| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| 11 #include "testing/gtest/include/gtest/gtest.h" | 11 #include "testing/gtest/include/gtest/gtest.h" |
| 12 #include "webrtc/base/checks.h" | |
| 13 extern "C" { | 12 extern "C" { |
| 14 #include "webrtc/modules/audio_processing/aec/aec_core.h" | 13 #include "webrtc/modules/audio_processing/aec/aec_core.h" |
| 15 } | 14 } |
| 16 #include "webrtc/modules/audio_processing/aec/echo_cancellation_internal.h" | 15 #include "webrtc/modules/audio_processing/aec/echo_cancellation_internal.h" |
| 17 #include "webrtc/modules/audio_processing/aec/include/echo_cancellation.h" | 16 #include "webrtc/modules/audio_processing/aec/include/echo_cancellation.h" |
| 18 #include "webrtc/test/testsupport/gtest_disable.h" | 17 #include "webrtc/test/testsupport/gtest_disable.h" |
| 19 #include "webrtc/typedefs.h" | 18 #include "webrtc/typedefs.h" |
| 20 | 19 |
| 21 namespace { | 20 namespace { |
| 22 | 21 |
| (...skipping 11 matching lines...) Expand all Loading... |
| 34 void RenderAndCapture(int device_buffer_ms); | 33 void RenderAndCapture(int device_buffer_ms); |
| 35 | 34 |
| 36 // Fills up the far-end buffer with respect to the default device buffer size. | 35 // Fills up the far-end buffer with respect to the default device buffer size. |
| 37 int BufferFillUp(); | 36 int BufferFillUp(); |
| 38 | 37 |
| 39 // Runs and verifies the behavior in a stable startup procedure. | 38 // Runs and verifies the behavior in a stable startup procedure. |
| 40 void RunStableStartup(); | 39 void RunStableStartup(); |
| 41 | 40 |
| 42 // Maps buffer size in ms into samples, taking the unprocessed frame into | 41 // Maps buffer size in ms into samples, taking the unprocessed frame into |
| 43 // account. | 42 // account. |
| 44 int MapBufferSizeToSamples(int size_in_ms); | 43 int MapBufferSizeToSamples(int size_in_ms, bool extended_filter); |
| 45 | 44 |
| 46 void* handle_; | 45 void* handle_; |
| 47 Aec* self_; | 46 Aec* self_; |
| 48 int samples_per_frame_; | 47 int samples_per_frame_; |
| 49 // Dummy input/output speech data. | 48 // Dummy input/output speech data. |
| 50 static const int kSamplesPerChunk = 160; | 49 static const int kSamplesPerChunk = 160; |
| 51 float far_[kSamplesPerChunk]; | 50 float far_[kSamplesPerChunk]; |
| 52 float near_[kSamplesPerChunk]; | 51 float near_[kSamplesPerChunk]; |
| 53 float out_[kSamplesPerChunk]; | 52 float out_[kSamplesPerChunk]; |
| 54 const float* near_ptr_; | 53 const float* near_ptr_; |
| (...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 93 static const int kStableConvergenceMs = 100; | 92 static const int kStableConvergenceMs = 100; |
| 94 | 93 |
| 95 // Maximum convergence time in ms. This means that we should leave the startup | 94 // Maximum convergence time in ms. This means that we should leave the startup |
| 96 // phase after |kMaxConvergenceMs| independent of device buffer stability | 95 // phase after |kMaxConvergenceMs| independent of device buffer stability |
| 97 // conditions. | 96 // conditions. |
| 98 static const int kMaxConvergenceMs = 500; | 97 static const int kMaxConvergenceMs = 500; |
| 99 | 98 |
| 100 void SystemDelayTest::Init(int sample_rate_hz) { | 99 void SystemDelayTest::Init(int sample_rate_hz) { |
| 101 // Initialize AEC | 100 // Initialize AEC |
| 102 EXPECT_EQ(0, WebRtcAec_Init(handle_, sample_rate_hz, 48000)); | 101 EXPECT_EQ(0, WebRtcAec_Init(handle_, sample_rate_hz, 48000)); |
| 102 EXPECT_EQ(0, WebRtcAec_system_delay(self_->aec)); |
| 103 | 103 |
| 104 // One frame equals 10 ms of data. | 104 // One frame equals 10 ms of data. |
| 105 samples_per_frame_ = sample_rate_hz / 100; | 105 samples_per_frame_ = sample_rate_hz / 100; |
| 106 } | 106 } |
| 107 | 107 |
| 108 void SystemDelayTest::RenderAndCapture(int device_buffer_ms) { | 108 void SystemDelayTest::RenderAndCapture(int device_buffer_ms) { |
| 109 EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_)); | 109 EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_)); |
| 110 EXPECT_EQ(0, | 110 EXPECT_EQ(0, |
| 111 WebRtcAec_Process(handle_, | 111 WebRtcAec_Process(handle_, |
| 112 &near_ptr_, | 112 &near_ptr_, |
| (...skipping 15 matching lines...) Expand all Loading... |
| 128 EXPECT_EQ(buffer_size, WebRtcAec_system_delay(self_->aec)); | 128 EXPECT_EQ(buffer_size, WebRtcAec_system_delay(self_->aec)); |
| 129 } | 129 } |
| 130 return buffer_size; | 130 return buffer_size; |
| 131 } | 131 } |
| 132 | 132 |
| 133 void SystemDelayTest::RunStableStartup() { | 133 void SystemDelayTest::RunStableStartup() { |
| 134 // To make sure we have a full buffer when we verify stability we first fill | 134 // To make sure we have a full buffer when we verify stability we first fill |
| 135 // up the far-end buffer with the same amount as we will report in through | 135 // up the far-end buffer with the same amount as we will report in through |
