OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 // | 11 // |
12 // Implements helper functions and classes for intelligibility enhancement. | 12 // Implements helper functions and classes for intelligibility enhancement. |
13 // | 13 // |
14 | 14 |
15 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils. h" | 15 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils. h" |
16 | 16 |
17 #include <algorithm> | 17 #include <algorithm> |
18 #include <cmath> | 18 #include <cmath> |
hlundin-webrtc
2015/06/30 14:00:53
math.h and string.h
ekm
2015/07/01 23:48:26
Done.
| |
19 #include <cstring> | 19 #include <cstring> |
20 | 20 |
21 using std::complex; | 21 using std::complex; |
22 using std::min; | |
22 | 23 |
23 namespace { | 24 namespace webrtc { |
25 | |
26 namespace intelligibility { | |
24 | 27 |
25 // Return |current| changed towards |target|, with the change being at most | 28 // Return |current| changed towards |target|, with the change being at most |
hlundin-webrtc
2015/06/30 14:00:53
Avoid copying the declaration comment to the imple
ekm
2015/07/01 23:48:26
Done.
| |
26 // |limit|. | 29 // |limit|. |
27 inline float UpdateFactor(float target, float current, float limit) { | 30 float UpdateFactor(float target, float current, float limit) { |
28 float delta = fabsf(target - current); | 31 float delta = fabsf(target - current); |
29 float sign = copysign(1.0f, target - current); | 32 float sign = copysign(1.0f, target - current); |
30 return current + sign * fminf(delta, limit); | 33 return current + sign * fminf(delta, limit); |
31 } | 34 } |
32 | 35 |
33 // std::isfinite for complex numbers. | 36 // std::isfinite for complex numbers. |
34 inline bool cplxfinite(complex<float> c) { | 37 bool cplxfinite(complex<float> c) { |
35 return std::isfinite(c.real()) && std::isfinite(c.imag()); | 38 return std::isfinite(c.real()) && std::isfinite(c.imag()); |
36 } | 39 } |
37 | 40 |
38 // std::isnormal for complex numbers. | 41 // std::isnormal for complex numbers. |
39 inline bool cplxnormal(complex<float> c) { | 42 bool cplxnormal(complex<float> c) { |
40 return std::isnormal(c.real()) && std::isnormal(c.imag()); | 43 return std::isnormal(c.real()) && std::isnormal(c.imag()); |
41 } | 44 } |
42 | 45 |
43 // Apply a small fudge to degenerate complex values. The numbers in the array | 46 // Apply a small fudge to degenerate complex values. The numbers in the array |
44 // were chosen randomly, so that even a series of all zeroes has some small | 47 // were chosen randomly, so that even a series of all zeroes has some small |
45 // variability. | 48 // variability. |
46 inline complex<float> zerofudge(complex<float> c) { | 49 complex<float> zerofudge(complex<float> c) { |
47 const static complex<float> fudge[7] = {{0.001f, 0.002f}, | 50 const static complex<float> fudge[7] = {{0.001f, 0.002f}, |
48 {0.008f, 0.001f}, | 51 {0.008f, 0.001f}, |
49 {0.003f, 0.008f}, | 52 {0.003f, 0.008f}, |
50 {0.0006f, 0.0009f}, | 53 {0.0006f, 0.0009f}, |
51 {0.001f, 0.004f}, | 54 {0.001f, 0.004f}, |
52 {0.003f, 0.004f}, | 55 {0.003f, 0.004f}, |
53 {0.002f, 0.009f}}; | 56 {0.002f, 0.009f}}; |
54 static int fudge_index = 0; | 57 static int fudge_index = 0; |
55 if (cplxfinite(c) && !cplxnormal(c)) { | 58 if (cplxfinite(c) && !cplxnormal(c)) { |
56 fudge_index = (fudge_index + 1) % 7; | 59 fudge_index = (fudge_index + 1) % 7; |
57 return c + fudge[fudge_index]; | 60 return c + fudge[fudge_index]; |
58 } | 61 } |
59 return c; | 62 return c; |
60 } | 63 } |
61 | 64 |
62 // Incremental mean computation. Return the mean of the series with the | 65 // Incremental mean computation. Return the mean of the series with the |
63 // mean |mean| with added |data|. | 66 // mean |mean| with added |data|. |
64 inline complex<float> NewMean(complex<float> mean, | 67 complex<float> NewMean(complex<float> mean, |
65 complex<float> data, | 68 complex<float> data, |
66 int count) { | 69 int count) { |
