| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| (...skipping 12 matching lines...) Expand all Loading... |
| 23 #include "webrtc/modules/audio_coding/neteq/sync_buffer.h" | 23 #include "webrtc/modules/audio_coding/neteq/sync_buffer.h" |
| 24 | 24 |
| 25 namespace webrtc { | 25 namespace webrtc { |
| 26 | 26 |
| 27 Merge::Merge(int fs_hz, | 27 Merge::Merge(int fs_hz, |
| 28 size_t num_channels, | 28 size_t num_channels, |
| 29 Expand* expand, | 29 Expand* expand, |
| 30 SyncBuffer* sync_buffer) | 30 SyncBuffer* sync_buffer) |
| 31 : fs_hz_(fs_hz), | 31 : fs_hz_(fs_hz), |
| 32 num_channels_(num_channels), | 32 num_channels_(num_channels), |
| 33 fs_mult_(fs_hz_ / 8000), | 33 fs_mult_(static_cast<size_t>(fs_hz_ / 8000)), |
| 34 timestamps_per_call_(fs_hz_ / 100), | 34 timestamps_per_call_(static_cast<size_t>(fs_hz_ / 100)), |
| 35 expand_(expand), | 35 expand_(expand), |
| 36 sync_buffer_(sync_buffer), | 36 sync_buffer_(sync_buffer), |
| 37 expanded_(num_channels_) { | 37 expanded_(num_channels_) { |
| 38 assert(num_channels_ > 0); | 38 assert(num_channels_ > 0); |
| 39 } | 39 } |
| 40 | 40 |
| 41 int Merge::Process(int16_t* input, size_t input_length, | 41 size_t Merge::Process(int16_t* input, size_t input_length, |
| 42 int16_t* external_mute_factor_array, | 42 int16_t* external_mute_factor_array, |
| 43 AudioMultiVector* output) { | 43 AudioMultiVector* output) { |
| 44 // TODO(hlundin): Change to an enumerator and skip assert. | 44 // TODO(hlundin): Change to an enumerator and skip assert. |
| 45 assert(fs_hz_ == 8000 || fs_hz_ == 16000 || fs_hz_ == 32000 || | 45 assert(fs_hz_ == 8000 || fs_hz_ == 16000 || fs_hz_ == 32000 || |
| 46 fs_hz_ == 48000); | 46 fs_hz_ == 48000); |
| 47 assert(fs_hz_ <= kMaxSampleRate); // Should not be possible. | 47 assert(fs_hz_ <= kMaxSampleRate); // Should not be possible. |
| 48 | 48 |
| 49 int old_length; | 49 size_t old_length; |
| 50 int expand_period; | 50 size_t expand_period; |
| 51 // Get expansion data to overlap and mix with. | 51 // Get expansion data to overlap and mix with. |
| 52 int expanded_length = GetExpandedSignal(&old_length, &expand_period); | 52 size_t expanded_length = GetExpandedSignal(&old_length, &expand_period); |
| 53 | 53 |
| 54 // Transfer input signal to an AudioMultiVector. | 54 // Transfer input signal to an AudioMultiVector. |
| 55 AudioMultiVector input_vector(num_channels_); | 55 AudioMultiVector input_vector(num_channels_); |
| 56 input_vector.PushBackInterleaved(input, input_length); | 56 input_vector.PushBackInterleaved(input, input_length); |
| 57 size_t input_length_per_channel = input_vector.Size(); | 57 size_t input_length_per_channel = input_vector.Size(); |
| 58 assert(input_length_per_channel == input_length / num_channels_); | 58 assert(input_length_per_channel == input_length / num_channels_); |
| 59 | 59 |
| 60 int16_t best_correlation_index = 0; | 60 size_t best_correlation_index = 0; |
| 61 size_t output_length = 0; | 61 size_t output_length = 0; |
| 62 | 62 |
| 63 for (size_t channel = 0; channel < num_channels_; ++channel) { | 63 for (size_t channel = 0; channel < num_channels_; ++channel) { |
| 64 int16_t* input_channel = &input_vector[channel][0]; | 64 int16_t* input_channel = &input_vector[channel][0]; |
| 65 int16_t* expanded_channel = &expanded_[channel][0]; | 65 int16_t* expanded_channel = &expanded_[channel][0]; |
| 66 int16_t expanded_max, input_max; | 66 int16_t expanded_max, input_max; |
| 67 int16_t new_mute_factor = SignalScaling( | 67 int16_t new_mute_factor = SignalScaling( |
