Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(160)

Side by Side Diff: webrtc/modules/remote_bitrate_estimator/test/estimators/nada.cc

Issue 1202253003: More Simulation Framework features (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Deleting memory allocated on the heap Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 * 9 *
10 */ 10 */
11 11
12 // Implementation of Network-Assisted Dynamic Adaptation's (NADA's) proposal. 12 // Implementation of Network-Assisted Dynamic Adaptation's (NADA's) proposal.
13 // Version according to Draft Document (mentioned in references) 13 // Version according to Draft Document (mentioned in references)
14 // http://tools.ietf.org/html/draft-zhu-rmcat-nada-06 14 // http://tools.ietf.org/html/draft-zhu-rmcat-nada-06
15 // From March 26, 2015. 15 // From March 26, 2015.
16 16
17 #include <math.h> 17 #include <math.h>
18 #include <algorithm> 18 #include <algorithm>
19 #include <vector> 19 #include <vector>
20 #include <iostream>
21 20
22 #include "webrtc/base/common.h" 21 #include "webrtc/base/common.h"
23 #include "webrtc/modules/remote_bitrate_estimator/test/estimators/nada.h" 22 #include "webrtc/modules/remote_bitrate_estimator/test/estimators/nada.h"
24 #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h" 23 #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"
25 #include "webrtc/modules/rtp_rtcp/interface/receive_statistics.h" 24 #include "webrtc/modules/rtp_rtcp/interface/receive_statistics.h"
26 25
27 namespace webrtc { 26 namespace webrtc {
28 namespace testing { 27 namespace testing {
29 namespace bwe { 28 namespace bwe {
30 29
31 const int NadaBweSender::kMinRefRateKbps = 150;
32 const int NadaBweSender::kMaxRefRateKbps = 1500;
33 const int64_t NadaBweReceiver::kReceivingRateTimeWindowMs = 500; 30 const int64_t NadaBweReceiver::kReceivingRateTimeWindowMs = 500;
34 31
35 NadaBweReceiver::NadaBweReceiver(int flow_id) 32 NadaBweReceiver::NadaBweReceiver(int flow_id)
36 : BweReceiver(flow_id), 33 : BweReceiver(flow_id, kReceivingRateTimeWindowMs),
37 clock_(0), 34 clock_(0),
38 last_feedback_ms_(0), 35 last_feedback_ms_(0),
39 recv_stats_(ReceiveStatistics::Create(&clock_)), 36 recv_stats_(ReceiveStatistics::Create(&clock_)),
40 baseline_delay_ms_(0), 37 baseline_delay_ms_(10000), // Initialized as an upper bound.
41 delay_signal_ms_(0), 38 delay_signal_ms_(0),
42 last_congestion_signal_ms_(0), 39 last_congestion_signal_ms_(0),
43 last_delays_index_(0), 40 last_delays_index_(0),
44 exp_smoothed_delay_ms_(-1), 41 exp_smoothed_delay_ms_(-1),
45 est_queuing_delay_signal_ms_(0) { 42 est_queuing_delay_signal_ms_(0) {
46 } 43 }
47 44
48 NadaBweReceiver::~NadaBweReceiver() { 45 NadaBweReceiver::~NadaBweReceiver() {
49 } 46 }
50 47
51 void NadaBweReceiver::ReceivePacket(int64_t arrival_time_ms, 48 void NadaBweReceiver::ReceivePacket(int64_t arrival_time_ms,
52 const MediaPacket& media_packet) { 49 const MediaPacket& media_packet) {
53 const float kAlpha = 0.1f; // Used for exponential smoothing. 50 const float kAlpha = 0.1f; // Used for exponential smoothing.
54 const int64_t kDelayLowThresholdMs = 50; // Referred as d_th. 51 const int64_t kDelayLowThresholdMs = 50; // Referred as d_th.
55 const int64_t kDelayMaxThresholdMs = 400; // Referred as d_max. 52 const int64_t kDelayMaxThresholdMs = 400; // Referred as d_max.