67 return mean + (data - mean) / static_cast<float>(count); | 70 return mean + (data - mean) / static_cast<float>(count); |
68 } | 71 } |
69 | 72 |
70 inline void AddToMean(complex<float> data, int count, complex<float>* mean) { | 73 void AddToMean(complex<float> data, int count, complex<float>* mean) { |
71 (*mean) = NewMean(*mean, data, count); | 74 (*mean) = NewMean(*mean, data, count); |
72 } | 75 } |
73 | 76 |
74 } // namespace | |
75 | |
76 using std::min; | |
77 | |
78 namespace webrtc { | |
79 | |
80 namespace intelligibility { | |
81 | 77 |
82 static const int kWindowBlockSize = 10; | 78 static const int kWindowBlockSize = 10; |
83 | 79 |
84 VarianceArray::VarianceArray(int freqs, | 80 VarianceArray::VarianceArray(int freqs, |
85 StepType type, | 81 StepType type, |
86 int window_size, | 82 int window_size, |
87 float decay) | 83 float decay) |
88 : running_mean_(new complex<float>[freqs]()), | 84 : running_mean_(new complex<float>[freqs]()), |
89 running_mean_sq_(new complex<float>[freqs]()), | 85 running_mean_sq_(new complex<float>[freqs]()), |
90 sub_running_mean_(new complex<float>[freqs]()), | 86 sub_running_mean_(new complex<float>[freqs]()), |
91 sub_running_mean_sq_(new complex<float>[freqs]()), | 87 sub_running_mean_sq_(new complex<float>[freqs]()), |
92 variance_(new float[freqs]()), | 88 variance_(new float[freqs]()), |
93 conj_sum_(new float[freqs]()), | 89 conj_sum_(new float[freqs]()), |
94 freqs_(freqs), | 90 freqs_(freqs), |
95 window_size_(window_size), | 91 window_size_(window_size), |
96 decay_(decay), | 92 decay_(decay), |
97 history_cursor_(0), | 93 history_cursor_(0), |
98 count_(0), | 94 count_(0), |
99 array_mean_(0.0f) { | 95 array_mean_(0.0f), |
96 buffer_full_(false) { | |
100 history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 97 history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
101 for (int i = 0; i < freqs_; ++i) { | 98 for (int i = 0; i < freqs_; ++i) { |
102 history_[i].reset(new complex<float>[window_size_]()); | 99 history_[i].reset(new complex<float>[window_size_]()); |
103 } | 100 } |
104 subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 101 subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
105 for (int i = 0; i < freqs_; ++i) { | 102 for (int i = 0; i < freqs_; ++i) { |
106 subhistory_[i].reset(new complex<float>[window_size_]()); | 103 subhistory_[i].reset(new complex<float>[window_size_]()); |
107 } | 104 } |
108 subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 105 subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
109 for (int i = 0; i < freqs_; ++i) { | 106 for (int i = 0; i < freqs_; ++i) { |
110 subhistory_sq_[i].reset(new complex<float>[window_size_]()); | 107 subhistory_sq_[i].reset(new complex<float>[window_size_]()); |
111 } | 108 } |
112 switch (type) { | 109 switch (type) { |
113 case kStepInfinite: | 110 case kStepInfinite: |
114 step_func_ = &VarianceArray::InfiniteStep; | 111 step_func_ = &VarianceArray::InfiniteStep; |
115 break; | 112 break; |
116 case kStepDecaying: | 113 case kStepDecaying: |
117 step_func_ = &VarianceArray::DecayStep; | 114 step_func_ = &VarianceArray::DecayStep; |
118 break; | 115 break; |
119 case kStepWindowed: | 116 case kStepWindowed: |
120 step_func_ = &VarianceArray::WindowedStep; | 117 step_func_ = &VarianceArray::WindowedStep; |
121 break; | 118 break; |
122 case kStepBlocked: | 119 case kStepBlocked: |
123 step_func_ = &VarianceArray::BlockedStep; | 120 step_func_ = &VarianceArray::BlockedStep; |
124 break; | 121 break; |
122 case kStepBlockBasedMovingAverage: | |
123 step_func_ = &VarianceArray::BlockBasedMovingAverage; | |
124 break; | |
125 } | 125 } |
126 } | 126 } |
127 | 127 |
128 // Compute the variance with Welford's algorithm, adding some fudge to | 128 // Compute the variance with Welford's algorithm, adding some fudge to |
129 // the input in case of all-zeroes. | 129 // the input in case of all-zeroes. |
130 void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { | 130 void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { |
