index = std::min( 1755 out_index = std::min(
1754 sync_buffer_->dtmf_index() - sync_buffer_->next_index(), 1756 sync_buffer_->dtmf_index() - sync_buffer_->next_index(),
1755 static_cast<size_t>(output_size_samples_)); 1757 output_size_samples_);
1756 overdub_length = output_size_samples_ - static_cast<int>(out_index); 1758 overdub_length = output_size_samples_ - out_index;
1757 } 1759 }
1758 1760
1759 AudioMultiVector dtmf_output(num_channels); 1761 AudioMultiVector dtmf_output(num_channels);
1760 int dtmf_return_value = 0; 1762 int dtmf_return_value = 0;
1761 if (!dtmf_tone_generator_->initialized()) { 1763 if (!dtmf_tone_generator_->initialized()) {
1762 dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no, 1764 dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
1763 dtmf_event.volume); 1765 dtmf_event.volume);
1764 } 1766 }
1765 if (dtmf_return_value == 0) { 1767 if (dtmf_return_value == 0) {
1766 dtmf_return_value = dtmf_tone_generator_->Generate(overdub_length, 1768 dtmf_return_value = dtmf_tone_generator_->Generate(overdub_length,
1767 &dtmf_output); 1769 &dtmf_output);
1768 assert((size_t) overdub_length == dtmf_output.Size()); 1770 assert(overdub_length == dtmf_output.Size());
1769 } 1771 }
1770 dtmf_output.ReadInterleaved(overdub_length, &output[out_index]); 1772 dtmf_output.ReadInterleaved(overdub_length, &output[out_index]);
1771 return dtmf_return_value < 0 ? dtmf_return_value : 0; 1773 return dtmf_return_value < 0 ? dtmf_return_value : 0;
1772 } 1774 }
1773 1775
1774 int NetEqImpl::ExtractPackets(int required_samples, PacketList* packet_list) { 1776 int NetEqImpl::ExtractPackets(size_t required_samples,
1777 PacketList* packet_list) {
1775 bool first_packet = true; 1778 bool first_packet = true;
1776 uint8_t prev_payload_type = 0; 1779 uint8_t prev_payload_type = 0;
1777 uint32_t prev_timestamp = 0; 1780 uint32_t prev_timestamp = 0;
1778 uint16_t prev_sequence_number = 0; 1781 uint16_t prev_sequence_number = 0;
1779 bool next_packet_available = false; 1782 bool next_packet_available = false;
1780 1783
1781 const RTPHeader* header = packet_buffer_->NextRtpHeader(); 1784 const RTPHeader* header = packet_buffer_->NextRtpHeader();
1782 assert(header); 1785 assert(header);
1783 if (!header) { 1786 if (!header) {
1784 LOG(LS_ERROR) << "Packet buffer unexpectedly empty."; 1787 LOG(LS_ERROR) << "Packet buffer unexpectedly empty.";
1785 return -1; 1788 return -1;
1786 } 1789 }
1787 uint32_t first_timestamp = header->timestamp; 1790 uint32_t first_timestamp = header->timestamp;
1788 int extracted_samples = 0; 1791 int extracted_samples = 0;
1789 1792
1790 // Packet extraction loop. 1793 // Packet extraction loop.
1791 do { 1794 do {
1792 timestamp_ = header->timestamp; 1795 timestamp_ = header->timestamp;
1793 int discard_count = 0; 1796 size_t discard_count = 0;
1794 Packet* packet = packet_buffer_->GetNextPacket(&discard_count); 1797 Packet* packet = packet_buffer_->GetNextPacket(&discard_count);
1795 // |header| may be invalid after the |packet_buffer_| operation. 1798 // |header| may be invalid after the |packet_buffer_| operation.
1796 header = NULL; 1799 header = NULL;
1797 if (!packet) { 1800 if (!packet) {
1798 LOG(LS_ERROR) << "Should always be able to extract a packet here"; 1801 LOG(LS_ERROR) << "Should always be able to extract a packet here";
1799 assert(false); // Should always be able to extract a packet here. 1802 assert(false); // Should always be able to extract a packet here.