56 53
57 clock_.AdvanceTimeMilliseconds(arrival_time_ms - clock_.TimeInMilliseconds()); 54 clock_.AdvanceTimeMilliseconds(arrival_time_ms - clock_.TimeInMilliseconds());
58 recv_stats_->IncomingPacket(media_packet.header(), 55 recv_stats_->IncomingPacket(media_packet.header(),
59 media_packet.payload_size(), false); 56 media_packet.payload_size(), false);
60 int64_t delay_ms = arrival_time_ms - 57 int64_t delay_ms = arrival_time_ms -
61 media_packet.creation_time_us() / 1000; // Refered as x_n. 58 media_packet.creation_time_us() / 1000; // Refered as x_n.
59
62 // The min should be updated within the first 10 minutes. 60 // The min should be updated within the first 10 minutes.
63 if (clock_.TimeInMilliseconds() < 10 * 60 * 1000) { 61 if (clock_.TimeInMilliseconds() < 10 * 60 * 1000) {
64 baseline_delay_ms_ = std::min(baseline_delay_ms_, delay_ms); 62 baseline_delay_ms_ = std::min(baseline_delay_ms_, delay_ms);
65 } 63 }
64
66 delay_signal_ms_ = delay_ms - baseline_delay_ms_; // Refered as d_n. 65 delay_signal_ms_ = delay_ms - baseline_delay_ms_; // Refered as d_n.
67 const int kMedian = ARRAY_SIZE(last_delays_ms_); 66 const int kMedian = ARRAY_SIZE(last_delays_ms_);
68 last_delays_ms_[(last_delays_index_++) % kMedian] = delay_signal_ms_; 67 last_delays_ms_[(last_delays_index_++) % kMedian] = delay_signal_ms_;
69 int size = std::min(last_delays_index_, kMedian); 68 int size = std::min(last_delays_index_, kMedian);
69
70 int64_t median_filtered_delay_ms_ = MedianFilter(last_delays_ms_, size); 70 int64_t median_filtered_delay_ms_ = MedianFilter(last_delays_ms_, size);
71 exp_smoothed_delay_ms_ = ExponentialSmoothingFilter( 71 exp_smoothed_delay_ms_ = ExponentialSmoothingFilter(
72 median_filtered_delay_ms_, exp_smoothed_delay_ms_, kAlpha); 72 median_filtered_delay_ms_, exp_smoothed_delay_ms_, kAlpha);
73 73
74 if (exp_smoothed_delay_ms_ < kDelayLowThresholdMs) { 74 if (exp_smoothed_delay_ms_ < kDelayLowThresholdMs) {
75 est_queuing_delay_signal_ms_ = exp_smoothed_delay_ms_; 75 est_queuing_delay_signal_ms_ = exp_smoothed_delay_ms_;
76 } else if (exp_smoothed_delay_ms_ < kDelayMaxThresholdMs) { 76 } else if (exp_smoothed_delay_ms_ < kDelayMaxThresholdMs) {
77 est_queuing_delay_signal_ms_ = static_cast<int64_t>( 77 est_queuing_delay_signal_ms_ = static_cast<int64_t>(
78 pow((static_cast<double>(kDelayMaxThresholdMs - 78 pow((static_cast<double>(kDelayMaxThresholdMs -
79 exp_smoothed_delay_ms_)) / 79 exp_smoothed_delay_ms_)) /
(...skipping 23 matching lines...) Expand all
103 int64_t congestion_signal_ms = est_queuing_delay_signal_ms_ + loss_signal_ms; 103 int64_t congestion_signal_ms = est_queuing_delay_signal_ms_ + loss_signal_ms;
104 104
105 float derivative = 0.0f; 105 float derivative = 0.0f;
106 if (last_feedback_ms_ > 0) { 106 if (last_feedback_ms_ > 0) {
107 derivative = (congestion_signal_ms - last_congestion_signal_ms_) / 107 derivative = (congestion_signal_ms - last_congestion_signal_ms_) /
108 static_cast<float>(now_ms - last_feedback_ms_); 108 static_cast<float>(now_ms - last_feedback_ms_);
109 } 109 }
110 last_feedback_ms_ = now_ms; 110 last_feedback_ms_ = now_ms;
111 last_congestion_signal_ms_ = congestion_signal_ms; 111 last_congestion_signal_ms_ = congestion_signal_ms;
112 112
113 PacketIdentifierNode* latest = *(received_packets_.begin()); 113 int64_t corrected_send_time_ms = 0L;
114 int64_t corrected_send_time_ms = 114
115 latest->send_time_ms + now_ms - latest->arrival_time_ms; 115 if (!received_packets_.empty()) {
116 PacketIdentifierNode* latest = *(received_packets_.begin());
117 corrected_send_time_ms =
118 latest->send_time_ms + now_ms - latest->arrival_time_ms;
119 }
116 120
117 // Sends a tuple containing latest values of <d_hat_n, d_tilde_n, x_n, x'_n, 121 // Sends a tuple containing latest values of <d_hat_n, d_tilde_n, x_n, x'_n,
118 // R_r> and additional information. 122 // R_r> and additional information.