| 136 // Process(). | 136 // Process(). |
| 137 int buffer_size = BufferFillUp(); | 137 int buffer_size = BufferFillUp(); |
| 138 // A stable device should be accepted and put in a regular process mode within | 138 |
| 139 // |kStableConvergenceMs|. | 139 if (WebRtcAec_reported_delay_enabled(self_->aec) == 0) { |
| 140 int process_time_ms = 0; | 140 // In extended_filter mode we set the buffer size after the first processed |
| 141 for (; process_time_ms < kStableConvergenceMs; process_time_ms += 10) { | 141 // 10 ms chunk. Hence, we don't need to wait for the reported system delay |
| 142 // values to become stable. |
| 142 RenderAndCapture(kDeviceBufMs); | 143 RenderAndCapture(kDeviceBufMs); |
| 143 buffer_size += samples_per_frame_; | 144 buffer_size += samples_per_frame_; |
| 144 if (self_->startup_phase == 0) { | 145 EXPECT_EQ(0, self_->startup_phase); |
| 145 // We have left the startup phase. | 146 } else { |
| 146 break; | 147 // A stable device should be accepted and put in a regular process mode |
| 148 // within |kStableConvergenceMs|. |
| 149 int process_time_ms = 0; |
| 150 for (; process_time_ms < kStableConvergenceMs; process_time_ms += 10) { |
| 151 RenderAndCapture(kDeviceBufMs); |
| 152 buffer_size += samples_per_frame_; |
| 153 if (self_->startup_phase == 0) { |
| 154 // We have left the startup phase. |
| 155 break; |
| 156 } |
| 147 } | 157 } |
| 158 // Verify convergence time. |
| 159 EXPECT_GT(kStableConvergenceMs, process_time_ms); |
| 148 } | 160 } |
| 149 // Verify convergence time. | |
| 150 EXPECT_GT(kStableConvergenceMs, process_time_ms); | |
| 151 // Verify that the buffer has been flushed. | 161 // Verify that the buffer has been flushed. |
| 152 EXPECT_GE(buffer_size, WebRtcAec_system_delay(self_->aec)); | 162 EXPECT_GE(buffer_size, WebRtcAec_system_delay(self_->aec)); |
| 153 } | 163 } |
| 154 | 164 |
| 155 int SystemDelayTest::MapBufferSizeToSamples(int size_in_ms) { | 165 int SystemDelayTest::MapBufferSizeToSamples(int size_in_ms, |
| 156 // The extra 10 ms corresponds to the unprocessed frame. | 166 bool extended_filter) { |
| 157 return (size_in_ms + 10) * samples_per_frame_ / 10; | 167 // If extended_filter is disabled we add an extra 10 ms for the unprocessed |
| 168 // frame. That is simply how the algorithm is constructed. |
| 169 return (size_in_ms + (extended_filter ? 0 : 10)) * samples_per_frame_ / 10; |
| 158 } | 170 } |
| 159 | 171 |
| 160 // The tests should meet basic requirements and not be adjusted to what is | 172 // The tests should meet basic requirements and not be adjusted to what is |
| 161 // actually implemented. If we don't get good code coverage this way we either | 173 // actually implemented. If we don't get good code coverage this way we either |
| 162 // lack in tests or have unnecessary code. | 174 // lack in tests or have unnecessary code. |
| 163 // General requirements: | 175 // General requirements: |
| 164 // 1) If we add far-end data the system delay should be increased with the same | 176 // 1) If we add far-end data the system delay should be increased with the same |
| 165 // amount we add. | 177 // amount we add. |
| 166 // 2) If the far-end buffer is full we should flush the oldest data to make room | 178 // 2) If the far-end buffer is full we should flush the oldest data to make room |
| 167 // for the new. In this case the system delay is unaffected. | 179 // for the new. In this case the system delay is unaffected. |
| 168 // 3) There should exist a startup phase in which the buffer size is to be | 180 // 3) There should exist a startup phase in which the buffer size is to be |
| 169 // determined. In this phase no cancellation should be performed. | 181 // determined. In this phase no cancellation should be performed. |
| 170 // 4) Under stable conditions (small variations in device buffer sizes) the AEC | 182 // 4) Under stable conditions (small variations in device buffer sizes) the AEC |
| 171 // should determine an appropriate local buffer size within | 183 // should determine an appropriate local buffer size within |
| 172 // |kStableConvergenceMs| ms. | 184 // |kStableConvergenceMs| ms. |
| 173 // 5) Under unstable conditions the AEC should make a decision within | 185 // 5) Under unstable conditions the AEC should make a decision within |
| 174 // |kMaxConvergenceMs| ms. | 186 // |kMaxConvergenceMs| ms. |
| 175 // 6) If the local buffer runs out of data we should stuff the buffer with older | 187 // 6) If the local buffer runs out of data we should stuff the buffer with older |
| 176 // frames. | 188 // frames. |
| 177 // 7) The system delay should within |kMaxConvergenceMs| ms heal from | 189 // 7) The system delay should within |kMaxConvergenceMs| ms heal from |
| 178 // disturbances like drift, data glitches, toggling events and outliers. | 190 // disturbances like drift, data glitches, toggling events and outliers. |