1800 return -1; 1803 return -1;
1801 } 1804 }
1802 stats_.PacketsDiscarded(discard_count); 1805 stats_.PacketsDiscarded(discard_count);
1803 // Store waiting time in ms; packets->waiting_time is in "output blocks". 1806 // Store waiting time in ms; packets->waiting_time is in "output blocks".
1804 stats_.StoreWaitingTime(packet->waiting_time * kOutputSizeMs); 1807 stats_.StoreWaitingTime(packet->waiting_time * kOutputSizeMs);
1805 assert(packet->payload_length > 0); 1808 assert(packet->payload_length > 0);
1806 packet_list->push_back(packet); // Store packet in list. 1809 packet_list->push_back(packet); // Store packet in list.
1807 1810
1808 if (first_packet) { 1811 if (first_packet) {
1809 first_packet = false; 1812 first_packet = false;
1810 decoded_packet_sequence_number_ = prev_sequence_number = 1813 decoded_packet_sequence_number_ = prev_sequence_number =
1811 packet->header.sequenceNumber; 1814 packet->header.sequenceNumber;
1812 decoded_packet_timestamp_ = prev_timestamp = packet->header.timestamp; 1815 decoded_packet_timestamp_ = prev_timestamp = packet->header.timestamp;
1813 prev_payload_type = packet->header.payloadType; 1816 prev_payload_type = packet->header.payloadType;
1814 } 1817 }
1815 1818
1816 // Store number of extracted samples. 1819 // Store number of extracted samples.
1817 int packet_duration = 0; 1820 int packet_duration = 0;
1818 AudioDecoder* decoder = decoder_database_->GetDecoder( 1821 AudioDecoder* decoder = decoder_database_->GetDecoder(
1819 packet->header.payloadType); 1822 packet->header.payloadType);
1820 if (decoder) { 1823 if (decoder) {
1821 if (packet->sync_packet) { 1824 if (packet->sync_packet) {
1822 packet_duration = decoder_frame_length_; 1825 packet_duration = rtc::checked_cast<int>(decoder_frame_length_);
1823 } else { 1826 } else {
1824 if (packet->primary) { 1827 if (packet->primary) {
1825 packet_duration = decoder->PacketDuration(packet->payload, 1828 packet_duration = decoder->PacketDuration(packet->payload,
1826 packet->payload_length); 1829 packet->payload_length);
1827 } else { 1830 } else {
1828 packet_duration = decoder-> 1831 packet_duration = decoder->
1829 PacketDurationRedundant(packet->payload, packet->payload_length); 1832 PacketDurationRedundant(packet->payload, packet->payload_length);
1830 stats_.SecondaryDecodedSamples(packet_duration); 1833 stats_.SecondaryDecodedSamples(packet_duration);
1831 } 1834 }
1832 } 1835 }
1833 } else { 1836 } else {
1834 LOG(LS_WARNING) << "Unknown payload type " 1837 LOG(LS_WARNING) << "Unknown payload type "
1835 << static_cast<int>(packet->header.payloadType); 1838 << static_cast<int>(packet->header.payloadType);
1836 assert(false); 1839 assert(false);
1837 } 1840 }
1838 if (packet_duration <= 0) { 1841 if (packet_duration <= 0) {
1839 // Decoder did not return a packet duration. Assume that the packet 1842 // Decoder did not return a packet duration. Assume that the packet
1840 // contains the same number of samples as the previous one. 1843 // contains the same number of samples as the previous one.
1841 packet_duration = decoder_frame_length_; 1844 packet_duration = rtc::checked_cast<int>(decoder_frame_length_);
1842 } 1845 }
1843 extracted_samples = packet->header.timestamp - first_timestamp + 1846 extracted_samples = packet->header.timestamp - first_timestamp +
1844 packet_duration; 1847 packet_duration;
1845 1848
1846 // Check what packet is available next. 1849 // Check what packet is available next.
