Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(4)

Side by Side Diff: webrtc/modules/remote_bitrate_estimator/test/estimators/nada.cc

Issue 1202253003: More Simulation Framework features (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Adapted PacedVideoSender::TimeToSendPacket Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 * 9 *
10 */ 10 */
11 11
12 // Implementation of Network-Assisted Dynamic Adaptation's (NADA's) proposal. 12 // Implementation of Network-Assisted Dynamic Adaptation's (NADA's) proposal.
13 // Version according to Draft Document (mentioned in references) 13 // Version according to Draft Document (mentioned in references)
14 // http://tools.ietf.org/html/draft-zhu-rmcat-nada-06 14 // http://tools.ietf.org/html/draft-zhu-rmcat-nada-06
15 // From March 26, 2015. 15 // From March 26, 2015.
16 16
17 #include <math.h> 17 #include <math.h>
18 #include <algorithm> 18 #include <algorithm>
19 #include <vector> 19 #include <vector>
20 #include <iostream>
21 20
22 #include "webrtc/modules/remote_bitrate_estimator/test/estimators/nada.h" 21 #include "webrtc/modules/remote_bitrate_estimator/test/estimators/nada.h"
23 #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h" 22 #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"
24 #include "webrtc/modules/rtp_rtcp/interface/receive_statistics.h" 23 #include "webrtc/modules/rtp_rtcp/interface/receive_statistics.h"
25 24
26 namespace webrtc { 25 namespace webrtc {
27 namespace testing { 26 namespace testing {
28 namespace bwe { 27 namespace bwe {
29 28
30 const int NadaBweReceiver::kMedian; 29 const int NadaBweReceiver::kMedian;
31 const int NadaBweSender::kMinRefRateKbps;
32 const int NadaBweSender::kMaxRefRateKbps;
33 const int64_t NadaBweReceiver::kReceivingRateTimeWindowMs;
34 30
35 NadaBweReceiver::NadaBweReceiver(int flow_id) 31 NadaBweReceiver::NadaBweReceiver(int flow_id)
36 : BweReceiver(flow_id), 32 : BweReceiver(flow_id, kReceivingRateTimeWindowMs),
37 clock_(0), 33 clock_(0),
38 last_feedback_ms_(0), 34 last_feedback_ms_(0),
39 recv_stats_(ReceiveStatistics::Create(&clock_)), 35 recv_stats_(ReceiveStatistics::Create(&clock_)),
40 baseline_delay_ms_(0), 36 baseline_delay_ms_(10000), // Initialized as an upper bound.
41 delay_signal_ms_(0), 37 delay_signal_ms_(0),
42 last_congestion_signal_ms_(0), 38 last_congestion_signal_ms_(0),
43 last_delays_index_(0), 39 last_delays_index_(0),
44 exp_smoothed_delay_ms_(-1), 40 exp_smoothed_delay_ms_(-1),
45 est_queuing_delay_signal_ms_(0) { 41 est_queuing_delay_signal_ms_(0) {
46 } 42 }
47 43
48 NadaBweReceiver::~NadaBweReceiver() { 44 NadaBweReceiver::~NadaBweReceiver() {
49 } 45 }
50 46
51 void NadaBweReceiver::ReceivePacket(int64_t arrival_time_ms, 47 void NadaBweReceiver::ReceivePacket(int64_t arrival_time_ms,
52 const MediaPacket& media_packet) { 48 const MediaPacket& media_packet) {
53 const float kAlpha = 0.1f; // Used for exponential smoothing. 49 const float kAlpha = 0.1f; // Used for exponential smoothing.
54 const int64_t kDelayLowThresholdMs = 50; // Referred as d_th. 50 const int64_t kDelayLowThresholdMs = 50; // Referred as d_th.
55 const int64_t kDelayMaxThresholdMs = 400; // Referred as d_max. 51 const int64_t kDelayMaxThresholdMs = 400; // Referred as d_max.
