OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license | |
5 * that can be found in the LICENSE file in the root of the source | |
6 * tree. An additional intellectual property rights grant can be found | |
7 * in the file PATENTS. All contributing project authors may | |
8 * be found in the AUTHORS file in the root of the source tree. | |
9 */ | |
10 | |
11 // | |
12 // Unit tests for intelligibility enhancer. | |
13 // | |
14 | |
15 #include <cmath> | |
16 #include <algorithm> | |
17 | |
18 #include "testing/gtest/include/gtest/gtest.h" | |
19 #include "webrtc/common_audio/signal_processing/include/signal_processing_librar y.h" | |
20 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc er.h" | |
21 | |
22 using std::vector; | |
23 using webrtc::intelligibility::VarianceArray; | |
24 | |
25 namespace webrtc { | |
26 | |
27 // Generated with matlab code: normrnd(0,1000,64,1). | |
28 const double kGaussianSamples[64] = {1689.1, 1437, -2251.1, 356.49, -850.24, | |
29 -299.55, -634.25, 1624.5, 1241.1, 555.28, 703.42, 458.16, 683.98, 251.29, | |
30 -178.5, 507.73, -309.9, -394.37, -269.74, -88.13, 8.0293, 2531.8, -1223.2, | |
31 -1071.8, 246.06, -50.611, -730.15, 326.99, 752.99, -1153.7, -407.87, | |
32 -1287.9, 83.578, 163.8, 682.57, -1086.4, 297.49, -143.31, 1392, 306.75, | |
33 -537.18, -228.93, -536.22, 1439, -511.1, -1606.8, -201.24, 1143.5, 663.29, | |
34 164.08, 1785.4, -587.71, 259.04, -871.83, -787.92, -344.34, 647.62, | |
35 2054.1, 798.94, -1071.1, -205.16, -554.44, -292.94, 1180.2}; | |
36 | |
37 // Target output for ERB create test. Generated with matlab. | |
38 const double kTestNumCenterFreqs = 22; | |
39 const double kTestCenterFreqs[22] = {13.169, 26.965, 41.423, 56.577, 72.461, | |
40 89.113, 106.57, 124.88, 144.08, 164.21, 185.34, 207.5, 230.75, 255.16, | |
41 280.77, 307.66, 335.9, 365.56, 396.71, 429.44, 463.84, 500}; | |
42 const double kTestNumFreqs = 2; | |
43 const double kTestFilterBank[22][2] = { {0.055556, 0}, {0.055556, 0}, | |
44 {0.055556, 0}, {0.055556, 0}, | |
45 {0.055556, 0}, {0.055556, 0}, | |
46 {0.055556, 0}, {0.055556, 0}, | |
47 {0.055556, 0}, {0.055556, 0}, | |
48 {0.055556, 0}, {0.055556, 0}, | |
49 {0.055556, 0}, {0.055556, 0}, | |
50 {0.055556, 0}, {0.055556, 0}, | |
51 {0.055556, 0}, {0.055556, 0.2}, | |
52 {0, 0.2}, {0, 0.2}, | |
53 {0, 0.2}, {0, 0.2} }; | |
54 // Target output for gain solving test. Generated with matlab. | |
55 const double kTestZeroVar[22] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
56 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; | |
57 const double kTestNonZeroVarLambdaTop[22] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
58 0, 0, 0.0351, 0.0636, 0.0863, | |
59 0.1037, 0.1162, 0.1236, 0.1251, | |
60 0.1189, 0.0993}; | |
61 const float kMaxTestError = 0.005; | |
62 | |
63 // Enhancer initialization parameters. | |
64 const int kSamples = 2000; | |
65 const int kErbResolution = 2; | |
66 const int kSampleRate = 1000; | |
67 const int kFragmentSize = kSampleRate / 100; | |
68 const int kNumChannels = 1; | |
69 const float kDecayRate = 0.9f; | |
70 const int kWindowSize = 800; | |
71 const int kAnalyzeRate = 800; | |
72 const int kVarianceRate = 2; | |
73 const float kGainLimit = 0.1f; | |
74 | |
75 void GenerateConstantData(vector<float>& data, float constant) { | |
76 for (size_t i = 0; i < data.size(); i++) { | |
77 data[i] = constant; | |
78 } | |
79 } | |
80 | |
81 void GenerateGaussianData(vector<float>& data) { | |
82 static int count = 0; | |
83 for (size_t i = 0; i < data.size(); i++) { | |
84 data[i] = kGaussianSamples[count%64]; | |
85 count++; | |
86 } | |
87 } | |
88 | |
89 | |
90 class EnhancerTest : public ::testing::Test { | |
91 protected: | |
92 IntelligibilityEnhancer enh_; | |
93 vector<float> clear_data_; | |
94 vector<float> noise_data_; | |
95 EnhancerTest() : | |
96 enh_(kErbResolution, | |
97 kSampleRate, | |
98 kNumChannels, | |
99 VarianceArray::kStepInfinite, | |
100 kDecayRate, | |
101 kWindowSize, | |
102 kAnalyzeRate, | |
103 kVarianceRate, | |
104 kGainLimit), | |
105 clear_data_(kSamples), | |
106 noise_data_(kSamples) {} | |
107 | |
108 void RunEnhancer(VarianceArray::StepType step_type) { | |
turaj
2015/06/26 00:32:58
Could this function use |enh_| instead?