119 return new NadaFeedback(flow_id_, now_ms, exp_smoothed_delay_ms_, 123 return new NadaFeedback(flow_id_, now_ms * 1000, exp_smoothed_delay_ms_,
120 est_queuing_delay_signal_ms_, congestion_signal_ms, 124 est_queuing_delay_signal_ms_, congestion_signal_ms,
121 derivative, RecentReceivingRate(), 125 derivative, RecentKbps(), corrected_send_time_ms);
122 corrected_send_time_ms);
123 }
124
125 // For a given time window, compute the receiving speed rate in kbps.
126 // As described below, three cases are considered depending on the number of
127 // packets received.
128 size_t NadaBweReceiver::RecentReceivingRate() {
129 // If the receiver didn't receive any packet, return 0.
130 if (received_packets_.empty()) {
131 return 0.0f;
132 }
133 size_t total_size = 0;
134 int number_packets = 0;
135
136 PacketNodeIt node_it = received_packets_.begin();
137
138 int64_t last_time_ms = (*node_it)->arrival_time_ms;
139 int64_t start_time_ms = last_time_ms;
140 PacketNodeIt end = received_packets_.end();
141
142 // Stops after including the first packet out of the timeWindow.
143 // Ameliorates results when there are wide gaps between packets.
144 // E.g. Large packets : p1(0ms), p2(3000ms).
145 while (node_it != end) {
146 total_size += (*node_it)->payload_size;
147 last_time_ms = (*node_it)->arrival_time_ms;
148 ++number_packets;
149 if ((*node_it)->arrival_time_ms <
150 start_time_ms - kReceivingRateTimeWindowMs) {
151 break;
152 }
153 ++node_it;
154 }
155
156 int64_t corrected_time_ms;
157 // If the receiver received a single packet, return its size*8/timeWindow.
158 if (number_packets == 1) {
159 corrected_time_ms = kReceivingRateTimeWindowMs;
160 }
161 // If the receiver received multiple packets, use as time interval the gap
162 // between first and last packet falling in the timeWindow corrected by the
163 // factor number_packets/(number_packets-1).
164 // E.g: Let timeWindow = 500ms, payload_size = 500 bytes, number_packets = 2,
165 // packets received at t1(0ms) and t2(499 or 501ms). This prevent the function
166 // from returning ~2*8, sending instead a more likely ~1*8 kbps.
167 else {
168 corrected_time_ms = (number_packets * (start_time_ms - last_time_ms)) /
169 (number_packets - 1);
170 }
171
172 // Converting from bytes/ms to kbits/s.
173 return static_cast<size_t>(8 * total_size / corrected_time_ms);
174 } 126 }
175 127
176 int64_t NadaBweReceiver::MedianFilter(int64_t* last_delays_ms, int size) { 128 int64_t NadaBweReceiver::MedianFilter(int64_t* last_delays_ms, int size) {
177 // Typically, size = 5. 129 // Typically, size = 5.
