Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 /* | |
| 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license | |
| 5 * that can be found in the LICENSE file in the root of the source | |
| 6 * tree. An additional intellectual property rights grant can be found | |
| 7 * in the file PATENTS. All contributing project authors may | |
| 8 * be found in the AUTHORS file in the root of the source tree. | |
| 9 */ | |
| 10 | |
| 11 // | |
| 12 // Unit tests for intelligibility utils. | |
| 13 // | |
| 14 | |
| 15 | |
| 16 #include <cmath> | |
| 17 | |
| 18 #include "testing/gtest/include/gtest/gtest.h" | |
| 19 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils. cc" | |
|
turaj
2015/06/26 00:32:58
Do you need to include .cc file?
ekm
2015/06/26 19:07:10
This is to test functions from anonymous namespace
turaj
2015/06/29 17:33:36
If you feel that they are simple and don't need te
ekm
2015/06/29 23:44:02
Added them to the intelligibility namespace.
| |
| 20 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils. h" | |
| 21 | |
| 22 namespace webrtc { | |
| 23 | |
| 24 using std::complex; | |
| 25 using intelligibility::VarianceArray; | |
| 26 using intelligibility::GainApplier; | |
| 27 using std::vector; | |
| 28 | |
| 29 vector<vector<complex<float>>> GenerateTestData(int freqs, int samples) { | |
| 30 vector<vector<complex<float>>> data(samples); | |
| 31 for (int i = 0; i < samples; i++) { | |
| 32 data[i].resize(freqs); | |
| 33 for (int j = 0; j < freqs; j++) { | |
| 34 data[i][j].real(0.99f / ((i+1)*(j+1))); | |
| 35 data[i][j].imag(0.99f / ((i+1)*(j+1))); | |
| 36 } | |
| 37 } | |
| 38 return data; | |
| 39 } | |
| 40 | |
| 41 // Tests UpdateFactor. | |
| 42 TEST(UtilsTest, TestUpdateFactor) { | |
| 43 EXPECT_EQ(UpdateFactor(0, 0, 0), 0); | |
| 44 EXPECT_EQ(UpdateFactor(4, 2, 3), 4); | |
| 45 EXPECT_EQ(UpdateFactor(4, 2, 1), 3); | |
| 46 EXPECT_EQ(UpdateFactor(2, 4, 3), 2); | |
| 47 EXPECT_EQ(UpdateFactor(2, 4, 1), 3); | |
| 48 } | |
| 49 | |
| 50 // Tests cplxfinite, cplxnormal, and zerofudge. | |
| 51 TEST(UtilsTest, TestCplx) { | |
| 52 complex<float> t; | |
| 53 t.real(1.f); | |
| 54 t.imag(0.f); | |
| 55 EXPECT_TRUE(cplxfinite(t)); | |
| 56 EXPECT_FALSE(cplxnormal(t)); | |
| 57 t = zerofudge(t); | |
| 58 EXPECT_GT(t.imag(), 0.f); | |
|
turaj
2015/06/26 00:32:58
I guess EXPECT_NE() is a better choice here.
ekm
2015/06/26 19:07:10
Done.
| |
| 59 EXPECT_GT(t.real(), 0.f); | |
| 60 t.imag(1.f/0.f); | |
| 61 EXPECT_FALSE(cplxfinite(t)); | |
| 62 EXPECT_FALSE(cplxnormal(t)); | |
| 63 t.imag(sqrt(-1.f)); | |
| 64 EXPECT_FALSE(cplxfinite(t)); | |
| 65 EXPECT_FALSE(cplxnormal(t)); | |
| 66 t.imag(1.f); | |
| 67 EXPECT_TRUE(cplxfinite(t)); | |
| 68 EXPECT_TRUE(cplxnormal(t)); | |
| 69 } | |
| 70 | |
| 71 // Tests NewMean and AddToMean. | |
| 72 TEST(UtilsTest, TestMeanUpdate) { | |
| 73 vector<complex<float>> data = {{3, 8}, {7, 6}, {2, 1}, {8, 9}, {0, 6}}; | |
| 74 vector<complex<float>> means = {{3, 8}, {5, 7}, {4, 5}, {5, 6}, {4, 6}}; | |
| 75 complex<float> mean(3, 8); | |
| 76 for (vector<int>::size_type i = 0; i < data.size(); i++) { | |
| 77 EXPECT_EQ(NewMean(mean, data[i], i+1), means[i]); | |
| 78 AddToMean(data[i], i+1, &mean); | |
| 79 EXPECT_EQ(mean, means[i]); | |
| 80 } | |
| 81 } | |
| 82 | |
| 83 // Tests VarianceArray, for all variance step types. | |
| 84 TEST(UtilsTest, TestVarianceArray) { | |
| 85 const int kFreqs = 10; | |
| 86 const int kSamples = 100; | |
| 87 const int kWindowSize = 10; // Should pass for all kWindowSize > 1. | |
| 88 const float kDecay = 0.5; | |
| 89 vector<VarianceArray::StepType> step_types = { | |
| 90 VarianceArray::kStepInfinite, VarianceArray::kStepDecaying, | |
| 91 VarianceArray::kStepWindowed, VarianceArray::kStepBlocked, | |
| 92 VarianceArray::kStepBlockBasedMovingAverage}; | |
| 93 const vector<vector<complex<float>>> test_data( | |
| 94 GenerateTestData(kFreqs, kSamples)); | |
| 95 for (vector<VarianceArray::StepType>::iterator step_type = | |
| 96 step_types.begin(); step_type != step_types.end(); ++step_type) { | |
| 97 VarianceArray variance_array(kFreqs, *step_type, kWindowSize, kDecay); | |
| 98 EXPECT_EQ(variance_array.variance()[0], 0); | |
| 99 EXPECT_EQ(variance_array.array_mean(), 0); | |
| 100 variance_array.Clear(); | |
|
turaj
2015/06/26 00:32:58
Can we move the for Clear() after following loop?
