Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 /* | |
| 2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license | |
| 5 * that can be found in the LICENSE file in the root of the source | |
| 6 * tree. An additional intellectual property rights grant can be found | |
| 7 * in the file PATENTS. All contributing project authors may | |
| 8 * be found in the AUTHORS file in the root of the source tree. | |
| 9 */ | |
| 10 | |
| 11 // | |
| 12 // Unit tests for intelligibility enhancer. | |
| 13 // | |
| 14 | |
| 15 #include <math.h> | |
| 16 #include <algorithm> | |
| 17 #include <vector> | |
| 18 | |
| 19 #include "testing/gtest/include/gtest/gtest.h" | |
| 20 #include "webrtc/base/arraysize.h" | |
| 21 #include "webrtc/common_audio/signal_processing/include/signal_processing_librar y.h" | |
| 22 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc er.h" | |
| 23 | |
| 24 namespace { | |
| 25 | |
| 26 // Generated with matlab code: normrnd(0,1000,64,1). | |
| 27 const double kGaussianSamples[] = { | |
| 28 1689.1, 1437, -2251.1, 356.49, -850.24, -299.55, -634.25, 1624.5, | |
| 29 1241.1, 555.28, 703.42, 458.16, 683.98, 251.29, -178.5, 507.73, | |
| 30 -309.9, -394.37, -269.74, -88.13, 8.0293, 2531.8, -1223.2, -1071.8, | |
| 31 246.06, -50.611, -730.15, 326.99, 752.99, -1153.7, -407.87, -1287.9, | |
| 32 83.578, 163.8, 682.57, -1086.4, 297.49, -143.31, 1392, 306.75, | |
| 33 -537.18, -228.93, -536.22, 1439, -511.1, -1606.8, -201.24, 1143.5, | |
| 34 663.29, 164.08, 1785.4, -587.71, 259.04, -871.83, -787.92, -344.34, | |
| 35 647.62, 2054.1, 798.94, -1071.1, -205.16, -554.44, -292.94, 1180.2}; | |
| 36 static_assert(arraysize(kGaussianSamples) == 64, "Samples badly initialized."); | |
| 37 | |
|
hlundin-webrtc
2015/07/02 10:53:13
You have a blank line here that is not present bet
ekm
2015/07/07 21:57:02
Done.
| |
| 38 // Target output for ERB create test. Generated with matlab. | |
| 39 const double kTestCenterFreqs[] = { | |
| 40 13.169, 26.965, 41.423, 56.577, 72.461, 89.113, 106.57, 124.88, | |
| 41 144.08, 164.21, 185.34, 207.5, 230.75, 255.16, 280.77, 307.66, | |
| 42 335.9, 365.56, 396.71, 429.44, 463.84, 500}; | |
| 43 const double kTestFilterBank[][2] = {{0.055556, 0}, | |
| 44 {0.055556, 0}, | |
| 45 {0.055556, 0}, | |
| 46 {0.055556, 0}, | |
| 47 {0.055556, 0}, | |
| 48 {0.055556, 0}, | |
| 49 {0.055556, 0}, | |
| 50 {0.055556, 0}, | |
| 51 {0.055556, 0}, | |
| 52 {0.055556, 0}, | |
| 53 {0.055556, 0}, | |
| 54 {0.055556, 0}, | |
| 55 {0.055556, 0}, | |
| 56 {0.055556, 0}, | |
| 57 {0.055556, 0}, | |
| 58 {0.055556, 0}, | |
| 59 {0.055556, 0}, | |
| 60 {0.055556, 0.2}, | |
| 61 {0, 0.2}, | |
| 62 {0, 0.2}, | |
| 63 {0, 0.2}, | |
| 64 {0, 0.2}}; | |
| 65 static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestFilterBank), | |
| 66 "Test filterbank badly initialized."); | |
| 67 // Target output for gain solving test. Generated with matlab. | |
| 68 const int kTestStartFreq = 12; // Lowest integral frequency for ERBs. | |
| 69 const double kTestZeroVar[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 70 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; | |
| 71 static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestZeroVar), | |
