| Index: webrtc/modules/audio_processing/vad/voice_activity_detector_unittest.cc
|
| diff --git a/webrtc/modules/audio_processing/vad/voice_activity_detector_unittest.cc b/webrtc/modules/audio_processing/vad/voice_activity_detector_unittest.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..f4ee17760e95753271ae40aca65475e635480c71
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_processing/vad/voice_activity_detector_unittest.cc
|
| @@ -0,0 +1,168 @@
|
| +/*
|
| + * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license
|
| + * that can be found in the LICENSE file in the root of the source
|
| + * tree. An additional intellectual property rights grant can be found
|
| + * in the file PATENTS. All contributing project authors may
|
| + * be found in the AUTHORS file in the root of the source tree.
|
| + */
|
| +
|
| +#include "webrtc/modules/audio_processing/vad/voice_activity_detector.h"
|
| +
|
| +#include <algorithm>
|
| +#include <vector>
|
| +
|
| +#include "testing/gtest/include/gtest/gtest.h"
|
| +#include "webrtc/test/testsupport/fileutils.h"
|
| +
|
| +namespace webrtc {
|
| +namespace {
|
| +
|
| +const int kStartTimeSec = 16;
|
| +const float kMeanSpeechProbability = 0.3f;
|
| +const float kMaxNoiseProbability = 0.1f;
|
| +const size_t kNumChunks = 300u;
|
| +const size_t kNumChunksPerIsacBlock = 3;
|
| +
|
| +void GenerateNoise(std::vector<int16_t>* data) {
|
| + for (size_t i = 0; i < data->size(); ++i) {
|
| + // std::rand returns between 0 and RAND_MAX, but this will work because it
|
| + // wraps into some random place.
|
| + (*data)[i] = std::rand();
|
| + }
|
| +}
|
| +
|
| +} // namespace
|
| +
|
| +TEST(VoiceActivityDetectorTest, ConstructorSetsDefaultValues) {
|
| + const float kDefaultVoiceValue = 1.f;
|
| +
|
| + VoiceActivityDetector vad;
|
| +
|
| + std::vector<double> p = vad.chunkwise_voice_probabilities();
|
| + std::vector<double> rms = vad.chunkwise_rms();
|
| +
|
| + EXPECT_EQ(p.size(), 0u);
|
| + EXPECT_EQ(rms.size(), 0u);
|
| +
|
| + EXPECT_FLOAT_EQ(vad.last_voice_probability(), kDefaultVoiceValue);
|
| +}
|
| +
|
| +TEST(VoiceActivityDetectorTest, Speech16kHzHasHighVoiceProbabilities) {
|
| + const int kSampleRateHz = 16000;
|
| + const int kLength10Ms = kSampleRateHz / 100;
|
| +
|
| + VoiceActivityDetector vad;
|
| +
|
| + std::vector<int16_t> data(kLength10Ms);
|
| + float mean_probability = 0.f;
|
| +
|
| + FILE* pcm_file =
|
| + fopen(test::ResourcePath("audio_processing/transient/audio16kHz", "pcm")
|
| + .c_str(),
|
| + "rb");
|
| + ASSERT_TRUE(pcm_file != nullptr);
|
| + // The silences in the file are skipped to get a more robust voice probability
|
| + // for speech.
|
| + ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]),
|
| + SEEK_SET),
|
| + 0);
|
| +
|
| + size_t num_chunks = 0;
|
| + while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) ==
|
| + data.size()) {
|
| + vad.ProcessChunk(&data[0], data.size(), kSampleRateHz);
|
| +
|
| + mean_probability += vad.last_voice_probability();
|
| +
|
| + ++num_chunks;
|
| + }
|
| +
|
| + mean_probability /= num_chunks;
|
| +
|
| + EXPECT_GT(mean_probability, kMeanSpeechProbability);
|
| +}
|
| +
|
| +TEST(VoiceActivityDetectorTest, Speech32kHzHasHighVoiceProbabilities) {
|
| + const int kSampleRateHz = 32000;
|
| + const int kLength10Ms = kSampleRateHz / 100;
|
| +
|
| + VoiceActivityDetector vad;
|
| +
|
| + std::vector<int16_t> data(kLength10Ms);
|
| + float mean_probability = 0.f;
|
| +
|
| + FILE* pcm_file =
|
| + fopen(test::ResourcePath("audio_processing/transient/audio32kHz", "pcm")
|
| + .c_str(),
|
| + "rb");
|
| + ASSERT_TRUE(pcm_file != nullptr);
|
| + // The silences in the file are skipped to get a more robust voice probability
|
| + // for speech.
|
| + ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]),
|
| + SEEK_SET),
|
| + 0);
|
| +
|
| + size_t num_chunks = 0;
|
| + while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) ==
|
| + data.size()) {
|
| + vad.ProcessChunk(&data[0], data.size(), kSampleRateHz);
|
| +
|
| + mean_probability += vad.last_voice_probability();
|
| +
|
| + ++num_chunks;
|
| + }
|
| +
|
| + mean_probability /= num_chunks;
|
| +
|
| + EXPECT_GT(mean_probability, kMeanSpeechProbability);
|
| +}
|
| +
|
| +TEST(VoiceActivityDetectorTest, Noise16kHzHasLowVoiceProbabilities) {
|
| + VoiceActivityDetector vad;
|
| +
|
| + std::vector<int16_t> data(kLength10Ms);
|
| + float max_probability = 0.f;
|
| +
|
| + std::srand(42);
|
| +
|
| + for (size_t i = 0; i < kNumChunks; ++i) {
|
| + GenerateNoise(&data);
|
| +
|
| + vad.ProcessChunk(&data[0], data.size(), kSampleRateHz);
|
| +
|
| + // Before the |vad has enough data to process an ISAC block it will return
|
| + // the default value, 1.f, which would ruin the |max_probability| value.
|
| + if (i > kNumChunksPerIsacBlock) {
|
| + max_probability = std::max(max_probability, vad.last_voice_probability());
|
| + }
|
| + }
|
| +
|
| + EXPECT_LT(max_probability, kMaxNoiseProbability);
|
| +}
|
| +
|
| +TEST(VoiceActivityDetectorTest, Noise32kHzHasLowVoiceProbabilities) {
|
| + VoiceActivityDetector vad;
|
| +
|
| + std::vector<int16_t> data(2 * kLength10Ms);
|
| + float max_probability = 0.f;
|
| +
|
| + std::srand(42);
|
| +
|
| + for (size_t i = 0; i < kNumChunks; ++i) {
|
| + GenerateNoise(&data);
|
| +
|
| + vad.ProcessChunk(&data[0], data.size(), 2 * kSampleRateHz);
|
| +
|
| + // Before the |vad has enough data to process an ISAC block it will return
|
| + // the default value, 1.f, which would ruin the |max_probability| value.
|
| + if (i > kNumChunksPerIsacBlock) {
|
| + max_probability = std::max(max_probability, vad.last_voice_probability());
|
| + }
|
| + }
|
| +
|
| + EXPECT_LT(max_probability, kMaxNoiseProbability);
|
| +}
|
| +
|
| +} // namespace webrtc
|
|
|