OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license | |
5 * that can be found in the LICENSE file in the root of the source | |
6 * tree. An additional intellectual property rights grant can be found | |
7 * in the file PATENTS. All contributing project authors may | |
8 * be found in the AUTHORS file in the root of the source tree. | |
9 */ | |
10 | |
11 // | |
12 // Unit tests for intelligibility utils. | |
13 // | |
14 | |
15 | |
16 #include <cmath> | |
17 | |
18 #include "testing/gtest/include/gtest/gtest.h" | |
19 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils. cc" | |
turaj
2015/06/26 00:32:58
Do you need to include .cc file?
ekm
2015/06/26 19:07:10
This is to test functions from anonymous namespace
turaj
2015/06/29 17:33:36
If you feel that they are simple and don't need te
ekm
2015/06/29 23:44:02
Added them to the intelligibility namespace.
| |
20 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils. h" | |
21 | |
22 namespace webrtc { | |
23 | |
24 using std::complex; | |
25 using intelligibility::VarianceArray; | |
26 using intelligibility::GainApplier; | |
27 using std::vector; | |
28 | |
29 vector<vector<complex<float>>> GenerateTestData(int freqs, int samples) { | |
30 vector<vector<complex<float>>> data(samples); | |
31 for (int i = 0; i < samples; i++) { | |
32 data[i].resize(freqs); | |
33 for (int j = 0; j < freqs; j++) { | |
34 data[i][j].real(0.99f / ((i+1)*(j+1))); | |
35 data[i][j].imag(0.99f / ((i+1)*(j+1))); | |
36 } | |
37 } | |
38 return data; | |
39 } | |
40 | |
41 // Tests UpdateFactor. | |
42 TEST(UtilsTest, TestUpdateFactor) { | |
43 EXPECT_EQ(UpdateFactor(0, 0, 0), 0); | |
44 EXPECT_EQ(UpdateFactor(4, 2, 3), 4); | |
45 EXPECT_EQ(UpdateFactor(4, 2, 1), 3); | |
46 EXPECT_EQ(UpdateFactor(2, 4, 3), 2); | |
47 EXPECT_EQ(UpdateFactor(2, 4, 1), 3); | |
48 } | |
49 | |
50 // Tests cplxfinite, cplxnormal, and zerofudge. | |
51 TEST(UtilsTest, TestCplx) { | |
52 complex<float> t; | |
53 t.real(1.f); | |
54 t.imag(0.f); | |
55 EXPECT_TRUE(cplxfinite(t)); | |
56 EXPECT_FALSE(cplxnormal(t)); | |
57 t = zerofudge(t); | |
58 EXPECT_GT(t.imag(), 0.f); | |
turaj
2015/06/26 00:32:58
I guess EXPECT_NE() is a better choice here.
ekm
2015/06/26 19:07:10
Done.
| |
59 EXPECT_GT(t.real(), 0.f); | |
60 t.imag(1.f/0.f); | |
61 EXPECT_FALSE(cplxfinite(t)); | |
62 EXPECT_FALSE(cplxnormal(t)); | |
63 t.imag(sqrt(-1.f)); | |
64 EXPECT_FALSE(cplxfinite(t)); | |
65 EXPECT_FALSE(cplxnormal(t)); | |
66 t.imag(1.f); | |
67 EXPECT_TRUE(cplxfinite(t)); | |
68 EXPECT_TRUE(cplxnormal(t)); | |
69 } | |
70 | |
71 // Tests NewMean and AddToMean. | |
72 TEST(UtilsTest, TestMeanUpdate) { | |
73 vector<complex<float>> data = {{3, 8}, {7, 6}, {2, 1}, {8, 9}, {0, 6}}; | |
74 vector<complex<float>> means = {{3, 8}, {5, 7}, {4, 5}, {5, 6}, {4, 6}}; | |
75 complex<float> mean(3, 8); | |
76 for (vector<int>::size_type i = 0; i < data.size(); i++) { | |
77 EXPECT_EQ(NewMean(mean, data[i], i+1), means[i]); | |
78 AddToMean(data[i], i+1, &mean); | |
79 EXPECT_EQ(mean, means[i]); | |
80 } | |
81 } | |
82 | |
83 // Tests VarianceArray, for all variance step types. | |
84 TEST(UtilsTest, TestVarianceArray) { | |
85 const int kFreqs = 10; | |
86 const int kSamples = 100; | |
87 const int kWindowSize = 10; // Should pass for all kWindowSize > 1. | |
88 const float kDecay = 0.5; | |
89 vector<VarianceArray::StepType> step_types = { | |
90 VarianceArray::kStepInfinite, VarianceArray::kStepDecaying, | |
91 VarianceArray::kStepWindowed, VarianceArray::kStepBlocked, | |
92 VarianceArray::kStepBlockBasedMovingAverage}; | |
93 const vector<vector<complex<float>>> test_data( | |
94 GenerateTestData(kFreqs, kSamples)); | |
95 for (vector<VarianceArray::StepType>::iterator step_type = | |
96 step_types.begin(); step_type != step_types.end(); ++step_type) { | |
97 VarianceArray variance_array(kFreqs, *step_type, kWindowSize, kDecay); | |
98 EXPECT_EQ(variance_array.variance()[0], 0); | |
99 EXPECT_EQ(variance_array.array_mean(), 0); | |
100 variance_array.Clear(); | |
turaj
2015/06/26 00:32:58
Can we move the for Clear() after following loop?