| 68 input_channel, static_cast<int>(input_length_per_channel), | 68 input_channel, input_length_per_channel, expanded_channel, |
| 69 expanded_channel, &expanded_max, &input_max); | 69 &expanded_max, &input_max); |
| 70 | 70 |
| 71 // Adjust muting factor (product of "main" muting factor and expand muting | 71 // Adjust muting factor (product of "main" muting factor and expand muting |
| 72 // factor). | 72 // factor). |
| 73 int16_t* external_mute_factor = &external_mute_factor_array[channel]; | 73 int16_t* external_mute_factor = &external_mute_factor_array[channel]; |
| 74 *external_mute_factor = | 74 *external_mute_factor = |
| 75 (*external_mute_factor * expand_->MuteFactor(channel)) >> 14; | 75 (*external_mute_factor * expand_->MuteFactor(channel)) >> 14; |
| 76 | 76 |
| 77 // Update |external_mute_factor| if it is lower than |new_mute_factor|. | 77 // Update |external_mute_factor| if it is lower than |new_mute_factor|. |
| 78 if (new_mute_factor > *external_mute_factor) { | 78 if (new_mute_factor > *external_mute_factor) { |
| 79 *external_mute_factor = std::min(new_mute_factor, | 79 *external_mute_factor = std::min(new_mute_factor, |
| 80 static_cast<int16_t>(16384)); | 80 static_cast<int16_t>(16384)); |
| 81 } | 81 } |
| 82 | 82 |
| 83 if (channel == 0) { | 83 if (channel == 0) { |
| 84 // Downsample, correlate, and find strongest correlation period for the | 84 // Downsample, correlate, and find strongest correlation period for the |
| 85 // master (i.e., first) channel only. | 85 // master (i.e., first) channel only. |
| 86 // Downsample to 4kHz sample rate. | 86 // Downsample to 4kHz sample rate. |
| 87 Downsample(input_channel, static_cast<int>(input_length_per_channel), | 87 Downsample(input_channel, input_length_per_channel, expanded_channel, |
| 88 expanded_channel, expanded_length); | 88 expanded_length); |
| 89 | 89 |
| 90 // Calculate the lag of the strongest correlation period. | 90 // Calculate the lag of the strongest correlation period. |
| 91 best_correlation_index = CorrelateAndPeakSearch( | 91 best_correlation_index = CorrelateAndPeakSearch( |
| 92 expanded_max, input_max, old_length, | 92 expanded_max, input_max, old_length, |
| 93 static_cast<int>(input_length_per_channel), expand_period); | 93 input_length_per_channel, expand_period); |
| 94 } | 94 } |
| 95 | 95 |
| 96 static const int kTempDataSize = 3600; | 96 static const int kTempDataSize = 3600; |
| 97 int16_t temp_data[kTempDataSize]; // TODO(hlundin) Remove this. | 97 int16_t temp_data[kTempDataSize]; // TODO(hlundin) Remove this. |
| 98 int16_t* decoded_output = temp_data + best_correlation_index; | 98 int16_t* decoded_output = temp_data + best_correlation_index; |
| 99 | 99 |
| 100 // Mute the new decoded data if needed (and unmute it linearly). | 100 // Mute the new decoded data if needed (and unmute it linearly). |
| 101 // This is the overlapping part of expanded_signal. | 101 // This is the overlapping part of expanded_signal. |
| 102 int interpolation_length = std::min( | 102 size_t interpolation_length = std::min( |
| 103 kMaxCorrelationLength * fs_mult_, | 103 kMaxCorrelationLength * fs_mult_, |
| 104 expanded_length - best_correlation_index); | 104 expanded_length - best_correlation_index); |
| 105 interpolation_length = std::min(interpolation_length, | 105 interpolation_length = std::min(interpolation_length, |
| 106 static_cast<int>(input_length_per_channel)); | 106 input_length_per_channel); |
| 107 if (*external_mute_factor < 16384) { | 107 if (*external_mute_factor < 16384) { |