178 std::vector<int64_t> array_copy(last_delays_ms, last_delays_ms + size); 130 std::vector<int64_t> array_copy(last_delays_ms, last_delays_ms + size);
179 std::nth_element(array_copy.begin(), array_copy.begin() + size / 2, 131 std::nth_element(array_copy.begin(), array_copy.begin() + size / 2,
180 array_copy.end()); 132 array_copy.end());
181 return array_copy.at(size / 2); 133 return array_copy.at(size / 2);
182 } 134 }
183 135
184 int64_t NadaBweReceiver::ExponentialSmoothingFilter(int64_t new_value, 136 int64_t NadaBweReceiver::ExponentialSmoothingFilter(int64_t new_value,
185 int64_t last_smoothed_value, 137 int64_t last_smoothed_value,
186 float alpha) { 138 float alpha) {
187 if (last_smoothed_value < 0) { 139 if (last_smoothed_value < 0) {
188 return new_value; // Handling initial case. 140 return new_value; // Handling initial case.
189 } 141 }
190 return static_cast<int64_t>(alpha * new_value + 142 return static_cast<int64_t>(alpha * new_value +
191 (1.0f - alpha) * last_smoothed_value + 0.5f); 143 (1.0f - alpha) * last_smoothed_value + 0.5f);
192 } 144 }
193 145
194 // Implementation according to Cisco's proposal by default. 146 // Implementation according to Cisco's proposal by default.
195 NadaBweSender::NadaBweSender(int kbps, BitrateObserver* observer, Clock* clock) 147 NadaBweSender::NadaBweSender(int kbps, BitrateObserver* observer, Clock* clock)
196 : clock_(clock), 148 : BweSender(kbps), // Referred as "Reference Rate" = R_n.,
149 clock_(clock),
197 observer_(observer), 150 observer_(observer),
198 bitrate_kbps_(kbps),
199 original_operating_mode_(true) { 151 original_operating_mode_(true) {
200 } 152 }
201 153
202 NadaBweSender::NadaBweSender(BitrateObserver* observer, Clock* clock) 154 NadaBweSender::NadaBweSender(BitrateObserver* observer, Clock* clock)
203 : clock_(clock), 155 : BweSender(kMinBitrateKbps), // Referred as "Reference Rate" = R_n.
156 clock_(clock),
204 observer_(observer), 157 observer_(observer),
205 bitrate_kbps_(kMinRefRateKbps),
206 original_operating_mode_(true) { 158 original_operating_mode_(true) {
207 } 159 }
208 160
209 NadaBweSender::~NadaBweSender() { 161 NadaBweSender::~NadaBweSender() {
210 } 162 }
211 163
212 int NadaBweSender::GetFeedbackIntervalMs() const { 164 int NadaBweSender::GetFeedbackIntervalMs() const {
213 return 100; 165 return 100;
214 } 166 }
215 167
(...skipping 29 matching lines...) Expand all
245 fb.derivative() < kDerivativeUpperBound) { 197 fb.derivative() < kDerivativeUpperBound) {
246 AcceleratedRampUp(fb); 198 AcceleratedRampUp(fb);
247 } else { 199 } else {
248 GradualRateUpdate(fb, delta_s, 1.0); 200 GradualRateUpdate(fb, delta_s, 1.0);
249 } 201 }
250 } else { 202 } else {
251 // Modified if conditions and rate update; new ramp down mode. 203 // Modified if conditions and rate update; new ramp down mode.