56 52
57 clock_.AdvanceTimeMilliseconds(arrival_time_ms - clock_.TimeInMilliseconds()); 53 clock_.AdvanceTimeMilliseconds(arrival_time_ms - clock_.TimeInMilliseconds());
58 recv_stats_->IncomingPacket(media_packet.header(), 54 recv_stats_->IncomingPacket(media_packet.header(),
59 media_packet.payload_size(), false); 55 media_packet.payload_size(), false);
60 int64_t delay_ms = arrival_time_ms - 56 int64_t delay_ms = arrival_time_ms -
61 media_packet.creation_time_us() / 1000; // Refered as x_n. 57 media_packet.creation_time_us() / 1000; // Refered as x_n.
58
62 // The min should be updated within the first 10 minutes. 59 // The min should be updated within the first 10 minutes.
63 if (clock_.TimeInMilliseconds() < 10 * 60 * 1000) { 60 if (clock_.TimeInMilliseconds() < 10 * 60 * 1000) {
64 baseline_delay_ms_ = std::min(baseline_delay_ms_, delay_ms); 61 baseline_delay_ms_ = std::min(baseline_delay_ms_, delay_ms);
65 } 62 }
63
66 delay_signal_ms_ = delay_ms - baseline_delay_ms_; // Refered as d_n. 64 delay_signal_ms_ = delay_ms - baseline_delay_ms_; // Refered as d_n.
67 last_delays_ms_[(last_delays_index_++) % kMedian] = delay_signal_ms_; 65 last_delays_ms_[(last_delays_index_++) % kMedian] = delay_signal_ms_;
68 int size = std::min(last_delays_index_, kMedian); 66 int size = std::min(last_delays_index_, kMedian);
67
69 int64_t median_filtered_delay_ms_ = MedianFilter(last_delays_ms_, size); 68 int64_t median_filtered_delay_ms_ = MedianFilter(last_delays_ms_, size);
70 exp_smoothed_delay_ms_ = ExponentialSmoothingFilter( 69 exp_smoothed_delay_ms_ = ExponentialSmoothingFilter(
71 median_filtered_delay_ms_, exp_smoothed_delay_ms_, kAlpha); 70 median_filtered_delay_ms_, exp_smoothed_delay_ms_, kAlpha);
72 71
73 if (exp_smoothed_delay_ms_ < kDelayLowThresholdMs) { 72 if (exp_smoothed_delay_ms_ < kDelayLowThresholdMs) {
74 est_queuing_delay_signal_ms_ = exp_smoothed_delay_ms_; 73 est_queuing_delay_signal_ms_ = exp_smoothed_delay_ms_;
75 } else if (exp_smoothed_delay_ms_ < kDelayMaxThresholdMs) { 74 } else if (exp_smoothed_delay_ms_ < kDelayMaxThresholdMs) {
76 est_queuing_delay_signal_ms_ = static_cast<int64_t>( 75 est_queuing_delay_signal_ms_ = static_cast<int64_t>(
77 pow((static_cast<double>(kDelayMaxThresholdMs - 76 pow((static_cast<double>(kDelayMaxThresholdMs -
78 exp_smoothed_delay_ms_)) / 77 exp_smoothed_delay_ms_)) /
(...skipping 23 matching lines...) Expand all
102 int64_t congestion_signal_ms = est_queuing_delay_signal_ms_ + loss_signal_ms; 101 int64_t congestion_signal_ms = est_queuing_delay_signal_ms_ + loss_signal_ms;
103 102
104 float derivative = 0.0f; 103 float derivative = 0.0f;
105 if (last_feedback_ms_ > 0) { 104 if (last_feedback_ms_ > 0) {
106 derivative = (congestion_signal_ms - last_congestion_signal_ms_) / 105 derivative = (congestion_signal_ms - last_congestion_signal_ms_) /
107 static_cast<float>(now_ms - last_feedback_ms_); 106 static_cast<float>(now_ms - last_feedback_ms_);
108 } 107 }
109 last_feedback_ms_ = now_ms; 108 last_feedback_ms_ = now_ms;
110 last_congestion_signal_ms_ = congestion_signal_ms; 109 last_congestion_signal_ms_ = congestion_signal_ms;
111 110
112 PacketIdentifierNode* latest = *(received_packets_.begin()); 111 int64_t corrected_send_time_ms = 0L;
113 int64_t corrected_send_time_ms = 112
114 latest->send_time_ms + now_ms - latest->arrival_time_ms; 113 if (!received_packets_.empty()) {
114 PacketIdentifierNode* latest = *(received_packets_.begin());
115 corrected_send_time_ms =
116 latest->send_time_ms + now_ms - latest->arrival_time_ms;
117 }
115 118
116 // Sends a tuple containing latest values of <d_hat_n, d_tilde_n, x_n, x'_n, 119 // Sends a tuple containing latest values of <d_hat_n, d_tilde_n, x_n, x'_n,
117 // R_r> and additional information. 120 // R_r> and additional information.