| 108 // Set a suitable muting slope (Q20). 0.004 for NB, 0.002 for WB, | 108 // Set a suitable muting slope (Q20). 0.004 for NB, 0.002 for WB, |
| 109 // and so on. | 109 // and so on. |
| 110 int increment = 4194 / fs_mult_; | 110 int increment = static_cast<int>(4194 / fs_mult_); |
| 111 *external_mute_factor = | 111 *external_mute_factor = |
| 112 static_cast<int16_t>(DspHelper::RampSignal(input_channel, | 112 static_cast<int16_t>(DspHelper::RampSignal(input_channel, |
| 113 interpolation_length, | 113 interpolation_length, |
| 114 *external_mute_factor, | 114 *external_mute_factor, |
| 115 increment)); | 115 increment)); |
| 116 DspHelper::UnmuteSignal(&input_channel[interpolation_length], | 116 DspHelper::UnmuteSignal(&input_channel[interpolation_length], |
| 117 input_length_per_channel - interpolation_length, | 117 input_length_per_channel - interpolation_length, |
| 118 external_mute_factor, increment, | 118 external_mute_factor, increment, |
| 119 &decoded_output[interpolation_length]); | 119 &decoded_output[interpolation_length]); |
| 120 } else { | 120 } else { |
| (...skipping 25 matching lines...) Expand all Loading... |
| 146 sizeof(temp_data[0]) * output_length); | 146 sizeof(temp_data[0]) * output_length); |
| 147 } | 147 } |
| 148 | 148 |
| 149 // Copy back the first part of the data to |sync_buffer_| and remove it from | 149 // Copy back the first part of the data to |sync_buffer_| and remove it from |
| 150 // |output|. | 150 // |output|. |
| 151 sync_buffer_->ReplaceAtIndex(*output, old_length, sync_buffer_->next_index()); | 151 sync_buffer_->ReplaceAtIndex(*output, old_length, sync_buffer_->next_index()); |
| 152 output->PopFront(old_length); | 152 output->PopFront(old_length); |
| 153 | 153 |
| 154 // Return new added length. |old_length| samples were borrowed from | 154 // Return new added length. |old_length| samples were borrowed from |
| 155 // |sync_buffer_|. | 155 // |sync_buffer_|. |
| 156 return static_cast<int>(output_length) - old_length; | 156 return output_length - old_length; |
| 157 } | 157 } |
| 158 | 158 |
| 159 int Merge::GetExpandedSignal(int* old_length, int* expand_period) { | 159 size_t Merge::GetExpandedSignal(size_t* old_length, size_t* expand_period) { |
| 160 // Check how much data that is left since earlier. | 160 // Check how much data that is left since earlier. |
| 161 *old_length = static_cast<int>(sync_buffer_->FutureLength()); | 161 *old_length = sync_buffer_->FutureLength(); |
| 162 // Should never be less than overlap_length. | 162 // Should never be less than overlap_length. |
| 163 assert(*old_length >= static_cast<int>(expand_->overlap_length())); | 163 assert(*old_length >= expand_->overlap_length()); |
| 164 // Generate data to merge the overlap with using expand. | 164 // Generate data to merge the overlap with using expand. |
| 165 expand_->SetParametersForMergeAfterExpand(); | 165 expand_->SetParametersForMergeAfterExpand(); |
| 166 | 166 |
| 167 if (*old_length >= 210 * kMaxSampleRate / 8000) { | 167 if (*old_length >= 210 * kMaxSampleRate / 8000) { |
| 168 // TODO(hlundin): Write test case for this. | 168 // TODO(hlundin): Write test case for this. |
| 169 // The number of samples available in the sync buffer is more than what fits | 169 // The number of samples available in the sync buffer is more than what fits |
| 170 // in expanded_signal. Keep the first 210 * kMaxSampleRate / 8000 samples, | 170 // in expanded_signal. Keep the first 210 * kMaxSampleRate / 8000 samples, |
| 171 // but shift them towards the end of the buffer. This is ok, since all of | 171 // but shift them towards the end of the buffer. This is ok, since all of |