131 array_mean_ = 0.0f; | 131 array_mean_ = 0.0f; |
132 ++count_; | 132 ++count_; |
133 for (int i = 0; i < freqs_; ++i) { | 133 for (int i = 0; i < freqs_; ++i) { |
134 complex<float> sample = data[i]; | 134 complex<float> sample = data[i]; |
(...skipping 81 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
216 history_cursor_ = (history_cursor_ + 1) % window_size_; | 216 history_cursor_ = (history_cursor_ + 1) % window_size_; |
217 ++count_; | 217 ++count_; |
218 } | 218 } |
219 | 219 |
220 // Variance with a window of blocks. Within each block, the variances are | 220 // Variance with a window of blocks. Within each block, the variances are |
221 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. | 221 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. |
222 // Once a block is filled with kWindowBlockSize samples, it is added to the | 222 // Once a block is filled with kWindowBlockSize samples, it is added to the |
223 // history window and a new block is started. The variances for the window | 223 // history window and a new block is started. The variances for the window |
224 // are recomputed from scratch at each of these transitions. | 224 // are recomputed from scratch at each of these transitions. |
225 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { | 225 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { |
226 int blocks = min(window_size_, history_cursor_); | 226 int blocks = min(window_size_, history_cursor_ + 1); |
227 for (int i = 0; i < freqs_; ++i) { | 227 for (int i = 0; i < freqs_; ++i) { |
228 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); | 228 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); |
229 AddToMean(data[i] * std::conj(data[i]), count_ + 1, | 229 AddToMean(data[i] * std::conj(data[i]), count_ + 1, |
230 &sub_running_mean_sq_[i]); | 230 &sub_running_mean_sq_[i]); |
231 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; | 231 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; |
232 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; | 232 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; |
233 | 233 |
234 variance_[i] = | 234 variance_[i] = |
235 (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - | 235 (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - |
236 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * | 236 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * |
237 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) | 237 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) |
238 .real(); | 238 .real(); |
239 if (count_ == kWindowBlockSize - 1) { | 239 if (count_ == kWindowBlockSize - 1) { |
240 sub_running_mean_[i] = complex<float>(0.0f, 0.0f); | 240 sub_running_mean_[i] = complex<float>(0.0f, 0.0f); |
241 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); | 241 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
242 running_mean_[i] = complex<float>(0.0f, 0.0f); | 242 running_mean_[i] = complex<float>(0.0f, 0.0f); |
243 running_mean_sq_[i] = complex<float>(0.0f, 0.0f); | 243 running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
244 for (int j = 0; j < min(window_size_, history_cursor_); ++j) { | 244 for (int j = 0; j < min(window_size_, history_cursor_); ++j) { |
245 AddToMean(subhistory_[i][j], j, &running_mean_[i]); | 245 AddToMean(subhistory_[i][j], j + 1, &running_mean_[i]); |
246 AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]); | 246 AddToMean(subhistory_sq_[i][j], j + 1, &running_mean_sq_[i]); |
247 } | 247 } |
248 ++history_cursor_; | 248 ++history_cursor_; |
249 } | 249 } |
250 } | 250 } |
251 ++count_; | 251 ++count_; |
252 if (count_ == kWindowBlockSize) { | 252 if (count_ == kWindowBlockSize) { |
253 count_ = 0; | 253 count_ = 0; |
254 } | 254 } |
255 } | 255 } |
256 | 256 |
257 // Recomputes variances from scratch each window based on previous window. | |
hlundin-webrtc
2015/06/30 14:00:53
*for* each window?