| 179 // 8) The system delay should never become negative. | 191 // 8) The system delay should never become negative. |
| 180 | 192 |
| 181 TEST_F(SystemDelayTest, CorrectIncreaseWhenBufferFarend) { | 193 TEST_F(SystemDelayTest, CorrectIncreaseWhenBufferFarend) { |
| 182 // When we add data to the AEC buffer the internal system delay should be | 194 // When we add data to the AEC buffer the internal system delay should be |
| 183 // incremented with the same amount as the size of data. | 195 // incremented with the same amount as the size of data. |
| 184 for (size_t i = 0; i < kNumSampleRates; i++) { | 196 // This process should be independent of DA-AEC and extended_filter mode. |
| 185 Init(kSampleRateHz[i]); | 197 for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) { |
| 186 | 198 WebRtcAec_enable_extended_filter(self_->aec, extended_filter); |
| 187 // Loop through a couple of calls to make sure the system delay increments | 199 EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec)); |
| 188 // correctly. | 200 for (int da_aec = 0; da_aec <= 1; ++da_aec) { |
| 189 for (int j = 1; j <= 5; j++) { | 201 WebRtcAec_enable_reported_delay(self_->aec, 1 - da_aec); |
| 190 EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_)); | 202 EXPECT_EQ(1 - da_aec, WebRtcAec_reported_delay_enabled(self_->aec)); |
| 191 EXPECT_EQ(j * samples_per_frame_, WebRtcAec_system_delay(self_->aec)); | 203 for (size_t i = 0; i < kNumSampleRates; i++) { |
| 204 Init(kSampleRateHz[i]); |
| 205 // Loop through a couple of calls to make sure the system delay |
| 206 // increments correctly. |
| 207 for (int j = 1; j <= 5; j++) { |
| 208 EXPECT_EQ(0, |
| 209 WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_)); |
| 210 EXPECT_EQ(j * samples_per_frame_, WebRtcAec_system_delay(self_->aec)); |
| 211 } |
| 212 } |
| 192 } | 213 } |
| 193 } | 214 } |
| 194 } | 215 } |
| 195 | 216 |
| 196 // TODO(bjornv): Add a test to verify behavior if the far-end buffer is full | 217 // TODO(bjornv): Add a test to verify behavior if the far-end buffer is full |
| 197 // when adding new data. | 218 // when adding new data. |
| 198 | 219 |
| 199 TEST_F(SystemDelayTest, CorrectDelayAfterStableStartup) { | 220 TEST_F(SystemDelayTest, CorrectDelayAfterStableStartup) { |
| 200 // We run the system in a stable startup. After that we verify that the system | 221 // We run the system in a stable startup. After that we verify that the system |
| 201 // delay meets the requirements. | 222 // delay meets the requirements. |
| 202 for (size_t i = 0; i < kNumSampleRates; i++) { | 223 // This process should be independent of DA-AEC and extended_filter mode. |
| 203 Init(kSampleRateHz[i]); | 224 for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) { |
| 204 RunStableStartup(); | 225 WebRtcAec_enable_extended_filter(self_->aec, extended_filter); |
| 226 EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec)); |
| 227 for (int da_aec = 0; da_aec <= 1; ++da_aec) { |
| 228 WebRtcAec_enable_reported_delay(self_->aec, 1 - da_aec); |
| 229 EXPECT_EQ(1 - da_aec, WebRtcAec_reported_delay_enabled(self_->aec)); |
| 230 for (size_t i = 0; i < kNumSampleRates; i++) { |
| 231 Init(kSampleRateHz[i]); |
| 232 RunStableStartup(); |
| 205 | 233 |
| 206 // Verify system delay with respect to requirements, i.e., the | 234 // Verify system delay with respect to requirements, i.e., the |
| 207 // |system_delay| is in the interval [75%, 100%] of what's reported on the | 235 // |system_delay| is in the interval [75%, 100%] of what's reported on |
| 208 // average. | 236 // the average. |
| 209 int average_reported_delay = kDeviceBufMs * samples_per_frame_ / 10; | 237 // In extended_filter mode we target 50% and measure after one processed |
| 210 EXPECT_GE(average_reported_delay, WebRtcAec_system_delay(self_->aec)); | 238 // 10 ms chunk. |
| 211 EXPECT_LE(average_reported_delay * 3 / 4, | 239 int average_reported_delay = kDeviceBufMs * samples_per_frame_ / 10; |
| 212 WebRtcAec_system_delay(self_->aec)); | 240 EXPECT_GE(average_reported_delay, WebRtcAec_system_delay(self_->aec)); |
| 241 int lower_bound = WebRtcAec_extended_filter_enabled(self_->aec) |
| 242 ? average_reported_delay / 2 - samples_per_frame_ |
| 243 : average_reported_delay * 3 / 4; |
| 244 EXPECT_LE(lower_bound, WebRtcAec_system_delay(self_->aec)); |
| 245 } |
| 246 } |
| 213 } | 247 } |
| 214 } | 248 } |
| 215 | 249 |
| 216 TEST_F(SystemDelayTest, CorrectDelayAfterUnstableStartup) { | 250 TEST_F(SystemDelayTest, CorrectDelayAfterUnstableStartup) { |
| 251 // This test does not apply in extended_filter mode, since we only use the |
| 252 // the first 10 ms chunk to determine a reasonable buffer size. Neither does |
| 253 // it apply if DA-AEC is on because that overrides the startup procedure. |