1847 header = packet_buffer_->NextRtpHeader(); 1850 header = packet_buffer_->NextRtpHeader();
1848 next_packet_available = false; 1851 next_packet_available = false;
1849 if (header && prev_payload_type == header->payloadType) { 1852 if (header && prev_payload_type == header->payloadType) {
1850 int16_t seq_no_diff = header->sequenceNumber - prev_sequence_number; 1853 int16_t seq_no_diff = header->sequenceNumber - prev_sequence_number;
1851 int32_t ts_diff = header->timestamp - prev_timestamp; 1854 size_t ts_diff = header->timestamp - prev_timestamp;
1852 if (seq_no_diff == 1 || 1855 if (seq_no_diff == 1 ||
1853 (seq_no_diff == 0 && ts_diff == decoder_frame_length_)) { 1856 (seq_no_diff == 0 && ts_diff == decoder_frame_length_)) {
1854 // The next sequence number is available, or the next part of a packet 1857 // The next sequence number is available, or the next part of a packet
1855 // that was split into pieces upon insertion. 1858 // that was split into pieces upon insertion.
1856 next_packet_available = true; 1859 next_packet_available = true;
1857 } 1860 }
1858 prev_sequence_number = header->sequenceNumber; 1861 prev_sequence_number = header->sequenceNumber;
1859 } 1862 }
1860 } while (extracted_samples < required_samples && next_packet_available); 1863 } while (extracted_samples < rtc::checked_cast<int>(required_samples) &&
1864 next_packet_available);
1861 1865
1862 if (extracted_samples > 0) { 1866 if (extracted_samples > 0) {
1863 // Delete old packets only when we are going to decode something. Otherwise, 1867 // Delete old packets only when we are going to decode something. Otherwise,
1864 // we could end up in the situation where we never decode anything, since 1868 // we could end up in the situation where we never decode anything, since
1865 // all incoming packets are considered too old but the buffer will also 1869 // all incoming packets are considered too old but the buffer will also
1866 // never be flooded and flushed. 1870 // never be flooded and flushed.
1867 packet_buffer_->DiscardAllOldPackets(timestamp_); 1871 packet_buffer_->DiscardAllOldPackets(timestamp_);
1868 } 1872 }
1869 1873
1870 return extracted_samples; 1874 return extracted_samples;
1871 } 1875 }
1872 1876
1873 void NetEqImpl::UpdatePlcComponents(int fs_hz, size_t channels) { 1877 void NetEqImpl::UpdatePlcComponents(int fs_hz, size_t channels) {
1874 // Delete objects and create new ones. 1878 // Delete objects and create new ones.
1875 expand_.reset(expand_factory_->Create(background_noise_.get(), 1879 expand_.reset(expand_factory_->Create(background_noise_.get(),
1876 sync_buffer_.get(), &random_vector_, 1880 sync_buffer_.get(), &random_vector_,
1877 fs_hz, channels)); 1881 fs_hz, channels));
1878 merge_.reset(new Merge(fs_hz, channels, expand_.get(), sync_buffer_.get())); 1882 merge_.reset(new Merge(fs_hz, channels, expand_.get(), sync_buffer_.get()));
1879 } 1883 }
1880 1884
1881 void NetEqImpl::SetSampleRateAndChannels(int fs_hz, size_t channels) { 1885 void NetEqImpl::SetSampleRateAndChannels(int fs_hz, size_t channels) {
1882 LOG(LS_VERBOSE) << "SetSampleRateAndChannels " << fs_hz << " " << channels; 1886 LOG(LS_VERBOSE) << "SetSampleRateAndChannels " << fs_hz << " " << channels;
1883 // TODO(hlundin): Change to an enumerator and skip assert. 1887 // TODO(hlundin): Change to an enumerator and skip assert.
1884 assert(fs_hz == 8000 || fs_hz == 16000 || fs_hz == 32000 || fs_hz == 48000); 1888 assert(fs_hz == 8000 || fs_hz == 16000 || fs_hz == 32000 || fs_hz == 48000);
1885 assert(channels > 0); 1889 assert(channels > 0);
1886 1890
1887 fs_hz_ = fs_hz; 1891 fs_hz_ = fs_hz;
1888 fs_mult_ = fs_hz / 8000; 1892 fs_mult_ = fs_hz / 8000;
1889 output_size_samples_ = kOutputSizeMs * 8 * fs_mult_; 1893 output_size_samples_ = static_cast<size_t>(kOutputSizeMs * 8 * fs_mult_);
1890 decoder_frame_length_ = 3 * output_size_samples_; // Initialize to 30ms. 1894 decoder_frame_length_ = 3 * output_size_samples_; // Initialize to 30ms.