ekm
2015/06/26 19:07:10
Done.
| |
| 101 EXPECT_EQ(variance_array.variance()[0], 0); | |
| 102 EXPECT_EQ(variance_array.array_mean(), 0); | |
| 103 variance_array.ApplyScale(2.0f); | |
| 104 EXPECT_EQ(variance_array.variance()[0], 0); | |
| 105 EXPECT_EQ(variance_array.array_mean(), 0); | |
| 106 | |
| 107 // Makes sure Step is doing something. | |
| 108 variance_array.Step(&test_data[0][0]); | |
| 109 for (int i = 1; i < kSamples; i++) { | |
| 110 variance_array.Step(&test_data[i][0]); | |
| 111 EXPECT_GE(variance_array.array_mean(), 0.0f); | |
| 112 EXPECT_LE(variance_array.array_mean(), 1.0f); | |
| 113 for (int j = 0; j < kFreqs; j++) { | |
| 114 EXPECT_GE(variance_array.variance()[j], 0.0f); | |
| 115 EXPECT_LE(variance_array.variance()[j], 1.0f); | |
| 116 } | |
| 117 } | |
| 118 } | |
| 119 } | |
| 120 | |
| 121 // Tests exact computation on synthetic data. | |
| 122 TEST(UtilsTest, TestMovingBlockAverage) { | |
| 123 const float kTestVariance = 8.25; // Exact, not unbiased estimate. | |
| 124 const int kFreqs = 2; | |
| 125 const int kSamples = 30; | |
| 126 const int kWindowSize = 1; | |
|
turaj
2015/06/26 00:32:58
Does window size of one actually test the circular
ekm
2015/06/26 19:07:10
Done.
| |
| 127 const float kDecay = 0.5; | |
| 128 const float kMaxError = 0.001; | |
| 129 | |
| 130 VarianceArray variance_array( | |
| 131 kFreqs, VarianceArray::kStepBlockBasedMovingAverage, | |
| 132 kWindowSize, kDecay); | |
| 133 | |
| 134 vector<vector<complex<float>>> test_data(kSamples); | |
| 135 for (int i = 0; i < kSamples; i++) { | |
| 136 test_data[i].resize(kFreqs); | |
| 137 for (int j = 0; j < kFreqs; j++) { | |
| 138 test_data[i][j].real(static_cast<float>(i+1)); | |
| 139 test_data[i][j].imag(0.f); | |
|
turaj
2015/06/26 00:32:58
Can we have non-zero imaginary part to be sure the
ekm
2015/06/26 19:07:10
Done.
| |
| 140 } | |
| 141 } | |
| 142 | |
| 143 for (int i = 0; i < kSamples; i++) { | |
| 144 variance_array.Step(&test_data[i][0]); | |
| 145 for (int j = 0; j < kFreqs; j++) { | |
| 146 if (i < 9) { // In utils, kWindowBlockSize = 10. | |
| 147 EXPECT_EQ(variance_array.variance()[j], 0); | |
| 148 } else { | |
| 149 float error = std::fabs( | |
| 150 variance_array.variance()[j] - kTestVariance); | |
| 151 EXPECT_LT(error, kMaxError); | |
| 152 } | |
| 153 } | |
| 154 } | |
| 155 } | |
| 156 | |
| 157 // Tests gain applier. | |
| 158 TEST(UtilsTest, TestGainApplier) { | |
| 159 const int kFreqs = 10; | |
| 160 const int kSamples = 100; | |
| 161 const float kChangeLimit = 0.1f; | |
| 162 GainApplier gain_applier(kFreqs, kChangeLimit); | |
| 163 const vector<vector<complex<float>>> in_data( | |
| 164 GenerateTestData(kFreqs, kSamples)); | |
| 165 vector<vector<complex<float>>> out_data( | |
| 166 GenerateTestData(kFreqs, kSamples)); | |
| 167 for (int i = 0; i < kSamples; i++) { | |
| 168 gain_applier.Apply(&in_data[i][0], &out_data[i][0]); | |
| 169 for (int j = 0; j < kFreqs; j++) { | |
| 170 EXPECT_GT(out_data[i][j].real(), 0.0f); | |
| 171 EXPECT_LT(out_data[i][j].real(), 1.0f); | |
| 172 EXPECT_GT(out_data[i][j].imag(), 0.0f); | |
| 173 EXPECT_LT(out_data[i][j].imag(), 1.0f); | |
| 174 } | |
| 175 } | |
| 176 } | |
| 177 | |
| 178 } // namespace webrtc | |
| OLD | NEW |