118 return new NadaFeedback(flow_id_, now_ms, exp_smoothed_delay_ms_, 121 return new NadaFeedback(flow_id_, now_ms * 1000, exp_smoothed_delay_ms_,
119 est_queuing_delay_signal_ms_, congestion_signal_ms, 122 est_queuing_delay_signal_ms_, congestion_signal_ms,
120 derivative, RecentReceivingRate(), 123 derivative, RecentKbps(), corrected_send_time_ms);
121 corrected_send_time_ms);
122 }
123
124 // For a given time window, compute the receiving speed rate in kbps.
125 // As described below, three cases are considered depending on the number of
126 // packets received.
127 size_t NadaBweReceiver::RecentReceivingRate() {
128 // If the receiver didn't receive any packet, return 0.
129 if (received_packets_.empty()) {
130 return 0.0f;
131 }
132 size_t total_size = 0;
133 int number_packets = 0;
134
135 PacketNodeIt node_it = received_packets_.begin();
136
137 int64_t last_time_ms = (*node_it)->arrival_time_ms;
138 int64_t start_time_ms = last_time_ms;
139 PacketNodeIt end = received_packets_.end();
140
141 // Stops after including the first packet out of the timeWindow.
142 // Ameliorates results when there are wide gaps between packets.
143 // E.g. Large packets : p1(0ms), p2(3000ms).
144 while (node_it != end) {
145 total_size += (*node_it)->payload_size;
146 last_time_ms = (*node_it)->arrival_time_ms;
147 ++number_packets;
148 if ((*node_it)->arrival_time_ms <
149 start_time_ms - kReceivingRateTimeWindowMs) {
150 break;
151 }
152 ++node_it;
153 }
154
155 int64_t corrected_time_ms;
156 // If the receiver received a single packet, return its size*8/timeWindow.
157 if (number_packets == 1) {
158 corrected_time_ms = kReceivingRateTimeWindowMs;
159 }
160 // If the receiver received multiple packets, use as time interval the gap
161 // between first and last packet falling in the timeWindow corrected by the
162 // factor number_packets/(number_packets-1).
163 // E.g: Let timeWindow = 500ms, payload_size = 500 bytes, number_packets = 2,
164 // packets received at t1(0ms) and t2(499 or 501ms). This prevent the function
165 // from returning ~2*8, sending instead a more likely ~1*8 kbps.
166 else {
167 corrected_time_ms = (number_packets * (start_time_ms - last_time_ms)) /
168 (number_packets - 1);
169 }
170
171 // Converting from bytes/ms to kbits/s.
172 return static_cast<size_t>(8 * total_size / corrected_time_ms);
173 } 124 }
174 125
175 int64_t NadaBweReceiver::MedianFilter(int64_t* last_delays_ms, int size) { 126 int64_t NadaBweReceiver::MedianFilter(int64_t* last_delays_ms, int size) {
176 // Typically, size = 5. 127 // Typically, size = 5.