1891 1895
1892 last_mode_ = kModeNormal; 1896 last_mode_ = kModeNormal;
1893 1897
1894 // Create a new array of mute factors and set all to 1. 1898 // Create a new array of mute factors and set all to 1.
1895 mute_factor_array_.reset(new int16_t[channels]); 1899 mute_factor_array_.reset(new int16_t[channels]);
1896 for (size_t i = 0; i < channels; ++i) { 1900 for (size_t i = 0; i < channels; ++i) {
1897 mute_factor_array_[i] = 16384; // 1.0 in Q14. 1901 mute_factor_array_[i] = 16384; // 1.0 in Q14.
1898 } 1902 }
1899 1903
(...skipping 24 matching lines...) Expand all
1924 1928
1925 // Move index so that we create a small set of future samples (all 0). 1929 // Move index so that we create a small set of future samples (all 0).
1926 sync_buffer_->set_next_index(sync_buffer_->next_index() - 1930 sync_buffer_->set_next_index(sync_buffer_->next_index() -
1927 expand_->overlap_length()); 1931 expand_->overlap_length());
1928 1932
1929 normal_.reset(new Normal(fs_hz, decoder_database_.get(), *background_noise_, 1933 normal_.reset(new Normal(fs_hz, decoder_database_.get(), *background_noise_,
1930 expand_.get())); 1934 expand_.get()));
1931 accelerate_.reset( 1935 accelerate_.reset(
1932 accelerate_factory_->Create(fs_hz, channels, *background_noise_)); 1936 accelerate_factory_->Create(fs_hz, channels, *background_noise_));
1933 preemptive_expand_.reset(preemptive_expand_factory_->Create( 1937 preemptive_expand_.reset(preemptive_expand_factory_->Create(
1934 fs_hz, channels, 1938 fs_hz, channels, *background_noise_, expand_->overlap_length()));
1935 *background_noise_,
1936 static_cast<int>(expand_->overlap_length())));
1937 1939
1938 // Delete ComfortNoise object and create a new one. 1940 // Delete ComfortNoise object and create a new one.
1939 comfort_noise_.reset(new ComfortNoise(fs_hz, decoder_database_.get(), 1941 comfort_noise_.reset(new ComfortNoise(fs_hz, decoder_database_.get(),
1940 sync_buffer_.get())); 1942 sync_buffer_.get()));
1941 1943
1942 // Verify that |decoded_buffer_| is long enough. 1944 // Verify that |decoded_buffer_| is long enough.
1943 if (decoded_buffer_length_ < kMaxFrameSize * channels) { 1945 if (decoded_buffer_length_ < kMaxFrameSize * channels) {
1944 // Reallocate to larger size. 1946 // Reallocate to larger size.
1945 decoded_buffer_length_ = kMaxFrameSize * channels; 1947 decoded_buffer_length_ = kMaxFrameSize * channels;
1946 decoded_buffer_.reset(new int16_t[decoded_buffer_length_]); 1948 decoded_buffer_.reset(new int16_t[decoded_buffer_length_]);
(...skipping 26 matching lines...) Expand all
1973 1975
1974 void NetEqImpl::CreateDecisionLogic() { 1976 void NetEqImpl::CreateDecisionLogic() {
1975 decision_logic_.reset(DecisionLogic::Create(fs_hz_, output_size_samples_, 1977 decision_logic_.reset(DecisionLogic::Create(fs_hz_, output_size_samples_,
1976 playout_mode_, 1978 playout_mode_,
1977 decoder_database_.get(), 1979 decoder_database_.get(),
1978 *packet_buffer_.get(), 1980 *packet_buffer_.get(),
1979 delay_manager_.get(), 1981 delay_manager_.get(),
1980 buffer_level_filter_.get())); 1982 buffer_level_filter_.get()));
1981 } 1983 }
1982 } // namespace webrtc 1984 } // namespace webrtc
OLDNEW
« no previous file with comments | « webrtc/modules/audio_coding/neteq/neteq_impl.h ('k') | webrtc/modules/audio_coding/neteq/neteq_impl_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698