| 172 // the buffer will be expand data anyway, so as long as the beginning is | 172 // the buffer will be expand data anyway, so as long as the beginning is |
| 173 // left untouched, we're fine. | 173 // left untouched, we're fine. |
| 174 int16_t length_diff = *old_length - 210 * kMaxSampleRate / 8000; | 174 size_t length_diff = *old_length - 210 * kMaxSampleRate / 8000; |
| 175 sync_buffer_->InsertZerosAtIndex(length_diff, sync_buffer_->next_index()); | 175 sync_buffer_->InsertZerosAtIndex(length_diff, sync_buffer_->next_index()); |
| 176 *old_length = 210 * kMaxSampleRate / 8000; | 176 *old_length = 210 * kMaxSampleRate / 8000; |
| 177 // This is the truncated length. | 177 // This is the truncated length. |
| 178 } | 178 } |
| 179 // This assert should always be true thanks to the if statement above. | 179 // This assert should always be true thanks to the if statement above. |
| 180 assert(210 * kMaxSampleRate / 8000 >= *old_length); | 180 assert(210 * kMaxSampleRate / 8000 >= *old_length); |
| 181 | 181 |
| 182 AudioMultiVector expanded_temp(num_channels_); | 182 AudioMultiVector expanded_temp(num_channels_); |
| 183 expand_->Process(&expanded_temp); | 183 expand_->Process(&expanded_temp); |
| 184 *expand_period = static_cast<int>(expanded_temp.Size()); // Samples per | 184 *expand_period = expanded_temp.Size(); // Samples per channel. |
| 185 // channel. | |
| 186 | 185 |
| 187 expanded_.Clear(); | 186 expanded_.Clear(); |
| 188 // Copy what is left since earlier into the expanded vector. | 187 // Copy what is left since earlier into the expanded vector. |
| 189 expanded_.PushBackFromIndex(*sync_buffer_, sync_buffer_->next_index()); | 188 expanded_.PushBackFromIndex(*sync_buffer_, sync_buffer_->next_index()); |
| 190 assert(expanded_.Size() == static_cast<size_t>(*old_length)); | 189 assert(expanded_.Size() == *old_length); |
| 191 assert(expanded_temp.Size() > 0); | 190 assert(expanded_temp.Size() > 0); |
| 192 // Do "ugly" copy and paste from the expanded in order to generate more data | 191 // Do "ugly" copy and paste from the expanded in order to generate more data |
| 193 // to correlate (but not interpolate) with. | 192 // to correlate (but not interpolate) with. |
| 194 const int required_length = (120 + 80 + 2) * fs_mult_; | 193 const size_t required_length = (120 + 80 + 2) * fs_mult_; |
| 195 if (expanded_.Size() < static_cast<size_t>(required_length)) { | 194 if (expanded_.Size() < required_length) { |
| 196 while (expanded_.Size() < static_cast<size_t>(required_length)) { | 195 while (expanded_.Size() < required_length) { |
| 197 // Append one more pitch period each time. | 196 // Append one more pitch period each time. |
| 198 expanded_.PushBack(expanded_temp); | 197 expanded_.PushBack(expanded_temp); |
| 199 } | 198 } |
| 200 // Trim the length to exactly |required_length|. | 199 // Trim the length to exactly |required_length|. |
| 201 expanded_.PopBack(expanded_.Size() - required_length); | 200 expanded_.PopBack(expanded_.Size() - required_length); |
| 202 } | 201 } |
| 203 assert(expanded_.Size() >= static_cast<size_t>(required_length)); | 202 assert(expanded_.Size() >= required_length); |
| 204 return required_length; | 203 return required_length; |
| 205 } | 204 } |
| 206 | 205 |
| 207 int16_t Merge::SignalScaling(const int16_t* input, int input_length, | 206 int16_t Merge::SignalScaling(const int16_t* input, size_t input_length, |
| 208 const int16_t* expanded_signal, | 207 const int16_t* expanded_signal, |