| 254 WebRtcAec_enable_extended_filter(self_->aec, 0); |
| 255 EXPECT_EQ(0, WebRtcAec_extended_filter_enabled(self_->aec)); |
| 256 WebRtcAec_enable_reported_delay(self_->aec, 1); |
| 257 EXPECT_EQ(1, WebRtcAec_reported_delay_enabled(self_->aec)); |
| 258 |
| 217 // In an unstable system we would start processing after |kMaxConvergenceMs|. | 259 // In an unstable system we would start processing after |kMaxConvergenceMs|. |
| 218 // On the last frame the AEC buffer is adjusted to 60% of the last reported | 260 // On the last frame the AEC buffer is adjusted to 60% of the last reported |
| 219 // device buffer size. | 261 // device buffer size. |
| 220 // We construct an unstable system by altering the device buffer size between | 262 // We construct an unstable system by altering the device buffer size between |
| 221 // two values |kDeviceBufMs| +- 25 ms. | 263 // two values |kDeviceBufMs| +- 25 ms. |
| 222 for (size_t i = 0; i < kNumSampleRates; i++) { | 264 for (size_t i = 0; i < kNumSampleRates; i++) { |
| 223 Init(kSampleRateHz[i]); | 265 Init(kSampleRateHz[i]); |
| 224 | 266 |
| 225 // To make sure we have a full buffer when we verify stability we first fill | 267 // To make sure we have a full buffer when we verify stability we first fill |
| 226 // up the far-end buffer with the same amount as we will report in on the | 268 // up the far-end buffer with the same amount as we will report in on the |
| (...skipping 20 matching lines...) Expand all Loading... |
| 247 | 289 |
| 248 // Verify system delay with respect to requirements, i.e., the | 290 // Verify system delay with respect to requirements, i.e., the |
| 249 // |system_delay| is in the interval [60%, 100%] of what's last reported. | 291 // |system_delay| is in the interval [60%, 100%] of what's last reported. |
| 250 EXPECT_GE(reported_delay_ms * samples_per_frame_ / 10, | 292 EXPECT_GE(reported_delay_ms * samples_per_frame_ / 10, |
| 251 WebRtcAec_system_delay(self_->aec)); | 293 WebRtcAec_system_delay(self_->aec)); |
| 252 EXPECT_LE(reported_delay_ms * samples_per_frame_ / 10 * 3 / 5, | 294 EXPECT_LE(reported_delay_ms * samples_per_frame_ / 10 * 3 / 5, |
| 253 WebRtcAec_system_delay(self_->aec)); | 295 WebRtcAec_system_delay(self_->aec)); |
| 254 } | 296 } |
| 255 } | 297 } |
| 256 | 298 |
| 257 TEST_F(SystemDelayTest, | 299 TEST_F(SystemDelayTest, CorrectDelayAfterStableBufferBuildUp) { |
| 258 DISABLED_ON_ANDROID(CorrectDelayAfterStableBufferBuildUp)) { | 300 // This test does not apply in extended_filter mode, since we only use the |
| 301 // the first 10 ms chunk to determine a reasonable buffer size. Neither does |
| 302 // it apply if DA-AEC is on because that overrides the startup procedure. |
| 303 WebRtcAec_enable_extended_filter(self_->aec, 0); |
| 304 EXPECT_EQ(0, WebRtcAec_extended_filter_enabled(self_->aec)); |
| 305 WebRtcAec_enable_reported_delay(self_->aec, 1); |
| 306 EXPECT_EQ(1, WebRtcAec_reported_delay_enabled(self_->aec)); |
| 307 |
| 259 // In this test we start by establishing the device buffer size during stable | 308 // In this test we start by establishing the device buffer size during stable |
| 260 // conditions, but with an empty internal far-end buffer. Once that is done we | 309 // conditions, but with an empty internal far-end buffer. Once that is done we |
| 261 // verify that the system delay is increased correctly until we have reach an | 310 // verify that the system delay is increased correctly until we have reach an |
| 262 // internal buffer size of 75% of what's been reported. | 311 // internal buffer size of 75% of what's been reported. |
| 263 | |
| 264 // This test assumes the reported delays are used. | |
| 265 WebRtcAec_enable_reported_delay(WebRtcAec_aec_core(handle_), 1); | |
| 266 for (size_t i = 0; i < kNumSampleRates; i++) { | 312 for (size_t i = 0; i < kNumSampleRates; i++) { |
| 267 Init(kSampleRateHz[i]); | 313 Init(kSampleRateHz[i]); |
| 268 | 314 |
| 269 // We assume that running |kStableConvergenceMs| calls will put the | 315 // We assume that running |kStableConvergenceMs| calls will put the |
| 270 // algorithm in a state where the device buffer size has been determined. We | 316 // algorithm in a state where the device buffer size has been determined. We |
| 271 // can make that assumption since we have a separate stability test. | 317 // can make that assumption since we have a separate stability test. |
| 272 int process_time_ms = 0; | 318 int process_time_ms = 0; |
| 273 for (; process_time_ms < kStableConvergenceMs; process_time_ms += 10) { | 319 for (; process_time_ms < kStableConvergenceMs; process_time_ms += 10) { |
| 274 EXPECT_EQ(0, | 320 EXPECT_EQ(0, |
| 275 WebRtcAec_Process(handle_, | 321 WebRtcAec_Process(handle_, |
