Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(45)

Side by Side Diff: webrtc/modules/remote_bitrate_estimator/test/estimators/nada.cc

Issue 1202253003: More Simulation Framework features (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Added unittests Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 * 9 *
10 */ 10 */
(...skipping 10 matching lines...) Expand all
21 21
22 #include "webrtc/modules/remote_bitrate_estimator/test/estimators/nada.h" 22 #include "webrtc/modules/remote_bitrate_estimator/test/estimators/nada.h"
23 #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h" 23 #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"
24 #include "webrtc/modules/rtp_rtcp/interface/receive_statistics.h" 24 #include "webrtc/modules/rtp_rtcp/interface/receive_statistics.h"
25 25
26 namespace webrtc { 26 namespace webrtc {
27 namespace testing { 27 namespace testing {
28 namespace bwe { 28 namespace bwe {
29 29
30 const int NadaBweReceiver::kMedian; 30 const int NadaBweReceiver::kMedian;
31 const int NadaBweSender::kMinRefRateKbps;
32 const int NadaBweSender::kMaxRefRateKbps;
33 const int64_t NadaBweReceiver::kReceivingRateTimeWindowMs;
34 31
35 NadaBweReceiver::NadaBweReceiver(int flow_id) 32 NadaBweReceiver::NadaBweReceiver(int flow_id)
36 : BweReceiver(flow_id), 33 : BweReceiver(flow_id, kReceivingRateTimeWindowMs),
37 clock_(0), 34 clock_(0),
38 last_feedback_ms_(0), 35 last_feedback_ms_(0),
39 recv_stats_(ReceiveStatistics::Create(&clock_)), 36 recv_stats_(ReceiveStatistics::Create(&clock_)),
40 baseline_delay_ms_(0), 37 baseline_delay_ms_(10000), // Initialized as an upper bound.
41 delay_signal_ms_(0), 38 delay_signal_ms_(0),
42 last_congestion_signal_ms_(0), 39 last_congestion_signal_ms_(0),
43 last_delays_index_(0), 40 last_delays_index_(0),
44 exp_smoothed_delay_ms_(-1), 41 exp_smoothed_delay_ms_(-1),
45 est_queuing_delay_signal_ms_(0) { 42 est_queuing_delay_signal_ms_(0) {
46 } 43 }
47 44
48 NadaBweReceiver::~NadaBweReceiver() { 45 NadaBweReceiver::~NadaBweReceiver() {
49 } 46 }
50 47
51 void NadaBweReceiver::ReceivePacket(int64_t arrival_time_ms, 48 void NadaBweReceiver::ReceivePacket(int64_t arrival_time_ms,
52 const MediaPacket& media_packet) { 49 const MediaPacket& media_packet) {
53 const float kAlpha = 0.1f; // Used for exponential smoothing. 50 const float kAlpha = 0.1f; // Used for exponential smoothing.
54 const int64_t kDelayLowThresholdMs = 50; // Referred as d_th. 51 const int64_t kDelayLowThresholdMs = 50; // Referred as d_th.
55 const int64_t kDelayMaxThresholdMs = 400; // Referred as d_max. 52 const int64_t kDelayMaxThresholdMs = 400; // Referred as d_max.
56 53
57 clock_.AdvanceTimeMilliseconds(arrival_time_ms - clock_.TimeInMilliseconds()); 54 clock_.AdvanceTimeMilliseconds(arrival_time_ms - clock_.TimeInMilliseconds());
58 recv_stats_->IncomingPacket(media_packet.header(), 55 recv_stats_->IncomingPacket(media_packet.header(),
59 media_packet.payload_size(), false); 56 media_packet.payload_size(), false);
60 int64_t delay_ms = arrival_time_ms - 57 int64_t delay_ms = arrival_time_ms -
61 media_packet.creation_time_us() / 1000; // Refered as x_n. 58 media_packet.creation_time_us() / 1000; // Refered as x_n.
59
62 // The min should be updated within the first 10 minutes. 60 // The min should be updated within the first 10 minutes.
63 if (clock_.TimeInMilliseconds() < 10 * 60 * 1000) { 61 if (clock_.TimeInMilliseconds() < 10 * 60 * 1000) {
64 baseline_delay_ms_ = std::min(baseline_delay_ms_, delay_ms); 62 baseline_delay_ms_ = std::min(baseline_delay_ms_, delay_ms);
65 } 63 }
64
66 delay_signal_ms_ = delay_ms - baseline_delay_ms_; // Refered as d_n. 65 delay_signal_ms_ = delay_ms - baseline_delay_ms_; // Refered as d_n.