| 209 int16_t* expanded_max, int16_t* input_max) const { | 208 int16_t* expanded_max, int16_t* input_max) const { |
| 210 // Adjust muting factor if new vector is more or less of the BGN energy. | 209 // Adjust muting factor if new vector is more or less of the BGN energy. |
| 211 const int mod_input_length = std::min(64 * fs_mult_, input_length); | 210 const size_t mod_input_length = std::min(64 * fs_mult_, input_length); |
| 212 *expanded_max = WebRtcSpl_MaxAbsValueW16(expanded_signal, mod_input_length); | 211 *expanded_max = WebRtcSpl_MaxAbsValueW16(expanded_signal, mod_input_length); |
| 213 *input_max = WebRtcSpl_MaxAbsValueW16(input, mod_input_length); | 212 *input_max = WebRtcSpl_MaxAbsValueW16(input, mod_input_length); |
| 214 | 213 |
| 215 // Calculate energy of expanded signal. | 214 // Calculate energy of expanded signal. |
| 216 // |log_fs_mult| is log2(fs_mult_), but is not exact for 48000 Hz. | 215 // |log_fs_mult| is log2(fs_mult_), but is not exact for 48000 Hz. |
| 217 int log_fs_mult = 30 - WebRtcSpl_NormW32(fs_mult_); | 216 int log_fs_mult = 30 - WebRtcSpl_NormW32(static_cast<int32_t>(fs_mult_)); |
| 218 int expanded_shift = 6 + log_fs_mult | 217 int expanded_shift = 6 + log_fs_mult |
| 219 - WebRtcSpl_NormW32(*expanded_max * *expanded_max); | 218 - WebRtcSpl_NormW32(*expanded_max * *expanded_max); |
| 220 expanded_shift = std::max(expanded_shift, 0); | 219 expanded_shift = std::max(expanded_shift, 0); |
| 221 int32_t energy_expanded = WebRtcSpl_DotProductWithScale(expanded_signal, | 220 int32_t energy_expanded = WebRtcSpl_DotProductWithScale(expanded_signal, |
| 222 expanded_signal, | 221 expanded_signal, |
| 223 mod_input_length, | 222 mod_input_length, |
| 224 expanded_shift); | 223 expanded_shift); |
| 225 | 224 |
| 226 // Calculate energy of input signal. | 225 // Calculate energy of input signal. |
| 227 int input_shift = 6 + log_fs_mult - | 226 int input_shift = 6 + log_fs_mult - |
| (...skipping 25 matching lines...) Expand all Loading... |
| 253 } else { | 252 } else { |
| 254 // Set to 1 (in Q14) when |expanded| has higher energy than |input|. | 253 // Set to 1 (in Q14) when |expanded| has higher energy than |input|. |
| 255 mute_factor = 16384; | 254 mute_factor = 16384; |
| 256 } | 255 } |
| 257 | 256 |
| 258 return mute_factor; | 257 return mute_factor; |
| 259 } | 258 } |
| 260 | 259 |
| 261 // TODO(hlundin): There are some parameter values in this method that seem | 260 // TODO(hlundin): There are some parameter values in this method that seem |
| 262 // strange. Compare with Expand::Correlation. | 261 // strange. Compare with Expand::Correlation. |
| 263 void Merge::Downsample(const int16_t* input, int input_length, | 262 void Merge::Downsample(const int16_t* input, size_t input_length, |
| 264 const int16_t* expanded_signal, int expanded_length) { | 263 const int16_t* expanded_signal, size_t expanded_length) { |
| 265 const int16_t* filter_coefficients; | 264 const int16_t* filter_coefficients; |
| 266 int num_coefficients; | 265 size_t num_coefficients; |
| 267 int decimation_factor = fs_hz_ / 4000; | 266 int decimation_factor = fs_hz_ / 4000; |
| 268 static const int kCompensateDelay = 0; | 267 static const size_t kCompensateDelay = 0; |
| 269 int length_limit = fs_hz_ / 100; // 10 ms in samples. | 268 size_t length_limit = static_cast<size_t>(fs_hz_ / 100); // 10 ms in samples. |
| 270 if (fs_hz_ == 8000) { | 269 if (fs_hz_ == 8000) { |
| 271 filter_coefficients = DspHelper::kDownsample8kHzTbl; | 270 filter_coefficients = DspHelper::kDownsample8kHzTbl; |
| 272 num_coefficients = 3; | 271 num_coefficients = 3; |