| (...skipping 33 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 309 EXPECT_EQ(system_delay_before_calls, WebRtcAec_system_delay(self_->aec)); | 355 EXPECT_EQ(system_delay_before_calls, WebRtcAec_system_delay(self_->aec)); |
| 310 } | 356 } |
| 311 } | 357 } |
| 312 } | 358 } |
| 313 | 359 |
| 314 TEST_F(SystemDelayTest, CorrectDelayWhenBufferUnderrun) { | 360 TEST_F(SystemDelayTest, CorrectDelayWhenBufferUnderrun) { |
| 315 // Here we test a buffer under run scenario. If we keep on calling | 361 // Here we test a buffer under run scenario. If we keep on calling |
| 316 // WebRtcAec_Process() we will finally run out of data, but should | 362 // WebRtcAec_Process() we will finally run out of data, but should |
| 317 // automatically stuff the buffer. We verify this behavior by checking if the | 363 // automatically stuff the buffer. We verify this behavior by checking if the |
| 318 // system delay goes negative. | 364 // system delay goes negative. |
| 319 for (size_t i = 0; i < kNumSampleRates; i++) { | 365 // This process should be independent of DA-AEC and extended_filter mode. |
| 320 Init(kSampleRateHz[i]); | 366 for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) { |
| 321 RunStableStartup(); | 367 WebRtcAec_enable_extended_filter(self_->aec, extended_filter); |
| 368 EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec)); |
| 369 for (int da_aec = 0; da_aec <= 1; ++da_aec) { |
| 370 WebRtcAec_enable_reported_delay(self_->aec, 1 - da_aec); |
| 371 EXPECT_EQ(1 - da_aec, WebRtcAec_reported_delay_enabled(self_->aec)); |
| 372 for (size_t i = 0; i < kNumSampleRates; i++) { |
| 373 Init(kSampleRateHz[i]); |
| 374 RunStableStartup(); |
| 322 | 375 |
| 323 // The AEC has now left the Startup phase. We now have at most | 376 // The AEC has now left the Startup phase. We now have at most |
| 324 // |kStableConvergenceMs| in the buffer. Keep on calling Process() until | 377 // |kStableConvergenceMs| in the buffer. Keep on calling Process() until |
| 325 // we run out of data and verify that the system delay is non-negative. | 378 // we run out of data and verify that the system delay is non-negative. |
| 326 for (int j = 0; j <= kStableConvergenceMs; j += 10) { | 379 for (int j = 0; j <= kStableConvergenceMs; j += 10) { |
| 327 EXPECT_EQ(0, | 380 EXPECT_EQ(0, WebRtcAec_Process(handle_, &near_ptr_, 1, &out_ptr_, |
| 328 WebRtcAec_Process(handle_, | 381 samples_per_frame_, kDeviceBufMs, 0)); |
| 329 &near_ptr_, | 382 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec)); |
| 330 1, | 383 } |
| 331 &out_ptr_, | 384 } |
| 332 samples_per_frame_, | |
| 333 kDeviceBufMs, | |
| 334 0)); | |
| 335 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec)); | |
| 336 } | 385 } |
| 337 } | 386 } |
| 338 } | 387 } |
| 339 | 388 |
| 340 TEST_F(SystemDelayTest, DISABLED_ON_ANDROID(CorrectDelayDuringDrift)) { | 389 TEST_F(SystemDelayTest, CorrectDelayDuringDrift) { |
| 341 // This drift test should verify that the system delay is never exceeding the | 390 // This drift test should verify that the system delay is never exceeding the |
| 342 // device buffer. The drift is simulated by decreasing the reported device | 391 // device buffer. The drift is simulated by decreasing the reported device |
| 343 // buffer size by 1 ms every 100 ms. If the device buffer size goes below 30 | 392 // buffer size by 1 ms every 100 ms. If the device buffer size goes below 30 |
| 344 // ms we jump (add) 10 ms to give a repeated pattern. | 393 // ms we jump (add) 10 ms to give a repeated pattern. |
| 345 | 394 |
| 346 // This test assumes the reported delays are used. | 395 // This process should be independent of DA-AEC and extended_filter mode. |
| 347 WebRtcAec_enable_reported_delay(WebRtcAec_aec_core(handle_), 1); | 396 for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) { |
| 348 for (size_t i = 0; i < kNumSampleRates; i++) { | 397 WebRtcAec_enable_extended_filter(self_->aec, extended_filter); |
| 349 Init(kSampleRateHz[i]); | 398 EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec)); |
| 350 RunStableStartup(); | 399 for (int da_aec = 0; da_aec <= 1; ++da_aec) { |
| 400 WebRtcAec_enable_reported_delay(self_->aec, 1 - da_aec); |
| 401 EXPECT_EQ(1 - da_aec, WebRtcAec_reported_delay_enabled(self_->aec)); |
| 402 for (size_t i = 0; i < kNumSampleRates; i++) { |
| 403 Init(kSampleRateHz[i]); |
| 404 RunStableStartup(); |
| 351 | 405 |
| 352 // We have now left the startup phase and proceed with normal processing. | 406 // We have left the startup phase and proceed with normal processing. |
| 353 int jump = 0; | 407 int jump = 0; |
| 354 for (int j = 0; j < 1000; j++) { | 408 for (int j = 0; j < 1000; j++) { |
| 355 // Drift = -1 ms per 100 ms of data. | 409 // Drift = -1 ms per 100 ms of data. |
| 356 int device_buf_ms = kDeviceBufMs - (j / 10) + jump; | 410 int device_buf_ms = kDeviceBufMs - (j / 10) + jump; |
| 357 int device_buf = MapBufferSizeToSamples(device_buf_ms); | 411 int device_buf = MapBufferSizeToSamples(device_buf_ms, |