| 72 "Variance test data badly initialized."); | |
| 73 const double kTestNonZeroVarLambdaTop[] = { | |
| 74 1, 1, 1, 1, 1, 1, 1, 1, | |
| 75 1, 1, 1, 0, 0, 0.0351, 0.0636, 0.0863, | |
| 76 0.1037, 0.1162, 0.1236, 0.1251, 0.1189, 0.0993}; | |
| 77 static_assert(arraysize(kTestCenterFreqs) == | |
| 78 arraysize(kTestNonZeroVarLambdaTop), | |
| 79 "Variance test data badly initialized."); | |
| 80 const float kMaxTestError = 0.005f; | |
| 81 | |
| 82 // Enhancer initialization parameters. | |
| 83 const int kSamples = 2000; | |
| 84 const int kErbResolution = 2; | |
| 85 const int kSampleRate = 1000; | |
| 86 const int kFragmentSize = kSampleRate / 100; | |
| 87 const int kNumChannels = 1; | |
| 88 const float kDecayRate = 0.9f; | |
| 89 const int kWindowSize = 800; | |
| 90 const int kAnalyzeRate = 800; | |
| 91 const int kVarianceRate = 2; | |
| 92 const float kGainLimit = 0.1f; | |
| 93 | |
| 94 } // namespace | |
| 95 | |
| 96 namespace webrtc { | |
| 97 | |
| 98 using std::vector; | |
| 99 using intelligibility::VarianceArray; | |
| 100 | |
| 101 void GenerateConstantData(vector<float>* data, float constant) { | |
|
Andrew MacDonald
2015/07/02 02:46:48
Replace this function with:
std::fill(data.begin()
ekm
2015/07/07 21:57:02
Done.
| |
| 102 for (size_t i = 0; i < data->size(); i++) { | |
| 103 (*data)[i] = constant; | |
| 104 } | |
| 105 } | |
| 106 | |
| 107 void GenerateGaussianData(vector<float>* data, int* count) { | |
|
Andrew MacDonald
2015/07/02 02:46:48
Does this need to be Gaussian distributed, or will
ekm
2015/07/07 21:57:02
Done.
| |
| 108 for (size_t i = 0; i < data->size(); i++) { | |
| 109 (*data)[i] = kGaussianSamples[(*count) % 64]; | |
| 110 (*count)++; | |
| 111 } | |
| 112 } | |
| 113 | |
| 114 class IntelligibilityEnhancerTest : public ::testing::Test { | |
| 115 protected: | |
| 116 IntelligibilityEnhancerTest() | |
| 117 : enh_(kErbResolution, | |
| 118 kSampleRate, | |
| 119 kNumChannels, | |
| 120 VarianceArray::kStepInfinite, | |
| 121 kDecayRate, | |
| 122 kWindowSize, | |
| 123 kAnalyzeRate, | |
| 124 kVarianceRate, | |
| 125 kGainLimit), | |
| 126 clear_data_(kSamples), | |
| 127 noise_data_(kSamples), | |
| 128 orig_data_(kSamples) {} | |
| 129 | |
| 130 bool CheckUpdate(VarianceArray::StepType step_type) { | |
| 131 IntelligibilityEnhancer enh(kErbResolution, kSampleRate, kNumChannels, | |
| 132 step_type, kDecayRate, kWindowSize, | |
| 133 kAnalyzeRate, kVarianceRate, kGainLimit); | |
| 134 float* clear_cursor = &clear_data_[0]; | |
| 135 float* noise_cursor = &noise_data_[0]; | |
| 136 for (int i = 0; i < kSamples; i += kFragmentSize) { | |
| 137 enh.ProcessCaptureAudio(&noise_cursor); | |
| 138 enh.ProcessRenderAudio(&clear_cursor); | |
| 139 clear_cursor += kFragmentSize; | |
| 140 noise_cursor += kFragmentSize; | |
| 141 } | |
| 142 for (int i = 0; i < kSamples; i++) { | |
| 143 if (std::fabs(clear_data_[i] - orig_data_[i]) > kMaxTestError) { | |
| 144 return true; | |
| 145 } | |
| 146 } | |
| 147 return false; | |
| 148 } | |
| 149 | |
| 150 IntelligibilityEnhancer enh_; | |
| 151 vector<float> clear_data_; | |
| 152 vector<float> noise_data_; | |
| 153 vector<float> orig_data_; | |
| 154 }; | |