ekm
2015/06/26 19:07:09
That would be better, but I was having trouble mod
turaj
2015/06/29 17:33:35
Sorry, I didn't notice that |step_type| is an inpu
| |
109 IntelligibilityEnhancer enh(kErbResolution, | |
110 kSampleRate, | |
111 kNumChannels, | |
112 step_type, | |
113 kDecayRate, | |
114 kWindowSize, | |
115 kAnalyzeRate, | |
116 kVarianceRate, | |
117 kGainLimit); | |
118 float* clear_cursor = &clear_data_[0]; | |
119 float* noise_cursor = &noise_data_[0]; | |
120 for (int i = 0; i < kSamples; i+= kFragmentSize) { | |
121 enh.ProcessCaptureAudio(&noise_cursor); | |
122 enh.ProcessRenderAudio(&clear_cursor); | |
123 clear_cursor += kFragmentSize; | |
124 noise_cursor += kFragmentSize; | |
125 } | |
126 } | |
127 }; | |
128 | |
129 // For each class of generated data, tests plumbing for | |
130 // each variance update method. | |
131 TEST_F(EnhancerTest, TestPlumbing) { | |
turaj
2015/06/26 00:32:58
what is it that ids tested here? How could it fail
ekm
2015/06/26 19:07:09
Before we switched to doing nothing in case of und
turaj
2015/06/29 17:33:36
Agreed, this is a better test.
| |
132 vector<VarianceArray::StepType> step_types = { | |
133 VarianceArray::kStepInfinite, VarianceArray::kStepDecaying, | |
134 VarianceArray::kStepWindowed, VarianceArray::kStepBlocked, | |
135 VarianceArray::kStepBlockBasedMovingAverage}; | |
136 for (vector<VarianceArray::StepType>::iterator step_type = | |
137 step_types.begin(); step_type != step_types.end(); ++step_type) { | |
138 GenerateConstantData(clear_data_, 0.0f); | |
139 GenerateConstantData(noise_data_, 0.0f); | |
140 RunEnhancer(*step_type); | |
141 GenerateConstantData(clear_data_, 500.0f); | |
142 RunEnhancer(*step_type); | |
143 GenerateConstantData(noise_data_, 500.0f); | |
144 RunEnhancer(*step_type); | |
145 GenerateGaussianData(clear_data_); | |
146 RunEnhancer(*step_type); | |
147 GenerateGaussianData(noise_data_); | |
148 RunEnhancer(*step_type); | |
149 GenerateConstantData(clear_data_, 0); | |
150 RunEnhancer(*step_type); | |
151 } | |
152 } | |
153 | |
154 // Tests ERB bank creation, comparing against matlab output. | |
155 TEST_F(EnhancerTest, TestErbCreation) { | |
156 ASSERT_EQ(enh_.bank_size_, kTestNumCenterFreqs); | |
157 for (int i = 0; i < enh_.bank_size_; ++i) { | |
158 float error = std::fabs(enh_.center_freqs_[i] - kTestCenterFreqs[i]); | |
159 EXPECT_LT(error, kMaxTestError); | |
160 ASSERT_EQ(enh_.freqs_, kTestNumFreqs); | |
161 for (int j = 0; j < enh_.freqs_; ++j) { | |
162 float error = std::fabs(enh_.filter_bank_[i][j] - kTestFilterBank[i][j]); | |
163 EXPECT_LT(error, kMaxTestError); | |
164 } | |
165 } | |
166 } | |
167 | |
168 // Tests analytic solution for optimal gains, comparing | |
169 // against matlab output. | |
170 TEST_F(EnhancerTest, TestSolveForGains) { | |
171 ASSERT_EQ(enh_.start_freq_, 12); | |
172 vector<float> sols(enh_.bank_size_); | |
173 float lambda = -0.001; | |
turaj
2015/06/26 00:32:58
I guess you need -0.001f otherwise Visual Studio c
ekm
2015/06/26 19:07:09
Done.
| |
174 for (int i = 0; i < enh_.bank_size_; i++) { | |
175 enh_.filtered_clear_var_[i] = 0.0; | |
176 enh_.filtered_noise_var_[i] = 0.0; | |
177 enh_.rho_[i] = 0.02; | |
178 } | |
179 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); | |
180 for (int i = 0; i < enh_.bank_size_; i++) { | |
181 float error = std::fabs(sols[i] - kTestZeroVar[i]); | |
182 EXPECT_LT(error, kMaxTestError); | |
turaj
2015/06/26 00:32:58
I guess you can use EXPECT_NEAR(v1, v2, tolerance)
ekm
2015/06/26 19:07:10
Done.
| |
183 } | |
184 for (int i = 0; i < enh_.bank_size_; i++) { | |
185 enh_.filtered_clear_var_[i] = static_cast<float>(i+1); | |
turaj
2015/06/26 00:32:58
'i + 1'
ekm
2015/06/26 19:07:10
Done.
| |
186 enh_.filtered_noise_var_[i] = static_cast<float>(enh_.bank_size_ - i); | |
187 } | |
188 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); | |
189 for (int i = 0; i < enh_.bank_size_; i++) { | |
190 float error = std::fabs(sols[i] - kTestNonZeroVarLambdaTop[i]); | |
191 EXPECT_LT(error, kMaxTestError); | |
192 } | |
193 lambda = -1.0; | |
194 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); | |
195 for (int i = 0; i < enh_.bank_size_; i++) { | |
196 float error = std::fabs(sols[i] - kTestZeroVar[i]); | |
197 EXPECT_LT(error, kMaxTestError); | |
198 } | |
199 } | |
200 | |
201 } // namespace webrtc | |
OLD | NEW |