| 412 extended_filter == 1); |
| 358 | 413 |
| 359 if (device_buf_ms < 30) { | 414 if (device_buf_ms < 30) { |
| 360 // Add 10 ms data, taking affect next frame. | 415 // Add 10 ms data, taking affect next frame. |
| 361 jump += 10; | 416 jump += 10; |
| 417 } |
| 418 RenderAndCapture(device_buf_ms); |
| 419 |
| 420 // Verify that the system delay does not exceed the device buffer. |
| 421 EXPECT_GE(device_buf, WebRtcAec_system_delay(self_->aec)); |
| 422 |
| 423 // Verify that the system delay is non-negative. |
| 424 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec)); |
| 425 } |
| 362 } | 426 } |
| 363 RenderAndCapture(device_buf_ms); | |
| 364 | |
| 365 // Verify that the system delay does not exceed the device buffer. | |
| 366 EXPECT_GE(device_buf, WebRtcAec_system_delay(self_->aec)); | |
| 367 | |
| 368 // Verify that the system delay is non-negative. | |
| 369 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec)); | |
| 370 } | 427 } |
| 371 } | 428 } |
| 372 } | 429 } |
| 373 | 430 |
| 374 TEST_F(SystemDelayTest, DISABLED_ON_ANDROID(ShouldRecoverAfterGlitch)) { | 431 TEST_F(SystemDelayTest, ShouldRecoverAfterGlitch) { |
| 375 // This glitch test should verify that the system delay recovers if there is | 432 // This glitch test should verify that the system delay recovers if there is |
| 376 // a glitch in data. The data glitch is constructed as 200 ms of buffering | 433 // a glitch in data. The data glitch is constructed as 200 ms of buffering |
| 377 // after which the stable procedure continues. The glitch is never reported by | 434 // after which the stable procedure continues. The glitch is never reported by |
| 378 // the device. | 435 // the device. |
| 379 // The system is said to be in a non-causal state if the difference between | 436 // The system is said to be in a non-causal state if the difference between |
| 380 // the device buffer and system delay is less than a block (64 samples). | 437 // the device buffer and system delay is less than a block (64 samples). |
| 381 | 438 |
| 382 // This test assumes the reported delays are used. | 439 // This process should be independent of DA-AEC and extended_filter mode. |
| 383 WebRtcAec_enable_reported_delay(WebRtcAec_aec_core(handle_), 1); | 440 for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) { |
| 384 for (size_t i = 0; i < kNumSampleRates; i++) { | 441 WebRtcAec_enable_extended_filter(self_->aec, extended_filter); |
| 385 Init(kSampleRateHz[i]); | 442 EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec)); |
| 386 RunStableStartup(); | 443 for (int da_aec = 0; da_aec <= 1; ++da_aec) { |
| 387 int device_buf = MapBufferSizeToSamples(kDeviceBufMs); | 444 WebRtcAec_enable_reported_delay(self_->aec, 1 - da_aec); |
| 388 // Glitch state. | 445 EXPECT_EQ(1 - da_aec, WebRtcAec_reported_delay_enabled(self_->aec)); |
| 389 for (int j = 0; j < 20; j++) { | 446 for (size_t i = 0; i < kNumSampleRates; i++) { |
| 390 EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_)); | 447 Init(kSampleRateHz[i]); |
| 391 // No need to verify system delay, since that is done in a separate test. | 448 RunStableStartup(); |
| 449 int device_buf = MapBufferSizeToSamples(kDeviceBufMs, |
| 450 extended_filter == 1); |
| 451 // Glitch state. |
| 452 for (int j = 0; j < 20; j++) { |
| 453 EXPECT_EQ(0, |
| 454 WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_)); |
| 455 // No need to verify system delay, since that is done in a separate |
| 456 // test. |
| 457 } |
| 458 // Verify that we are in a non-causal state, i.e., |
| 459 // |system_delay| > |device_buf|. |
| 460 EXPECT_LT(device_buf, WebRtcAec_system_delay(self_->aec)); |
| 461 |
| 462 // Recover state. Should recover at least 4 ms of data per 10 ms, hence |
| 463 // a glitch of 200 ms will take at most 200 * 10 / 4 = 500 ms to recover |
| 464 // from. |
| 465 bool non_causal = true; // We are currently in a non-causal state. |
| 466 for (int j = 0; j < 50; j++) { |
| 467 int system_delay_before = WebRtcAec_system_delay(self_->aec); |
| 468 RenderAndCapture(kDeviceBufMs); |
| 469 int system_delay_after = WebRtcAec_system_delay(self_->aec); |
| 470 // We have recovered if |
| 471 // |device_buf| - |system_delay_after| >= PART_LEN (1 block). |
| 472 // During recovery, |system_delay_after| < |system_delay_before|, |
| 473 // otherwise they are equal. |
| 474 if (non_causal) { |
| 475 EXPECT_LT(system_delay_after, system_delay_before); |
| 476 if (device_buf - system_delay_after >= PART_LEN) { |
| 477 non_causal = false; |
| 478 } |
| 479 } else { |
| 480 EXPECT_EQ(system_delay_before, system_delay_after); |
| 481 } |
| 482 // Verify that the system delay is non-negative. |
| 483 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec)); |
| 484 } |
| 485 // Check that we have recovered. |