| 155 | |
| 156 // For each class of generated data, tests that render stream is | |
| 157 // updated when it should be for each variance update method. | |
| 158 TEST_F(IntelligibilityEnhancerTest, TestRenderUpdate) { | |
| 159 vector<VarianceArray::StepType> step_types = { | |
| 160 VarianceArray::kStepInfinite, | |
| 161 VarianceArray::kStepDecaying, | |
| 162 VarianceArray::kStepWindowed, | |
| 163 VarianceArray::kStepBlocked, | |
| 164 VarianceArray::kStepBlockBasedMovingAverage}; | |
| 165 GenerateConstantData(&noise_data_, 0.0f); | |
| 166 GenerateConstantData(&orig_data_, 0.0f); | |
| 167 for (auto step_type : step_types) { | |
| 168 GenerateConstantData(&clear_data_, 0.0f); | |
| 169 EXPECT_FALSE(CheckUpdate(step_type)); | |
| 170 } | |
| 171 int samples_grabbed = 0; | |
| 172 GenerateGaussianData(&noise_data_, &samples_grabbed); | |
| 173 for (auto step_type : step_types) { | |
| 174 EXPECT_FALSE(CheckUpdate(step_type)); | |
| 175 } | |
| 176 for (auto step_type : step_types) { | |
| 177 GenerateGaussianData(&clear_data_, &samples_grabbed); | |
| 178 orig_data_ = clear_data_; | |
| 179 EXPECT_TRUE(CheckUpdate(step_type)); | |
| 180 } | |
| 181 } | |
| 182 | |
| 183 // Tests ERB bank creation, comparing against matlab output. | |
| 184 TEST_F(IntelligibilityEnhancerTest, TestErbCreation) { | |
| 185 ASSERT_EQ(static_cast<int>(arraysize(kTestCenterFreqs)), enh_.bank_size_); | |
| 186 for (int i = 0; i < enh_.bank_size_; ++i) { | |
| 187 EXPECT_NEAR(enh_.center_freqs_[i], kTestCenterFreqs[i], kMaxTestError); | |
| 188 ASSERT_EQ(static_cast<int>(arraysize(kTestFilterBank[0])), enh_.freqs_); | |
| 189 for (int j = 0; j < enh_.freqs_; ++j) { | |
| 190 EXPECT_NEAR(enh_.filter_bank_[i][j], kTestFilterBank[i][j], | |
| 191 kMaxTestError); | |
| 192 } | |
| 193 } | |
| 194 } | |
| 195 | |
| 196 // Tests analytic solution for optimal gains, comparing | |
| 197 // against matlab output. | |
| 198 TEST_F(IntelligibilityEnhancerTest, TestSolveForGains) { | |
| 199 ASSERT_EQ(kTestStartFreq, enh_.start_freq_); | |
| 200 vector<float> sols(enh_.bank_size_); | |
| 201 float lambda = -0.001f; | |
| 202 for (int i = 0; i < enh_.bank_size_; i++) { | |
| 203 enh_.filtered_clear_var_[i] = 0.0; | |
| 204 enh_.filtered_noise_var_[i] = 0.0; | |
| 205 enh_.rho_[i] = 0.02; | |
| 206 } | |
| 207 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); | |
| 208 for (int i = 0; i < enh_.bank_size_; i++) { | |
| 209 EXPECT_NEAR(sols[i], kTestZeroVar[i], kMaxTestError); | |
| 210 } | |
| 211 for (int i = 0; i < enh_.bank_size_; i++) { | |
| 212 enh_.filtered_clear_var_[i] = static_cast<float>(i + 1); | |
| 213 enh_.filtered_noise_var_[i] = static_cast<float>(enh_.bank_size_ - i); | |
| 214 } | |
| 215 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); | |
| 216 for (int i = 0; i < enh_.bank_size_; i++) { | |
| 217 EXPECT_NEAR(sols[i], kTestNonZeroVarLambdaTop[i], kMaxTestError); | |
| 218 } | |
| 219 lambda = -1.0; | |
| 220 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); | |
| 221 for (int i = 0; i < enh_.bank_size_; i++) { | |
| 222 EXPECT_NEAR(sols[i], kTestZeroVar[i], kMaxTestError); | |
| 223 } | |
| 224 } | |
| 225 | |
| 226 } // namespace webrtc | |
| OLD | NEW |