252 if (fb.congestion_signal() == fb.est_queuing_delay_signal_ms() && 204 if (fb.congestion_signal() == fb.est_queuing_delay_signal_ms() &&
253 fb.est_queuing_delay_signal_ms() < kQueuingDelayUpperBoundMs && 205 fb.est_queuing_delay_signal_ms() < kQueuingDelayUpperBoundMs &&
254 fb.exp_smoothed_delay_ms() < 206 fb.exp_smoothed_delay_ms() <
255 kMinRefRateKbps / kProportionalityDelayBits && 207 kMinBitrateKbps / kProportionalityDelayBits &&
256 fb.derivative() < kDerivativeUpperBound && 208 fb.derivative() < kDerivativeUpperBound &&
257 fb.receiving_rate() > kMinRefRateKbps) { 209 fb.receiving_rate() > kMinBitrateKbps) {
258 AcceleratedRampUp(fb); 210 AcceleratedRampUp(fb);
259 } else if (fb.congestion_signal() > kMaxCongestionSignalMs || 211 } else if (fb.congestion_signal() > kMaxCongestionSignalMs ||
260 fb.exp_smoothed_delay_ms() > kMaxCongestionSignalMs) { 212 fb.exp_smoothed_delay_ms() > kMaxCongestionSignalMs) {
261 AcceleratedRampDown(fb); 213 AcceleratedRampDown(fb);
262 } else { 214 } else {
263 double bitrate_reference = 215 double bitrate_reference =
264 (2.0 * bitrate_kbps_) / (kMaxRefRateKbps + kMinRefRateKbps); 216 (2.0 * bitrate_kbps_) / (kMaxBitrateKbps + kMinBitrateKbps);
265 double smoothing_factor = pow(bitrate_reference, 0.75); 217 double smoothing_factor = pow(bitrate_reference, 0.75);
266 GradualRateUpdate(fb, delta_s, smoothing_factor); 218 GradualRateUpdate(fb, delta_s, smoothing_factor);
267 } 219 }
268 } 220 }
269 221
270 bitrate_kbps_ = std::min(bitrate_kbps_, kMaxRefRateKbps); 222 bitrate_kbps_ = std::min(bitrate_kbps_, kMaxBitrateKbps);
271 bitrate_kbps_ = std::max(bitrate_kbps_, kMinRefRateKbps); 223 bitrate_kbps_ = std::max(bitrate_kbps_, kMinBitrateKbps);
272 224
273 observer_->OnNetworkChanged(1000 * bitrate_kbps_, 0, rtt_ms); 225 observer_->OnNetworkChanged(1000 * bitrate_kbps_, 0, rtt_ms);
274 } 226 }
275 227
276 int64_t NadaBweSender::TimeUntilNextProcess() { 228 int64_t NadaBweSender::TimeUntilNextProcess() {
277 return 100; 229 return 100;
278 } 230 }
279 231
280 int NadaBweSender::Process() { 232 int NadaBweSender::Process() {
281 return 0; 233 return 0;
(...skipping 23 matching lines...) Expand all
305 double smoothing_factor) { 257 double smoothing_factor) {
306 const float kTauOMs = 500.0f; // Referred as tau_o. 258 const float kTauOMs = 500.0f; // Referred as tau_o.
307 const float kEta = 2.0f; // Referred as eta. 259 const float kEta = 2.0f; // Referred as eta.
308 const float kKappa = 1.0f; // Referred as kappa. 260 const float kKappa = 1.0f; // Referred as kappa.
309 const float kReferenceDelayMs = 10.0f; // Referred as x_ref. 261 const float kReferenceDelayMs = 10.0f; // Referred as x_ref.
310 const float kPriorityWeight = 1.0f; // Referred as w. 262 const float kPriorityWeight = 1.0f; // Referred as w.
311 263
312 float x_hat = fb.congestion_signal() + kEta * kTauOMs * fb.derivative(); 264 float x_hat = fb.congestion_signal() + kEta * kTauOMs * fb.derivative();
313 265
314 float kTheta = 266 float kTheta =
315 kPriorityWeight * (kMaxRefRateKbps - kMinRefRateKbps) * kReferenceDelayMs; 267 kPriorityWeight * (kMaxBitrateKbps - kMinBitrateKbps) * kReferenceDelayMs;
316 268
317 int original_increase = 269 int original_increase =
318 static_cast<int>((kKappa * delta_s * 270 static_cast<int>((kKappa * delta_s *
319 (kTheta - (bitrate_kbps_ - kMinRefRateKbps) * x_hat)) / 271 (kTheta - (bitrate_kbps_ - kMinBitrateKbps) * x_hat)) /
320 (kTauOMs * kTauOMs) + 272 (kTauOMs * kTauOMs) +
321 0.5f); 273 0.5f);
322 274
323 bitrate_kbps_ = bitrate_kbps_ + smoothing_factor * original_increase; 275 bitrate_kbps_ = bitrate_kbps_ + smoothing_factor * original_increase;
324 } 276 }
325 277
326 } // namespace bwe 278 } // namespace bwe
327 } // namespace testing 279 } // namespace testing
328 } // namespace webrtc 280 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698