67 last_delays_ms_[(last_delays_index_++) % kMedian] = delay_signal_ms_; 66 last_delays_ms_[(last_delays_index_++) % kMedian] = delay_signal_ms_;
68 int size = std::min(last_delays_index_, kMedian); 67 int size = std::min(last_delays_index_, kMedian);
68
69 int64_t median_filtered_delay_ms_ = MedianFilter(last_delays_ms_, size); 69 int64_t median_filtered_delay_ms_ = MedianFilter(last_delays_ms_, size);
70 exp_smoothed_delay_ms_ = ExponentialSmoothingFilter( 70 exp_smoothed_delay_ms_ = ExponentialSmoothingFilter(
71 median_filtered_delay_ms_, exp_smoothed_delay_ms_, kAlpha); 71 median_filtered_delay_ms_, exp_smoothed_delay_ms_, kAlpha);
72 72
73 if (exp_smoothed_delay_ms_ < kDelayLowThresholdMs) { 73 if (exp_smoothed_delay_ms_ < kDelayLowThresholdMs) {
74 est_queuing_delay_signal_ms_ = exp_smoothed_delay_ms_; 74 est_queuing_delay_signal_ms_ = exp_smoothed_delay_ms_;
75 } else if (exp_smoothed_delay_ms_ < kDelayMaxThresholdMs) { 75 } else if (exp_smoothed_delay_ms_ < kDelayMaxThresholdMs) {
76 est_queuing_delay_signal_ms_ = static_cast<int64_t>( 76 est_queuing_delay_signal_ms_ = static_cast<int64_t>(
77 pow((static_cast<double>(kDelayMaxThresholdMs - 77 pow((static_cast<double>(kDelayMaxThresholdMs -
78 exp_smoothed_delay_ms_)) / 78 exp_smoothed_delay_ms_)) /
79 (kDelayMaxThresholdMs - kDelayLowThresholdMs), 79 (kDelayMaxThresholdMs - kDelayLowThresholdMs),
80 4.0) * 80 4.0) *
81 kDelayLowThresholdMs); 81 kDelayLowThresholdMs);
82 } else { 82 } else {
83 est_queuing_delay_signal_ms_ = 0; 83 est_queuing_delay_signal_ms_ = 0;
84 } 84 }
85 85
86 if (received_packets_.size() == GetSetCapacity()) {
87 RelieveSetAndUpdateLoss();
88 }
89
86 received_packets_.Insert(media_packet.sequence_number(), 90 received_packets_.Insert(media_packet.sequence_number(),
87 media_packet.send_time_ms(), arrival_time_ms, 91 media_packet.send_time_ms(), arrival_time_ms,
88 media_packet.payload_size()); 92 media_packet.payload_size());
93
94 rate_counter_.UpdateRates(media_packet.send_time_ms() * 1000,
95 static_cast<uint32_t>(media_packet.payload_size()));
89 } 96 }
90 97
91 FeedbackPacket* NadaBweReceiver::GetFeedback(int64_t now_ms) { 98 FeedbackPacket* NadaBweReceiver::GetFeedback(int64_t now_ms) {
92 const int64_t kPacketLossPenaltyMs = 1000; // Referred as d_L. 99 const int64_t kPacketLossPenaltyMs = 1000; // Referred as d_L.