ekm
2015/06/26 19:07:10
Done.
| |
101 EXPECT_EQ(variance_array.variance()[0], 0); | |
102 EXPECT_EQ(variance_array.array_mean(), 0); | |
103 variance_array.ApplyScale(2.0f); | |
104 EXPECT_EQ(variance_array.variance()[0], 0); | |
105 EXPECT_EQ(variance_array.array_mean(), 0); | |
106 | |
107 // Makes sure Step is doing something. | |
108 variance_array.Step(&test_data[0][0]); | |
109 for (int i = 1; i < kSamples; i++) { | |
110 variance_array.Step(&test_data[i][0]); | |
111 EXPECT_GE(variance_array.array_mean(), 0.0f); | |
112 EXPECT_LE(variance_array.array_mean(), 1.0f); | |
113 for (int j = 0; j < kFreqs; j++) { | |
114 EXPECT_GE(variance_array.variance()[j], 0.0f); | |
115 EXPECT_LE(variance_array.variance()[j], 1.0f); | |
116 } | |
117 } | |
118 } | |
119 } | |
120 | |
121 // Tests exact computation on synthetic data. | |
122 TEST(UtilsTest, TestMovingBlockAverage) { | |
123 const float kTestVariance = 8.25; // Exact, not unbiased estimate. | |
124 const int kFreqs = 2; | |
125 const int kSamples = 30; | |
126 const int kWindowSize = 1; | |
turaj
2015/06/26 00:32:58
Does window size of one actually test the circular
ekm
2015/06/26 19:07:10
Done.
| |
127 const float kDecay = 0.5; | |
128 const float kMaxError = 0.001; | |
129 | |
130 VarianceArray variance_array( | |
131 kFreqs, VarianceArray::kStepBlockBasedMovingAverage, | |
132 kWindowSize, kDecay); | |
133 | |
134 vector<vector<complex<float>>> test_data(kSamples); | |
135 for (int i = 0; i < kSamples; i++) { | |
136 test_data[i].resize(kFreqs); | |
137 for (int j = 0; j < kFreqs; j++) { | |
138 test_data[i][j].real(static_cast<float>(i+1)); | |
139 test_data[i][j].imag(0.f); | |
turaj
2015/06/26 00:32:58
Can we have non-zero imaginary part to be sure the
ekm
2015/06/26 19:07:10
Done.
| |
140 } | |
141 } | |
142 | |
143 for (int i = 0; i < kSamples; i++) { | |
144 variance_array.Step(&test_data[i][0]); | |
145 for (int j = 0; j < kFreqs; j++) { | |
146 if (i < 9) { // In utils, kWindowBlockSize = 10. | |
147 EXPECT_EQ(variance_array.variance()[j], 0); | |
148 } else { | |
149 float error = std::fabs( | |
150 variance_array.variance()[j] - kTestVariance); | |
151 EXPECT_LT(error, kMaxError); | |
152 } | |
153 } | |
154 } | |
155 } | |
156 | |
157 // Tests gain applier. | |
158 TEST(UtilsTest, TestGainApplier) { | |
159 const int kFreqs = 10; | |
160 const int kSamples = 100; | |
161 const float kChangeLimit = 0.1f; | |
162 GainApplier gain_applier(kFreqs, kChangeLimit); | |
163 const vector<vector<complex<float>>> in_data( | |
164 GenerateTestData(kFreqs, kSamples)); | |
165 vector<vector<complex<float>>> out_data( | |
166 GenerateTestData(kFreqs, kSamples)); | |
167 for (int i = 0; i < kSamples; i++) { | |
168 gain_applier.Apply(&in_data[i][0], &out_data[i][0]); | |
169 for (int j = 0; j < kFreqs; j++) { | |
170 EXPECT_GT(out_data[i][j].real(), 0.0f); | |
171 EXPECT_LT(out_data[i][j].real(), 1.0f); | |
172 EXPECT_GT(out_data[i][j].imag(), 0.0f); | |
173 EXPECT_LT(out_data[i][j].imag(), 1.0f); | |
174 } | |
175 } | |
176 } | |
177 | |
178 } // namespace webrtc | |
OLD | NEW |