| 273 } else if (fs_hz_ == 16000) { | 272 } else if (fs_hz_ == 16000) { |
| 274 filter_coefficients = DspHelper::kDownsample16kHzTbl; | 273 filter_coefficients = DspHelper::kDownsample16kHzTbl; |
| 275 num_coefficients = 5; | 274 num_coefficients = 5; |
| 276 } else if (fs_hz_ == 32000) { | 275 } else if (fs_hz_ == 32000) { |
| 277 filter_coefficients = DspHelper::kDownsample32kHzTbl; | 276 filter_coefficients = DspHelper::kDownsample32kHzTbl; |
| 278 num_coefficients = 7; | 277 num_coefficients = 7; |
| 279 } else { // fs_hz_ == 48000 | 278 } else { // fs_hz_ == 48000 |
| 280 filter_coefficients = DspHelper::kDownsample48kHzTbl; | 279 filter_coefficients = DspHelper::kDownsample48kHzTbl; |
| 281 num_coefficients = 7; | 280 num_coefficients = 7; |
| 282 } | 281 } |
| 283 int signal_offset = num_coefficients - 1; | 282 size_t signal_offset = num_coefficients - 1; |
| 284 WebRtcSpl_DownsampleFast(&expanded_signal[signal_offset], | 283 WebRtcSpl_DownsampleFast(&expanded_signal[signal_offset], |
| 285 expanded_length - signal_offset, | 284 expanded_length - signal_offset, |
| 286 expanded_downsampled_, kExpandDownsampLength, | 285 expanded_downsampled_, kExpandDownsampLength, |
| 287 filter_coefficients, num_coefficients, | 286 filter_coefficients, num_coefficients, |
| 288 decimation_factor, kCompensateDelay); | 287 decimation_factor, kCompensateDelay); |
| 289 if (input_length <= length_limit) { | 288 if (input_length <= length_limit) { |
| 290 // Not quite long enough, so we have to cheat a bit. | 289 // Not quite long enough, so we have to cheat a bit. |
| 291 int16_t temp_len = input_length - signal_offset; | 290 size_t temp_len = input_length - signal_offset; |
| 292 // TODO(hlundin): Should |downsamp_temp_len| be corrected for round-off | 291 // TODO(hlundin): Should |downsamp_temp_len| be corrected for round-off |
| 293 // errors? I.e., (temp_len + decimation_factor - 1) / decimation_factor? | 292 // errors? I.e., (temp_len + decimation_factor - 1) / decimation_factor? |
| 294 int16_t downsamp_temp_len = temp_len / decimation_factor; | 293 size_t downsamp_temp_len = temp_len / decimation_factor; |
| 295 WebRtcSpl_DownsampleFast(&input[signal_offset], temp_len, | 294 WebRtcSpl_DownsampleFast(&input[signal_offset], temp_len, |
| 296 input_downsampled_, downsamp_temp_len, | 295 input_downsampled_, downsamp_temp_len, |
| 297 filter_coefficients, num_coefficients, | 296 filter_coefficients, num_coefficients, |
| 298 decimation_factor, kCompensateDelay); | 297 decimation_factor, kCompensateDelay); |
| 299 memset(&input_downsampled_[downsamp_temp_len], 0, | 298 memset(&input_downsampled_[downsamp_temp_len], 0, |
| 300 sizeof(int16_t) * (kInputDownsampLength - downsamp_temp_len)); | 299 sizeof(int16_t) * (kInputDownsampLength - downsamp_temp_len)); |
| 301 } else { | 300 } else { |
| 302 WebRtcSpl_DownsampleFast(&input[signal_offset], | 301 WebRtcSpl_DownsampleFast(&input[signal_offset], |
| 303 input_length - signal_offset, input_downsampled_, | 302 input_length - signal_offset, input_downsampled_, |
| 304 kInputDownsampLength, filter_coefficients, | 303 kInputDownsampLength, filter_coefficients, |
| 305 num_coefficients, decimation_factor, | 304 num_coefficients, decimation_factor, |
| 306 kCompensateDelay); | 305 kCompensateDelay); |
| 307 } | 306 } |
| 308 } | 307 } |
| 309 | 308 |
| 310 int16_t Merge::CorrelateAndPeakSearch(int16_t expanded_max, int16_t input_max, | 309 size_t Merge::CorrelateAndPeakSearch(int16_t expanded_max, int16_t input_max, |
| 311 int start_position, int input_length, | 310 size_t start_position, size_t input_length, |
