| Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
|
| diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
|
| index 00d9b536584360a9ad989c72751bdd6e64319356..60f93c88e972d82d421976ca87bae34be91b133a 100644
|
| --- a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
|
| +++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
|
| @@ -40,20 +40,20 @@ complex<float> zerofudge(complex<float> c) {
|
| return complex<float>(AddDitherIfZero(c.real()), AddDitherIfZero(c.imag()));
|
| }
|
|
|
| -complex<float> NewMean(complex<float> mean, complex<float> data, int count) {
|
| +complex<float> NewMean(complex<float> mean, complex<float> data, size_t count) {
|
| return mean + (data - mean) / static_cast<float>(count);
|
| }
|
|
|
| -void AddToMean(complex<float> data, int count, complex<float>* mean) {
|
| +void AddToMean(complex<float> data, size_t count, complex<float>* mean) {
|
| (*mean) = NewMean(*mean, data, count);
|
| }
|
|
|
|
|
| -static const int kWindowBlockSize = 10;
|
| +static const size_t kWindowBlockSize = 10;
|
|
|
| -VarianceArray::VarianceArray(int freqs,
|
| +VarianceArray::VarianceArray(size_t freqs,
|
| StepType type,
|
| - int window_size,
|
| + size_t window_size,
|
| float decay)
|
| : running_mean_(new complex<float>[freqs]()),
|
| running_mean_sq_(new complex<float>[freqs]()),
|
| @@ -69,15 +69,15 @@ VarianceArray::VarianceArray(int freqs,
|
| array_mean_(0.0f),
|
| buffer_full_(false) {
|
| history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]());
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (size_t i = 0; i < freqs_; ++i) {
|
| history_[i].reset(new complex<float>[window_size_]());
|
| }
|
| subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]());
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (size_t i = 0; i < freqs_; ++i) {
|
| subhistory_[i].reset(new complex<float>[window_size_]());
|
| }
|
| subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]());
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (size_t i = 0; i < freqs_; ++i) {
|
| subhistory_sq_[i].reset(new complex<float>[window_size_]());
|
| }
|
| switch (type) {
|
| @@ -104,7 +104,7 @@ VarianceArray::VarianceArray(int freqs,
|
| void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) {
|
| array_mean_ = 0.0f;
|
| ++count_;
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (size_t i = 0; i < freqs_; ++i) {
|
| complex<float> sample = data[i];
|
| if (!skip_fudge) {
|
| sample = zerofudge(sample);
|
| @@ -132,7 +132,7 @@ void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) {
|
| void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) {
|
| array_mean_ = 0.0f;
|
| ++count_;
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (size_t i = 0; i < freqs_; ++i) {
|
| complex<float> sample = data[i];
|
| sample = zerofudge(sample);
|
|
|
| @@ -157,9 +157,9 @@ void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) {
|
| // Windowed variance computation. On each step, the variances for the
|
| // window are recomputed from scratch, using Welford's algorithm.
|
| void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
|
| - int num = min(count_ + 1, window_size_);
|
| + size_t num = min(count_ + 1, window_size_);
|
| array_mean_ = 0.0f;
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (size_t i = 0; i < freqs_; ++i) {
|
| complex<float> mean;
|
| float conj_sum = 0.0f;
|
|
|
| @@ -167,7 +167,7 @@ void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
|
|
|
| mean = history_[i][history_cursor_];
|
| variance_[i] = 0.0f;
|
| - for (int j = 1; j < num; ++j) {
|
| + for (size_t j = 1; j < num; ++j) {
|
| complex<float> sample =
|
| zerofudge(history_[i][(history_cursor_ + j) % window_size_]);
|
| sample = history_[i][(history_cursor_ + j) % window_size_];
|
| @@ -191,8 +191,8 @@ void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
|
| // history window and a new block is started. The variances for the window
|
| // are recomputed from scratch at each of these transitions.
|
| void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) {
|
| - int blocks = min(window_size_, history_cursor_ + 1);
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + size_t blocks = min(window_size_, history_cursor_ + 1);
|
| + for (size_t i = 0; i < freqs_; ++i) {
|
| AddToMean(data[i], count_ + 1, &sub_running_mean_[i]);
|
| AddToMean(data[i] * std::conj(data[i]), count_ + 1,
|
| &sub_running_mean_sq_[i]);
|
| @@ -209,7 +209,7 @@ void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) {
|
| sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
|
| running_mean_[i] = complex<float>(0.0f, 0.0f);
|
| running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
|
| - for (int j = 0; j < min(window_size_, history_cursor_); ++j) {
|
| + for (size_t j = 0; j < min(window_size_, history_cursor_); ++j) {
|
| AddToMean(subhistory_[i][j], j + 1, &running_mean_[i]);
|
| AddToMean(subhistory_sq_[i][j], j + 1, &running_mean_sq_[i]);
|
| }
|
| @@ -228,7 +228,7 @@ void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data,
|
| // TODO(ekmeyerson) To mitigate potential divergence, add counter so that
|
| // after every so often sums are computed scratch by summing over all
|
| // elements instead of subtracting oldest and adding newest.
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (size_t i = 0; i < freqs_; ++i) {
|
| sub_running_mean_[i] += data[i];
|
| sub_running_mean_sq_[i] += data[i] * std::conj(data[i]);
|
| }
|
| @@ -239,7 +239,7 @@ void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data,
|
| if (count_ >= kWindowBlockSize) {
|
| count_ = 0;
|
|
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (size_t i = 0; i < freqs_; ++i) {
|
| running_mean_[i] -= subhistory_[i][history_cursor_];
|
| running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_];
|
|
|
| @@ -279,18 +279,18 @@ void VarianceArray::Clear() {
|
|
|
| void VarianceArray::ApplyScale(float scale) {
|
| array_mean_ = 0.0f;
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (size_t i = 0; i < freqs_; ++i) {
|
| variance_[i] *= scale * scale;
|
| array_mean_ += (variance_[i] - array_mean_) / (i + 1);
|
| }
|
| }
|
|
|
| -GainApplier::GainApplier(int freqs, float change_limit)
|
| +GainApplier::GainApplier(size_t freqs, float change_limit)
|
| : freqs_(freqs),
|
| change_limit_(change_limit),
|
| target_(new float[freqs]()),
|
| current_(new float[freqs]()) {
|
| - for (int i = 0; i < freqs; ++i) {
|
| + for (size_t i = 0; i < freqs; ++i) {
|
| target_[i] = 1.0f;
|
| current_[i] = 1.0f;
|
| }
|
| @@ -298,7 +298,7 @@ GainApplier::GainApplier(int freqs, float change_limit)
|
|
|
| void GainApplier::Apply(const complex<float>* in_block,
|
| complex<float>* out_block) {
|
| - for (int i = 0; i < freqs_; ++i) {
|
| + for (size_t i = 0; i < freqs_; ++i) {
|
| float factor = sqrtf(fabsf(current_[i]));
|
| if (!std::isnormal(factor)) {
|
| factor = 1.0f;
|
|
|