Index: webrtc/modules/audio_processing/vad/voice_activity_detector_unittest.cc |
diff --git a/webrtc/modules/audio_processing/vad/voice_activity_detector_unittest.cc b/webrtc/modules/audio_processing/vad/voice_activity_detector_unittest.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..f4ee17760e95753271ae40aca65475e635480c71 |
--- /dev/null |
+++ b/webrtc/modules/audio_processing/vad/voice_activity_detector_unittest.cc |
@@ -0,0 +1,168 @@ |
+/* |
+ * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+ |
+#include "webrtc/modules/audio_processing/vad/voice_activity_detector.h" |
+ |
+#include <algorithm> |
+#include <vector> |
+ |
+#include "testing/gtest/include/gtest/gtest.h" |
+#include "webrtc/test/testsupport/fileutils.h" |
+ |
+namespace webrtc { |
+namespace { |
+ |
+const int kStartTimeSec = 16; |
+const float kMeanSpeechProbability = 0.3f; |
+const float kMaxNoiseProbability = 0.1f; |
+const size_t kNumChunks = 300u; |
+const size_t kNumChunksPerIsacBlock = 3; |
+ |
+void GenerateNoise(std::vector<int16_t>* data) { |
+ for (size_t i = 0; i < data->size(); ++i) { |
+ // std::rand returns between 0 and RAND_MAX, but this will work because it |
+ // wraps into some random place. |
+ (*data)[i] = std::rand(); |
+ } |
+} |
+ |
+} // namespace |
+ |
+TEST(VoiceActivityDetectorTest, ConstructorSetsDefaultValues) { |
+ const float kDefaultVoiceValue = 1.f; |
+ |
+ VoiceActivityDetector vad; |
+ |
+ std::vector<double> p = vad.chunkwise_voice_probabilities(); |
+ std::vector<double> rms = vad.chunkwise_rms(); |
+ |
+ EXPECT_EQ(p.size(), 0u); |
+ EXPECT_EQ(rms.size(), 0u); |
+ |
+ EXPECT_FLOAT_EQ(vad.last_voice_probability(), kDefaultVoiceValue); |
+} |
+ |
+TEST(VoiceActivityDetectorTest, Speech16kHzHasHighVoiceProbabilities) { |
+ const int kSampleRateHz = 16000; |
+ const int kLength10Ms = kSampleRateHz / 100; |
+ |
+ VoiceActivityDetector vad; |
+ |
+ std::vector<int16_t> data(kLength10Ms); |
+ float mean_probability = 0.f; |
+ |
+ FILE* pcm_file = |
+ fopen(test::ResourcePath("audio_processing/transient/audio16kHz", "pcm") |
+ .c_str(), |
+ "rb"); |
+ ASSERT_TRUE(pcm_file != nullptr); |
+ // The silences in the file are skipped to get a more robust voice probability |
+ // for speech. |
+ ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]), |
+ SEEK_SET), |
+ 0); |
+ |
+ size_t num_chunks = 0; |
+ while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) == |
+ data.size()) { |
+ vad.ProcessChunk(&data[0], data.size(), kSampleRateHz); |
+ |
+ mean_probability += vad.last_voice_probability(); |
+ |
+ ++num_chunks; |
+ } |
+ |
+ mean_probability /= num_chunks; |
+ |
+ EXPECT_GT(mean_probability, kMeanSpeechProbability); |
+} |
+ |
+TEST(VoiceActivityDetectorTest, Speech32kHzHasHighVoiceProbabilities) { |
+ const int kSampleRateHz = 32000; |
+ const int kLength10Ms = kSampleRateHz / 100; |
+ |
+ VoiceActivityDetector vad; |
+ |
+ std::vector<int16_t> data(kLength10Ms); |
+ float mean_probability = 0.f; |
+ |
+ FILE* pcm_file = |
+ fopen(test::ResourcePath("audio_processing/transient/audio32kHz", "pcm") |
+ .c_str(), |
+ "rb"); |
+ ASSERT_TRUE(pcm_file != nullptr); |
+ // The silences in the file are skipped to get a more robust voice probability |
+ // for speech. |
+ ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]), |
+ SEEK_SET), |
+ 0); |
+ |
+ size_t num_chunks = 0; |
+ while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) == |
+ data.size()) { |
+ vad.ProcessChunk(&data[0], data.size(), kSampleRateHz); |
+ |
+ mean_probability += vad.last_voice_probability(); |
+ |
+ ++num_chunks; |
+ } |
+ |
+ mean_probability /= num_chunks; |
+ |
+ EXPECT_GT(mean_probability, kMeanSpeechProbability); |
+} |
+ |
+TEST(VoiceActivityDetectorTest, Noise16kHzHasLowVoiceProbabilities) { |
+ VoiceActivityDetector vad; |
+ |
+ std::vector<int16_t> data(kLength10Ms); |
+ float max_probability = 0.f; |
+ |
+ std::srand(42); |
+ |
+ for (size_t i = 0; i < kNumChunks; ++i) { |
+ GenerateNoise(&data); |
+ |
+ vad.ProcessChunk(&data[0], data.size(), kSampleRateHz); |
+ |
+ // Before the |vad has enough data to process an ISAC block it will return |
+ // the default value, 1.f, which would ruin the |max_probability| value. |
+ if (i > kNumChunksPerIsacBlock) { |
+ max_probability = std::max(max_probability, vad.last_voice_probability()); |
+ } |
+ } |
+ |
+ EXPECT_LT(max_probability, kMaxNoiseProbability); |
+} |
+ |
+TEST(VoiceActivityDetectorTest, Noise32kHzHasLowVoiceProbabilities) { |
+ VoiceActivityDetector vad; |
+ |
+ std::vector<int16_t> data(2 * kLength10Ms); |
+ float max_probability = 0.f; |
+ |
+ std::srand(42); |
+ |
+ for (size_t i = 0; i < kNumChunks; ++i) { |
+ GenerateNoise(&data); |
+ |
+ vad.ProcessChunk(&data[0], data.size(), 2 * kSampleRateHz); |
+ |
+ // Before the |vad has enough data to process an ISAC block it will return |
+ // the default value, 1.f, which would ruin the |max_probability| value. |
+ if (i > kNumChunksPerIsacBlock) { |
+ max_probability = std::max(max_probability, vad.last_voice_probability()); |
+ } |
+ } |
+ |
+ EXPECT_LT(max_probability, kMaxNoiseProbability); |
+} |
+ |
+} // namespace webrtc |