| 486 EXPECT_FALSE(non_causal); |
| 487 } |
| 392 } | 488 } |
| 393 // Verify that we are in a non-causal state, i.e., | |
| 394 // |system_delay| > |device_buf|. | |
| 395 EXPECT_LT(device_buf, WebRtcAec_system_delay(self_->aec)); | |
| 396 | |
| 397 // Recover state. Should recover at least 4 ms of data per 10 ms, hence a | |
| 398 // glitch of 200 ms will take at most 200 * 10 / 4 = 500 ms to recover from. | |
| 399 bool non_causal = true; // We are currently in a non-causal state. | |
| 400 for (int j = 0; j < 50; j++) { | |
| 401 int system_delay_before = WebRtcAec_system_delay(self_->aec); | |
| 402 RenderAndCapture(kDeviceBufMs); | |
| 403 int system_delay_after = WebRtcAec_system_delay(self_->aec); | |
| 404 | |
| 405 // We have recovered if |device_buf| - |system_delay_after| >= 64 (one | |
| 406 // block). During recovery |system_delay_after| < |system_delay_before|, | |
| 407 // otherwise they are equal. | |
| 408 if (non_causal) { | |
| 409 EXPECT_LT(system_delay_after, system_delay_before); | |
| 410 if (device_buf - system_delay_after >= 64) { | |
| 411 non_causal = false; | |
| 412 } | |
| 413 } else { | |
| 414 EXPECT_EQ(system_delay_before, system_delay_after); | |
| 415 } | |
| 416 // Verify that the system delay is non-negative. | |
| 417 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec)); | |
| 418 } | |
| 419 // Check that we have recovered. | |
| 420 EXPECT_FALSE(non_causal); | |
| 421 } | 489 } |
| 422 } | 490 } |
| 423 | 491 |
| 424 TEST_F(SystemDelayTest, UnaffectedWhenSpuriousDeviceBufferValues) { | 492 TEST_F(SystemDelayTest, UnaffectedWhenSpuriousDeviceBufferValues) { |
| 425 // This spurious device buffer data test aims at verifying that the system | 493 // This test does not apply in extended_filter mode, since we only use the |
| 426 // delay is unaffected by large outliers. | 494 // the first 10 ms chunk to determine a reasonable buffer size. |
| 427 // The system is said to be in a non-causal state if the difference between | 495 const int extended_filter = 0; |
| 428 // the device buffer and system delay is less than a block (64 samples). | 496 WebRtcAec_enable_extended_filter(self_->aec, extended_filter); |
| 429 for (size_t i = 0; i < kNumSampleRates; i++) { | 497 EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec)); |
| 430 Init(kSampleRateHz[i]); | |
| 431 RunStableStartup(); | |
| 432 int device_buf = MapBufferSizeToSamples(kDeviceBufMs); | |
| 433 | 498 |
| 434 // Normal state. We are currently not in a non-causal state. | 499 // Should be DA-AEC independent. |
| 435 bool non_causal = false; | 500 for (int da_aec = 0; da_aec <= 1; ++da_aec) { |
| 501 WebRtcAec_enable_reported_delay(self_->aec, 1 - da_aec); |
| 502 EXPECT_EQ(1 - da_aec, WebRtcAec_reported_delay_enabled(self_->aec)); |
| 503 // This spurious device buffer data test aims at verifying that the system |
| 504 // delay is unaffected by large outliers. |
| 505 // The system is said to be in a non-causal state if the difference between |
| 506 // the device buffer and system delay is less than a block (64 samples). |
| 507 for (size_t i = 0; i < kNumSampleRates; i++) { |
| 508 Init(kSampleRateHz[i]); |
| 509 RunStableStartup(); |
| 510 int device_buf = MapBufferSizeToSamples(kDeviceBufMs, |
| 511 extended_filter == 1); |
| 436 | 512 |
| 437 // Run 1 s and replace device buffer size with 500 ms every 100 ms. | 513 // Normal state. We are currently not in a non-causal state. |
| 438 for (int j = 0; j < 100; j++) { | 514 bool non_causal = false; |
| 439 int system_delay_before_calls = WebRtcAec_system_delay(self_->aec); | 515 |
| 440 int device_buf_ms = kDeviceBufMs; | 516 // Run 1 s and replace device buffer size with 500 ms every 100 ms. |
| 441 if (j % 10 == 0) { | 517 for (int j = 0; j < 100; j++) { |
| 442 device_buf_ms = 500; | 518 int system_delay_before_calls = WebRtcAec_system_delay(self_->aec); |
| 519 int device_buf_ms = j % 10 == 0 ? 500 : kDeviceBufMs; |
| 520 RenderAndCapture(device_buf_ms); |
| 521 |
| 522 // Check for non-causality. |
| 523 if (device_buf - WebRtcAec_system_delay(self_->aec) < PART_LEN) { |
| 524 non_causal = true; |
| 525 } |
| 526 EXPECT_FALSE(non_causal); |
| 527 EXPECT_EQ(system_delay_before_calls, |
| 528 WebRtcAec_system_delay(self_->aec)); |
| 529 |
| 530 // Verify that the system delay is non-negative. |
| 531 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec)); |
| 443 } | 532 } |
| 444 RenderAndCapture(device_buf_ms); | |
| 445 | |
| 446 // Check for non-causality. | |
| 447 if (device_buf - WebRtcAec_system_delay(self_->aec) < 64) { | |
| 448 non_causal = true; | |
| 449 } | |
| 450 EXPECT_FALSE(non_causal); | |
| 451 EXPECT_EQ(system_delay_before_calls, WebRtcAec_system_delay(self_->aec)); | |
| 452 | |
| 453 // Verify that the system delay is non-negative. | |
| 454 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec)); | |