93 100
94 if (now_ms - last_feedback_ms_ < 100) { 101 if (now_ms - last_feedback_ms_ < 100) {
95 return NULL; 102 return NULL;
96 } 103 }
97 104
98 float loss_fraction = RecentPacketLossRatio(); 105 float loss_fraction = RecentPacketLossRatio();
99 106
100 int64_t loss_signal_ms = 107 int64_t loss_signal_ms =
101 static_cast<int64_t>(loss_fraction * kPacketLossPenaltyMs + 0.5f); 108 static_cast<int64_t>(loss_fraction * kPacketLossPenaltyMs + 0.5f);
102 int64_t congestion_signal_ms = est_queuing_delay_signal_ms_ + loss_signal_ms; 109 int64_t congestion_signal_ms = est_queuing_delay_signal_ms_ + loss_signal_ms;
103 110
104 float derivative = 0.0f; 111 float derivative = 0.0f;
105 if (last_feedback_ms_ > 0) { 112 if (last_feedback_ms_ > 0) {
106 derivative = (congestion_signal_ms - last_congestion_signal_ms_) / 113 derivative = (congestion_signal_ms - last_congestion_signal_ms_) /
107 static_cast<float>(now_ms - last_feedback_ms_); 114 static_cast<float>(now_ms - last_feedback_ms_);
108 } 115 }
109 last_feedback_ms_ = now_ms; 116 last_feedback_ms_ = now_ms;
110 last_congestion_signal_ms_ = congestion_signal_ms; 117 last_congestion_signal_ms_ = congestion_signal_ms;
111 118
112 PacketIdentifierNode* latest = *(received_packets_.begin()); 119 PacketIdentifierNode* latest = *(received_packets_.begin());
113 int64_t corrected_send_time_ms = 120 int64_t corrected_send_time_ms =
114 latest->send_time_ms + now_ms - latest->arrival_time_ms; 121 latest->send_time_ms + now_ms - latest->arrival_time_ms;
115 122
116 // Sends a tuple containing latest values of <d_hat_n, d_tilde_n, x_n, x'_n, 123 // Sends a tuple containing latest values of <d_hat_n, d_tilde_n, x_n, x'_n,
117 // R_r> and additional information. 124 // R_r> and additional information.
118 return new NadaFeedback(flow_id_, now_ms, exp_smoothed_delay_ms_, 125 return new NadaFeedback(flow_id_, now_ms * 1000, exp_smoothed_delay_ms_,
119 est_queuing_delay_signal_ms_, congestion_signal_ms, 126 est_queuing_delay_signal_ms_, congestion_signal_ms,
120 derivative, RecentReceivingRate(), 127 derivative, RecentKbps(), corrected_send_time_ms);
121 corrected_send_time_ms);
122 }
123
124 // For a given time window, compute the receiving speed rate in kbps.
125 // As described below, three cases are considered depending on the number of
126 // packets received.
127 size_t NadaBweReceiver::RecentReceivingRate() {
128 // If the receiver didn't receive any packet, return 0.
129 if (received_packets_.empty()) {
130 return 0.0f;
131 }
132 size_t total_size = 0;
133 int number_packets = 0;
134
135 PacketNodeIt node_it = received_packets_.begin();
136
137 int64_t last_time_ms = (*node_it)->arrival_time_ms;
138 int64_t start_time_ms = last_time_ms;
139 PacketNodeIt end = received_packets_.end();
140
141 // Stops after including the first packet out of the timeWindow.
142 // Ameliorates results when there are wide gaps between packets.
143 // E.g. Large packets : p1(0ms), p2(3000ms).
144 while (node_it != end) {
145 total_size += (*node_it)->payload_size;
146 last_time_ms = (*node_it)->arrival_time_ms;
147 ++number_packets;
148 if ((*node_it)->arrival_time_ms <
149 start_time_ms - kReceivingRateTimeWindowMs) {
150 break;
151 }
152 ++node_it;
153 }
154
155 int64_t corrected_time_ms;
156 // If the receiver received a single packet, return its size*8/timeWindow.
157 if (number_packets == 1) {
158 corrected_time_ms = kReceivingRateTimeWindowMs;
159 }
160 // If the receiver received multiple packets, use as time interval the gap
161 // between first and last packet falling in the timeWindow corrected by the
162 // factor number_packets/(number_packets-1).
163 // E.g: Let timeWindow = 500ms, payload_size = 500 bytes, number_packets = 2,
164 // packets received at t1(0ms) and t2(499 or 501ms). This prevent the function
165 // from returning ~2*8, sending instead a more likely ~1*8 kbps.
166 else {
167 corrected_time_ms = (number_packets * (start_time_ms - last_time_ms)) /
168 (number_packets - 1);
169 }
170
171 // Converting from bytes/ms to kbits/s.
172 return static_cast<size_t>(8 * total_size / corrected_time_ms);
173 } 128 }
174 129
175 int64_t NadaBweReceiver::MedianFilter(int64_t* last_delays_ms, int size) { 130 int64_t NadaBweReceiver::MedianFilter(int64_t* last_delays_ms, int size) {
176 // Typically, size = 5. 131 // Typically, size = 5.