177 std::vector<int64_t> array_copy(last_delays_ms, last_delays_ms + size); 128 std::vector<int64_t> array_copy(last_delays_ms, last_delays_ms + size);
178 std::nth_element(array_copy.begin(), array_copy.begin() + size / 2, 129 std::nth_element(array_copy.begin(), array_copy.begin() + size / 2,
179 array_copy.end()); 130 array_copy.end());
180 return array_copy.at(size / 2); 131 return array_copy.at(size / 2);
181 } 132 }
182 133
183 int64_t NadaBweReceiver::ExponentialSmoothingFilter(int64_t new_value, 134 int64_t NadaBweReceiver::ExponentialSmoothingFilter(int64_t new_value,
184 int64_t last_smoothed_value, 135 int64_t last_smoothed_value,
185 float alpha) { 136 float alpha) {
186 if (last_smoothed_value < 0) { 137 if (last_smoothed_value < 0) {
187 return new_value; // Handling initial case. 138 return new_value; // Handling initial case.
188 } 139 }
189 return static_cast<int64_t>(alpha * new_value + 140 return static_cast<int64_t>(alpha * new_value +
190 (1.0f - alpha) * last_smoothed_value + 0.5f); 141 (1.0f - alpha) * last_smoothed_value + 0.5f);
191 } 142 }
192 143
193 // Implementation according to Cisco's proposal by default. 144 // Implementation according to Cisco's proposal by default.
194 NadaBweSender::NadaBweSender(int kbps, BitrateObserver* observer, Clock* clock) 145 NadaBweSender::NadaBweSender(int kbps, BitrateObserver* observer, Clock* clock)
195 : clock_(clock), 146 : BweSender(kbps), // Referred as "Reference Rate" = R_n.,
147 clock_(clock),
196 observer_(observer), 148 observer_(observer),
197 bitrate_kbps_(kbps),
198 original_operating_mode_(true) { 149 original_operating_mode_(true) {
199 } 150 }
200 151
201 NadaBweSender::NadaBweSender(BitrateObserver* observer, Clock* clock) 152 NadaBweSender::NadaBweSender(BitrateObserver* observer, Clock* clock)
202 : clock_(clock), 153 : BweSender(kMinBitrateKbps), // Referred as "Reference Rate" = R_n.
154 clock_(clock),
203 observer_(observer), 155 observer_(observer),
204 bitrate_kbps_(kMinRefRateKbps),
205 original_operating_mode_(true) { 156 original_operating_mode_(true) {
206 } 157 }
207 158
208 NadaBweSender::~NadaBweSender() { 159 NadaBweSender::~NadaBweSender() {
209 } 160 }
210 161
211 int NadaBweSender::GetFeedbackIntervalMs() const { 162 int NadaBweSender::GetFeedbackIntervalMs() const {
212 return 100; 163 return 100;
213 } 164 }
214 165
(...skipping 29 matching lines...) Expand all
244 fb.derivative() < kDerivativeUpperBound) { 195 fb.derivative() < kDerivativeUpperBound) {
245 AcceleratedRampUp(fb); 196 AcceleratedRampUp(fb);
246 } else { 197 } else {
247 GradualRateUpdate(fb, delta_s, 1.0); 198 GradualRateUpdate(fb, delta_s, 1.0);
248 } 199 }
249 } else { 200 } else {
250 // Modified if conditions and rate update; new ramp down mode. 201 // Modified if conditions and rate update; new ramp down mode.