ekm
2015/07/01 23:48:26
Done.
| |
258 void VarianceArray::BlockBasedMovingAverage( | |
259 const std::complex<float>* data, bool /*dummy*/) { | |
260 // TODO(ekmeyerson) To mitigate potential divergence, add counter so that | |
261 // after every so often sums are computed scratch by summing over all | |
262 // elements instead of subtracting oldest and adding newest. | |
263 for (int i = 0; i < freqs_; ++i) { | |
264 sub_running_mean_[i] += data[i]; | |
265 sub_running_mean_sq_[i] += data[i] * std::conj(data[i]); | |
266 } | |
267 ++count_; | |
268 | |
269 // TODO(ekmeyerson) Make kWindowBlockSize nonconstant to allow | |
270 // experimentation with different block size,window size pairs. | |
271 if (count_ >= kWindowBlockSize) { | |
272 count_ = 0; | |
273 | |
274 for (int i = 0; i < freqs_; ++i) { | |
275 running_mean_[i] -= subhistory_[i][history_cursor_]; | |
276 running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_]; | |
277 | |
278 float scale = 1.f / kWindowBlockSize; | |
279 subhistory_[i][history_cursor_] = sub_running_mean_[i] * scale; | |
280 subhistory_sq_[i][history_cursor_] = sub_running_mean_sq_[i] * scale; | |
281 | |
282 sub_running_mean_[i] = std::complex<float>(0.0f, 0.0f); | |
283 sub_running_mean_sq_[i] = std::complex<float>(0.0f, 0.0f); | |
284 | |
285 running_mean_[i] += subhistory_[i][history_cursor_]; | |
286 running_mean_sq_[i] += subhistory_sq_[i][history_cursor_]; | |
287 | |
288 scale = 1.f / (buffer_full_ ? window_size_ : history_cursor_ + 1); | |
289 variance_[i] = std::real(running_mean_sq_[i] * scale - running_mean_[i] * | |
290 scale * std::conj(running_mean_[i]) * scale); | |
291 } | |
292 | |
293 ++history_cursor_; | |
294 if (history_cursor_ >= window_size_) { | |
295 buffer_full_ = true; | |
296 history_cursor_ = 0; | |
297 } | |
298 } | |
299 } | |
300 | |
257 void VarianceArray::Clear() { | 301 void VarianceArray::Clear() { |
258 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_); | 302 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_); |
259 memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_); | 303 memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_); |
260 memset(variance_.get(), 0, sizeof(*variance_.get()) * freqs_); | 304 memset(variance_.get(), 0, sizeof(*variance_.get()) * freqs_); |
261 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * freqs_); | 305 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * freqs_); |
262 history_cursor_ = 0; | 306 history_cursor_ = 0; |
263 count_ = 0; | 307 count_ = 0; |
264 array_mean_ = 0.0f; | 308 array_mean_ = 0.0f; |
265 } | 309 } |
266 | 310 |
(...skipping 24 matching lines...) Expand all Loading... | |
291 factor = 1.0f; | 335 factor = 1.0f; |
292 } | 336 } |
293 out_block[i] = factor * in_block[i]; | 337 out_block[i] = factor * in_block[i]; |
294 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); | 338 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); |
295 } | 339 } |
296 } | 340 } |
297 | 341 |
298 } // namespace intelligibility | 342 } // namespace intelligibility |
299 | 343 |
300 } // namespace webrtc | 344 } // namespace webrtc |
OLD | NEW |