177 std::vector<int64_t> array_copy(last_delays_ms, last_delays_ms + size); 132 std::vector<int64_t> array_copy(last_delays_ms, last_delays_ms + size);
178 std::nth_element(array_copy.begin(), array_copy.begin() + size / 2, 133 std::nth_element(array_copy.begin(), array_copy.begin() + size / 2,
179 array_copy.end()); 134 array_copy.end());
180 return array_copy.at(size / 2); 135 return array_copy.at(size / 2);
181 } 136 }
182 137
183 int64_t NadaBweReceiver::ExponentialSmoothingFilter(int64_t new_value, 138 int64_t NadaBweReceiver::ExponentialSmoothingFilter(int64_t new_value,
184 int64_t last_smoothed_value, 139 int64_t last_smoothed_value,
185 float alpha) { 140 float alpha) {
186 if (last_smoothed_value < 0) { 141 if (last_smoothed_value < 0) {
187 return new_value; // Handling initial case. 142 return new_value; // Handling initial case.
188 } 143 }
189 return static_cast<int64_t>(alpha * new_value + 144 return static_cast<int64_t>(alpha * new_value +
190 (1.0f - alpha) * last_smoothed_value + 0.5f); 145 (1.0f - alpha) * last_smoothed_value + 0.5f);
191 } 146 }
192 147
193 // Implementation according to Cisco's proposal by default. 148 // Implementation according to Cisco's proposal by default.
194 NadaBweSender::NadaBweSender(int kbps, BitrateObserver* observer, Clock* clock) 149 NadaBweSender::NadaBweSender(int kbps, BitrateObserver* observer, Clock* clock)
195 : clock_(clock), 150 : BweSender(kbps), // Referred as "Reference Rate" = R_n.,
151 clock_(clock),
196 observer_(observer), 152 observer_(observer),
197 bitrate_kbps_(kbps),
198 original_operating_mode_(true) { 153 original_operating_mode_(true) {
199 } 154 }
200 155
201 NadaBweSender::NadaBweSender(BitrateObserver* observer, Clock* clock) 156 NadaBweSender::NadaBweSender(BitrateObserver* observer, Clock* clock)
202 : clock_(clock), 157 : BweSender(kMinBitrateKbps), // Referred as "Reference Rate" = R_n.
158 clock_(clock),
203 observer_(observer), 159 observer_(observer),
204 bitrate_kbps_(kMinRefRateKbps),
205 original_operating_mode_(true) { 160 original_operating_mode_(true) {
206 } 161 }
207 162
208 NadaBweSender::~NadaBweSender() { 163 NadaBweSender::~NadaBweSender() {
209 } 164 }
210 165
211 int NadaBweSender::GetFeedbackIntervalMs() const { 166 int NadaBweSender::GetFeedbackIntervalMs() const {
212 return 100; 167 return 100;
213 } 168 }
214 169
(...skipping 29 matching lines...) Expand all
244 fb.derivative() < kDerivativeUpperBound) { 199 fb.derivative() < kDerivativeUpperBound) {
245 AcceleratedRampUp(fb); 200 AcceleratedRampUp(fb);
246 } else { 201 } else {
247 GradualRateUpdate(fb, delta_s, 1.0); 202 GradualRateUpdate(fb, delta_s, 1.0);
248 } 203 }
249 } else { 204 } else {
250 // Modified if conditions and rate update; new ramp down mode. 205 // Modified if conditions and rate update; new ramp down mode.