| 455 } | 533 } |
| 456 } | 534 } |
| 457 } | 535 } |
| 458 | 536 |
| 459 TEST_F(SystemDelayTest, CorrectImpactWhenTogglingDeviceBufferValues) { | 537 TEST_F(SystemDelayTest, CorrectImpactWhenTogglingDeviceBufferValues) { |
| 460 // This test aims at verifying that the system delay is "unaffected" by | 538 // This test aims at verifying that the system delay is "unaffected" by |
| 461 // toggling values reported by the device. | 539 // toggling values reported by the device. |
| 462 // The test is constructed such that every other device buffer value is zero | 540 // The test is constructed such that every other device buffer value is zero |
| 463 // and then 2 * |kDeviceBufMs|, hence the size is constant on the average. The | 541 // and then 2 * |kDeviceBufMs|, hence the size is constant on the average. The |
| 464 // zero values will force us into a non-causal state and thereby lowering the | 542 // zero values will force us into a non-causal state and thereby lowering the |
| 465 // system delay until we basically runs out of data. Once that happens the | 543 // system delay until we basically run out of data. Once that happens the |
| 466 // buffer will be stuffed. | 544 // buffer will be stuffed. |
| 467 // TODO(bjornv): This test will have a better impact if we verified that the | 545 // TODO(bjornv): This test will have a better impact if we verified that the |
| 468 // delay estimate goes up when the system delay goes done to meet the average | 546 // delay estimate goes up when the system delay goes down to meet the average |
| 469 // device buffer size. | 547 // device buffer size. |
| 470 for (size_t i = 0; i < kNumSampleRates; i++) { | |
| 471 Init(kSampleRateHz[i]); | |
| 472 RunStableStartup(); | |
| 473 int device_buf = MapBufferSizeToSamples(kDeviceBufMs); | |
| 474 | 548 |
| 475 // Normal state. We are currently not in a non-causal state. | 549 // This test does not apply if DA-AEC is enabled and extended_filter mode |
| 476 bool non_causal = false; | 550 // disabled. |
| 551 for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) { |
| 552 WebRtcAec_enable_extended_filter(self_->aec, extended_filter); |
| 553 EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec)); |
| 554 for (int da_aec = 0; da_aec <= 1; ++da_aec) { |
| 555 WebRtcAec_enable_reported_delay(self_->aec, 1 - da_aec); |
| 556 EXPECT_EQ(1 - da_aec, WebRtcAec_reported_delay_enabled(self_->aec)); |
| 557 if (extended_filter == 0 && da_aec == 1) { |
| 558 continue; |
| 559 } |
| 560 for (size_t i = 0; i < kNumSampleRates; i++) { |
| 561 Init(kSampleRateHz[i]); |
| 562 RunStableStartup(); |
| 563 const int device_buf = MapBufferSizeToSamples(kDeviceBufMs, |
| 564 extended_filter == 1); |
| 477 | 565 |
| 478 // Loop through 100 frames (both render and capture), which equals 1 s of | 566 // Normal state. We are currently not in a non-causal state. |
| 479 // data. Every odd frame we set the device buffer size to 2 * |kDeviceBufMs| | 567 bool non_causal = false; |
| 480 // and even frames we set the device buffer size to zero. | |
| 481 for (int j = 0; j < 100; j++) { | |
| 482 int system_delay_before_calls = WebRtcAec_system_delay(self_->aec); | |
| 483 int device_buf_ms = 2 * (j % 2) * kDeviceBufMs; | |
| 484 RenderAndCapture(device_buf_ms); | |
| 485 | 568 |
| 486 // Check for non-causality, compared with the average device buffer size. | 569 // Loop through 100 frames (both render and capture), which equals 1 s |
| 487 non_causal |= (device_buf - WebRtcAec_system_delay(self_->aec) < 64); | 570 // of data. Every odd frame we set the device buffer size to |
| 488 EXPECT_GE(system_delay_before_calls, WebRtcAec_system_delay(self_->aec)); | 571 // 2 * |kDeviceBufMs| and even frames we set the device buffer size to |
| 572 // zero. |
| 573 for (int j = 0; j < 100; j++) { |
| 574 int system_delay_before_calls = WebRtcAec_system_delay(self_->aec); |
| 575 int device_buf_ms = 2 * (j % 2) * kDeviceBufMs; |
| 576 RenderAndCapture(device_buf_ms); |
| 489 | 577 |
| 490 // Verify that the system delay is non-negative. | 578 // Check for non-causality, compared with the average device buffer |
| 491 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec)); | 579 // size. |
| 580 non_causal |= (device_buf - WebRtcAec_system_delay(self_->aec) < 64); |
| 581 EXPECT_GE(system_delay_before_calls, |
| 582 WebRtcAec_system_delay(self_->aec)); |
| 583 |
| 584 // Verify that the system delay is non-negative. |
| 585 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec)); |
| 586 } |
| 587 // Verify we are not in a non-causal state. |
| 588 EXPECT_FALSE(non_causal); |
| 589 } |
| 492 } | 590 } |
| 493 // Verify we are not in a non-causal state. | |
| 494 EXPECT_FALSE(non_causal); | |
| 495 } | 591 } |
| 496 } | 592 } |
| 497 | 593 |
| 498 } // namespace | 594 } // namespace |
| OLD | NEW |