| 312 int expand_period) const { | 311 size_t expand_period) const { |
| 313 // Calculate correlation without any normalization. | 312 // Calculate correlation without any normalization. |
| 314 const int max_corr_length = kMaxCorrelationLength; | 313 const size_t max_corr_length = kMaxCorrelationLength; |
| 315 int stop_position_downsamp = | 314 size_t stop_position_downsamp = |
| 316 std::min(max_corr_length, expand_->max_lag() / (fs_mult_ * 2) + 1); | 315 std::min(max_corr_length, expand_->max_lag() / (fs_mult_ * 2) + 1); |
| 317 int correlation_shift = 0; | 316 int correlation_shift = 0; |
| 318 if (expanded_max * input_max > 26843546) { | 317 if (expanded_max * input_max > 26843546) { |
| 319 correlation_shift = 3; | 318 correlation_shift = 3; |
| 320 } | 319 } |
| 321 | 320 |
| 322 int32_t correlation[kMaxCorrelationLength]; | 321 int32_t correlation[kMaxCorrelationLength]; |
| 323 WebRtcSpl_CrossCorrelation(correlation, input_downsampled_, | 322 WebRtcSpl_CrossCorrelation(correlation, input_downsampled_, |
| 324 expanded_downsampled_, kInputDownsampLength, | 323 expanded_downsampled_, kInputDownsampLength, |
| 325 stop_position_downsamp, correlation_shift, 1); | 324 stop_position_downsamp, correlation_shift, 1); |
| 326 | 325 |
| 327 // Normalize correlation to 14 bits and copy to a 16-bit array. | 326 // Normalize correlation to 14 bits and copy to a 16-bit array. |
| 328 const int pad_length = static_cast<int>(expand_->overlap_length() - 1); | 327 const size_t pad_length = expand_->overlap_length() - 1; |
| 329 const int correlation_buffer_size = 2 * pad_length + kMaxCorrelationLength; | 328 const size_t correlation_buffer_size = 2 * pad_length + kMaxCorrelationLength; |
| 330 rtc::scoped_ptr<int16_t[]> correlation16( | 329 rtc::scoped_ptr<int16_t[]> correlation16( |
| 331 new int16_t[correlation_buffer_size]); | 330 new int16_t[correlation_buffer_size]); |
| 332 memset(correlation16.get(), 0, correlation_buffer_size * sizeof(int16_t)); | 331 memset(correlation16.get(), 0, correlation_buffer_size * sizeof(int16_t)); |
| 333 int16_t* correlation_ptr = &correlation16[pad_length]; | 332 int16_t* correlation_ptr = &correlation16[pad_length]; |
| 334 int32_t max_correlation = WebRtcSpl_MaxAbsValueW32(correlation, | 333 int32_t max_correlation = WebRtcSpl_MaxAbsValueW32(correlation, |
| 335 stop_position_downsamp); | 334 stop_position_downsamp); |
| 336 int norm_shift = std::max(0, 17 - WebRtcSpl_NormW32(max_correlation)); | 335 int norm_shift = std::max(0, 17 - WebRtcSpl_NormW32(max_correlation)); |
| 337 WebRtcSpl_VectorBitShiftW32ToW16(correlation_ptr, stop_position_downsamp, | 336 WebRtcSpl_VectorBitShiftW32ToW16(correlation_ptr, stop_position_downsamp, |
| 338 correlation, norm_shift); | 337 correlation, norm_shift); |
| 339 | 338 |
| 340 // Calculate allowed starting point for peak finding. | 339 // Calculate allowed starting point for peak finding. |
| 341 // The peak location bestIndex must fulfill two criteria: | 340 // The peak location bestIndex must fulfill two criteria: |
| 342 // (1) w16_bestIndex + input_length < | 341 // (1) w16_bestIndex + input_length < |
| 343 // timestamps_per_call_ + expand_->overlap_length(); | 342 // timestamps_per_call_ + expand_->overlap_length(); |
| 344 // (2) w16_bestIndex + input_length < start_position. | 343 // (2) w16_bestIndex + input_length < start_position. |
| 345 int start_index = timestamps_per_call_ + | 344 size_t start_index = timestamps_per_call_ + expand_->overlap_length(); |
| 346 static_cast<int>(expand_->overlap_length()); | |