251 if (fb.congestion_signal() == fb.est_queuing_delay_signal_ms() && 206 if (fb.congestion_signal() == fb.est_queuing_delay_signal_ms() &&
252 fb.est_queuing_delay_signal_ms() < kQueuingDelayUpperBoundMs && 207 fb.est_queuing_delay_signal_ms() < kQueuingDelayUpperBoundMs &&
253 fb.exp_smoothed_delay_ms() < 208 fb.exp_smoothed_delay_ms() <
254 kMinRefRateKbps / kProportionalityDelayBits && 209 kMinBitrateKbps / kProportionalityDelayBits &&
255 fb.derivative() < kDerivativeUpperBound && 210 fb.derivative() < kDerivativeUpperBound &&
256 fb.receiving_rate() > kMinRefRateKbps) { 211 fb.receiving_rate() > kMinBitrateKbps) {
257 AcceleratedRampUp(fb); 212 AcceleratedRampUp(fb);
258 } else if (fb.congestion_signal() > kMaxCongestionSignalMs || 213 } else if (fb.congestion_signal() > kMaxCongestionSignalMs ||
259 fb.exp_smoothed_delay_ms() > kMaxCongestionSignalMs) { 214 fb.exp_smoothed_delay_ms() > kMaxCongestionSignalMs) {
260 AcceleratedRampDown(fb); 215 AcceleratedRampDown(fb);
261 } else { 216 } else {
262 double bitrate_reference = 217 double bitrate_reference =
263 (2.0 * bitrate_kbps_) / (kMaxRefRateKbps + kMinRefRateKbps); 218 (2.0 * bitrate_kbps_) / (kMaxBitrateKbps + kMinBitrateKbps);
264 double smoothing_factor = pow(bitrate_reference, 0.75); 219 double smoothing_factor = pow(bitrate_reference, 0.75);
265 GradualRateUpdate(fb, delta_s, smoothing_factor); 220 GradualRateUpdate(fb, delta_s, smoothing_factor);
266 } 221 }
267 } 222 }
268 223
269 bitrate_kbps_ = std::min(bitrate_kbps_, kMaxRefRateKbps); 224 bitrate_kbps_ = std::min(bitrate_kbps_, kMaxBitrateKbps);
270 bitrate_kbps_ = std::max(bitrate_kbps_, kMinRefRateKbps); 225 bitrate_kbps_ = std::max(bitrate_kbps_, kMinBitrateKbps);
271 226
272 observer_->OnNetworkChanged(1000 * bitrate_kbps_, 0, rtt_ms); 227 observer_->OnNetworkChanged(1000 * bitrate_kbps_, 0, rtt_ms);
273 } 228 }
274 229
275 int64_t NadaBweSender::TimeUntilNextProcess() { 230 int64_t NadaBweSender::TimeUntilNextProcess() {
276 return 100; 231 return 100;
277 } 232 }
278 233
279 int NadaBweSender::Process() { 234 int NadaBweSender::Process() {
280 return 0; 235 return 0;
(...skipping 23 matching lines...) Expand all
304 double smoothing_factor) { 259 double smoothing_factor) {
305 const float kTauOMs = 500.0f; // Referred as tau_o. 260 const float kTauOMs = 500.0f; // Referred as tau_o.
306 const float kEta = 2.0f; // Referred as eta. 261 const float kEta = 2.0f; // Referred as eta.
307 const float kKappa = 1.0f; // Referred as kappa. 262 const float kKappa = 1.0f; // Referred as kappa.
308 const float kReferenceDelayMs = 10.0f; // Referred as x_ref. 263 const float kReferenceDelayMs = 10.0f; // Referred as x_ref.
309 const float kPriorityWeight = 1.0f; // Referred as w. 264 const float kPriorityWeight = 1.0f; // Referred as w.
310 265
311 float x_hat = fb.congestion_signal() + kEta * kTauOMs * fb.derivative(); 266 float x_hat = fb.congestion_signal() + kEta * kTauOMs * fb.derivative();
312 267
313 float kTheta = 268 float kTheta =
314 kPriorityWeight * (kMaxRefRateKbps - kMinRefRateKbps) * kReferenceDelayMs; 269 kPriorityWeight * (kMaxBitrateKbps - kMinBitrateKbps) * kReferenceDelayMs;
315 270
316 int original_increase = 271 int original_increase =
317 static_cast<int>((kKappa * delta_s * 272 static_cast<int>((kKappa * delta_s *
318 (kTheta - (bitrate_kbps_ - kMinRefRateKbps) * x_hat)) / 273 (kTheta - (bitrate_kbps_ - kMinBitrateKbps) * x_hat)) /
319 (kTauOMs * kTauOMs) + 274 (kTauOMs * kTauOMs) +
320 0.5f); 275 0.5f);
321 276
322 bitrate_kbps_ = bitrate_kbps_ + smoothing_factor * original_increase; 277 bitrate_kbps_ = bitrate_kbps_ + smoothing_factor * original_increase;
323 } 278 }
324 279
325 } // namespace bwe 280 } // namespace bwe
326 } // namespace testing 281 } // namespace testing
327 } // namespace webrtc 282 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698