251 if (fb.congestion_signal() == fb.est_queuing_delay_signal_ms() && 202 if (fb.congestion_signal() == fb.est_queuing_delay_signal_ms() &&
252 fb.est_queuing_delay_signal_ms() < kQueuingDelayUpperBoundMs && 203 fb.est_queuing_delay_signal_ms() < kQueuingDelayUpperBoundMs &&
253 fb.exp_smoothed_delay_ms() < 204 fb.exp_smoothed_delay_ms() <
254 kMinRefRateKbps / kProportionalityDelayBits && 205 kMinBitrateKbps / kProportionalityDelayBits &&
255 fb.derivative() < kDerivativeUpperBound && 206 fb.derivative() < kDerivativeUpperBound &&
256 fb.receiving_rate() > kMinRefRateKbps) { 207 fb.receiving_rate() > kMinBitrateKbps) {
257 AcceleratedRampUp(fb); 208 AcceleratedRampUp(fb);
258 } else if (fb.congestion_signal() > kMaxCongestionSignalMs || 209 } else if (fb.congestion_signal() > kMaxCongestionSignalMs ||
259 fb.exp_smoothed_delay_ms() > kMaxCongestionSignalMs) { 210 fb.exp_smoothed_delay_ms() > kMaxCongestionSignalMs) {
260 AcceleratedRampDown(fb); 211 AcceleratedRampDown(fb);
261 } else { 212 } else {
262 double bitrate_reference = 213 double bitrate_reference =
263 (2.0 * bitrate_kbps_) / (kMaxRefRateKbps + kMinRefRateKbps); 214 (2.0 * bitrate_kbps_) / (kMaxBitrateKbps + kMinBitrateKbps);
264 double smoothing_factor = pow(bitrate_reference, 0.75); 215 double smoothing_factor = pow(bitrate_reference, 0.75);
265 GradualRateUpdate(fb, delta_s, smoothing_factor); 216 GradualRateUpdate(fb, delta_s, smoothing_factor);
266 } 217 }
267 } 218 }
268 219
269 bitrate_kbps_ = std::min(bitrate_kbps_, kMaxRefRateKbps); 220 bitrate_kbps_ = std::min(bitrate_kbps_, kMaxBitrateKbps);
270 bitrate_kbps_ = std::max(bitrate_kbps_, kMinRefRateKbps); 221 bitrate_kbps_ = std::max(bitrate_kbps_, kMinBitrateKbps);
271 222
272 observer_->OnNetworkChanged(1000 * bitrate_kbps_, 0, rtt_ms); 223 observer_->OnNetworkChanged(1000 * bitrate_kbps_, 0, rtt_ms);
273 } 224 }
274 225
275 int64_t NadaBweSender::TimeUntilNextProcess() { 226 int64_t NadaBweSender::TimeUntilNextProcess() {
276 return 100; 227 return 100;
277 } 228 }
278 229
279 int NadaBweSender::Process() { 230 int NadaBweSender::Process() {
280 return 0; 231 return 0;
(...skipping 23 matching lines...) Expand all
304 double smoothing_factor) { 255 double smoothing_factor) {
305 const float kTauOMs = 500.0f; // Referred as tau_o. 256 const float kTauOMs = 500.0f; // Referred as tau_o.
306 const float kEta = 2.0f; // Referred as eta. 257 const float kEta = 2.0f; // Referred as eta.
307 const float kKappa = 1.0f; // Referred as kappa. 258 const float kKappa = 1.0f; // Referred as kappa.
308 const float kReferenceDelayMs = 10.0f; // Referred as x_ref. 259 const float kReferenceDelayMs = 10.0f; // Referred as x_ref.
309 const float kPriorityWeight = 1.0f; // Referred as w. 260 const float kPriorityWeight = 1.0f; // Referred as w.
310 261
311 float x_hat = fb.congestion_signal() + kEta * kTauOMs * fb.derivative(); 262 float x_hat = fb.congestion_signal() + kEta * kTauOMs * fb.derivative();
312 263
313 float kTheta = 264 float kTheta =
314 kPriorityWeight * (kMaxRefRateKbps - kMinRefRateKbps) * kReferenceDelayMs; 265 kPriorityWeight * (kMaxBitrateKbps - kMinBitrateKbps) * kReferenceDelayMs;
315 266
316 int original_increase = 267 int original_increase =
317 static_cast<int>((kKappa * delta_s * 268 static_cast<int>((kKappa * delta_s *
318 (kTheta - (bitrate_kbps_ - kMinRefRateKbps) * x_hat)) / 269 (kTheta - (bitrate_kbps_ - kMinBitrateKbps) * x_hat)) /
319 (kTauOMs * kTauOMs) + 270 (kTauOMs * kTauOMs) +
320 0.5f); 271 0.5f);
321 272
322 bitrate_kbps_ = bitrate_kbps_ + smoothing_factor * original_increase; 273 bitrate_kbps_ = bitrate_kbps_ + smoothing_factor * original_increase;
323 } 274 }
324 275
325 } // namespace bwe 276 } // namespace bwe
326 } // namespace testing 277 } // namespace testing
327 } // namespace webrtc 278 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698