| 347 start_index = std::max(start_position, start_index); | 345 start_index = std::max(start_position, start_index); |
| 348 start_index = (input_length > start_index) ? 0 : (start_index - input_length); | 346 start_index = (input_length > start_index) ? 0 : (start_index - input_length); |
| 349 // Downscale starting index to 4kHz domain. (fs_mult_ * 2 = fs_hz_ / 4000.) | 347 // Downscale starting index to 4kHz domain. (fs_mult_ * 2 = fs_hz_ / 4000.) |
| 350 int start_index_downsamp = start_index / (fs_mult_ * 2); | 348 size_t start_index_downsamp = start_index / (fs_mult_ * 2); |
| 351 | 349 |
| 352 // Calculate a modified |stop_position_downsamp| to account for the increased | 350 // Calculate a modified |stop_position_downsamp| to account for the increased |
| 353 // start index |start_index_downsamp| and the effective array length. | 351 // start index |start_index_downsamp| and the effective array length. |
| 354 int modified_stop_pos = | 352 size_t modified_stop_pos = |
| 355 std::min(stop_position_downsamp, | 353 std::min(stop_position_downsamp, |
| 356 kMaxCorrelationLength + pad_length - start_index_downsamp); | 354 kMaxCorrelationLength + pad_length - start_index_downsamp); |
| 357 int best_correlation_index; | 355 size_t best_correlation_index; |
| 358 int16_t best_correlation; | 356 int16_t best_correlation; |
| 359 static const int kNumCorrelationCandidates = 1; | 357 static const size_t kNumCorrelationCandidates = 1; |
| 360 DspHelper::PeakDetection(&correlation_ptr[start_index_downsamp], | 358 DspHelper::PeakDetection(&correlation_ptr[start_index_downsamp], |
| 361 modified_stop_pos, kNumCorrelationCandidates, | 359 modified_stop_pos, kNumCorrelationCandidates, |
| 362 fs_mult_, &best_correlation_index, | 360 fs_mult_, &best_correlation_index, |
| 363 &best_correlation); | 361 &best_correlation); |
| 364 // Compensate for modified start index. | 362 // Compensate for modified start index. |
| 365 best_correlation_index += start_index; | 363 best_correlation_index += start_index; |
| 366 | 364 |
| 367 // Ensure that underrun does not occur for 10ms case => we have to get at | 365 // Ensure that underrun does not occur for 10ms case => we have to get at |
| 368 // least 10ms + overlap . (This should never happen thanks to the above | 366 // least 10ms + overlap . (This should never happen thanks to the above |
| 369 // modification of peak-finding starting point.) | 367 // modification of peak-finding starting point.) |
| 370 while (((best_correlation_index + input_length) < | 368 while (((best_correlation_index + input_length) < |
| 371 static_cast<int>(timestamps_per_call_ + expand_->overlap_length())) || | 369 (timestamps_per_call_ + expand_->overlap_length())) || |
| 372 ((best_correlation_index + input_length) < start_position)) { | 370 ((best_correlation_index + input_length) < start_position)) { |
| 373 assert(false); // Should never happen. | 371 assert(false); // Should never happen. |
| 374 best_correlation_index += expand_period; // Jump one lag ahead. | 372 best_correlation_index += expand_period; // Jump one lag ahead. |
| 375 } | 373 } |
| 376 return best_correlation_index; | 374 return best_correlation_index; |
| 377 } | 375 } |
| 378 | 376 |
| 379 int Merge::RequiredFutureSamples() { | 377 size_t Merge::RequiredFutureSamples() { |
| 380 return static_cast<int>(fs_hz_ / 100 * num_channels_); // 10 ms. | 378 return fs_hz_ / 100 * num_channels_; // 10 ms. |
| 381 } | 379 } |
| 382 | 380 |
| 383 | 381 |
| 384 } // namespace webrtc | 382 } // namespace webrtc |
| OLD | NEW |