Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(274)

Side by Side Diff: webrtc/modules/video_coding/codecs/h264/h264_video_toolbox_nalu.cc

Issue 1187573004: iOS HW H264 support. (Closed) Base URL: https://chromium.googlesource.com/external/webrtc@master
Patch Set: Move unittest file. Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 *
10 */
11
12 #include "webrtc/modules/video_coding/codecs/h264/h264_video_toolbox_nalu.h"
13
14 #if defined(WEBRTC_VIDEO_TOOLBOX_SUPPORTED)
15
16 #include <CoreFoundation/CoreFoundation.h>
17 #include <vector>
18
19 #include "webrtc/base/checks.h"
20 #include "webrtc/base/logging.h"
21
22 namespace webrtc {
23
24 const char kAnnexBHeaderBytes[4] = {0, 0, 0, 1};
25 const size_t kAvccHeaderByteSize = sizeof(uint32_t);
26
27 bool H264CMSampleBufferToAnnexBBuffer(
28 CMSampleBufferRef avcc_sample_buffer,
29 bool is_keyframe,
30 rtc::Buffer* annexb_buffer,
31 webrtc::RTPFragmentationHeader** out_header) {
32 DCHECK(avcc_sample_buffer);
33 DCHECK(out_header);
34 *out_header = nullptr;
35
36 // Get format description from the sample buffer.
37 CMVideoFormatDescriptionRef description =
38 CMSampleBufferGetFormatDescription(avcc_sample_buffer);
39 if (description == nullptr) {
40 LOG(LS_ERROR) << "Failed to get sample buffer's description.";
41 return false;
42 }
43
44 // Get parameter set information.
45 int nalu_header_size = 0;
46 size_t param_set_count = 0;
47 OSStatus status = CMVideoFormatDescriptionGetH264ParameterSetAtIndex(
48 description, 0, nullptr, nullptr, &param_set_count, &nalu_header_size);
49 if (status != noErr) {
50 LOG(LS_ERROR) << "Failed to get parameter set.";
51 return false;
52 }
53 // TODO(tkchin): handle other potential sizes.
54 DCHECK_EQ(nalu_header_size, 4);
55 DCHECK_EQ(param_set_count, 2u);
56
57 // Truncate any previous data in the buffer without changing its capacity.
58 annexb_buffer->SetSize(0);
59
60 size_t nalu_offset = 0;
61 std::vector<size_t> frag_offsets;
62 std::vector<size_t> frag_lengths;
63
64 // Place all parameter sets at the front of buffer.
65 if (is_keyframe) {
66 size_t param_set_size = 0;
67 const uint8_t* param_set = nullptr;
68 for (size_t i = 0; i < param_set_count; ++i) {
69 status = CMVideoFormatDescriptionGetH264ParameterSetAtIndex(
70 description, i, &param_set, &param_set_size, nullptr, nullptr);
71 if (status != noErr) {
72 LOG(LS_ERROR) << "Failed to get parameter set.";
73 return false;
74 }
75 // Update buffer.
76 annexb_buffer->AppendData(kAnnexBHeaderBytes, sizeof(kAnnexBHeaderBytes));
77 annexb_buffer->AppendData(reinterpret_cast<const char*>(param_set),
78 param_set_size);
79 // Update fragmentation.
80 frag_offsets.push_back(nalu_offset + sizeof(kAnnexBHeaderBytes));
81 frag_lengths.push_back(param_set_size);
82 nalu_offset += sizeof(kAnnexBHeaderBytes) + param_set_size;
83 }
84 }
85
86 // Get block buffer from the sample buffer.
87 CMBlockBufferRef block_buffer =
88 CMSampleBufferGetDataBuffer(avcc_sample_buffer);
89 if (block_buffer == nullptr) {
90 LOG(LS_ERROR) << "Failed to get sample buffer's block buffer.";
91 return false;
92 }
93 CMBlockBufferRef contiguous_buffer = nullptr;
94 // Make sure block buffer is contiguous.
95 if (!CMBlockBufferIsRangeContiguous(block_buffer, 0, 0)) {
96 status = CMBlockBufferCreateContiguous(
97 nullptr, block_buffer, nullptr, nullptr, 0, 0, 0, &contiguous_buffer);
98 if (status != noErr) {
99 LOG(LS_ERROR) << "Failed to flatten non-contiguous block buffer: "
100 << status;
101 return false;
102 }
103 } else {
104 contiguous_buffer = block_buffer;
105 // Retain to make cleanup easier.
106 CFRetain(contiguous_buffer);
107 block_buffer = nullptr;
108 }
109
110 // Now copy the actual data.
111 char* data_ptr = nullptr;
112 size_t block_buffer_size = CMBlockBufferGetDataLength(contiguous_buffer);
113 status = CMBlockBufferGetDataPointer(contiguous_buffer, 0, nullptr, nullptr,
114 &data_ptr);
115 if (status != noErr) {
116 LOG(LS_ERROR) << "Failed to get block buffer data.";
117 CFRelease(contiguous_buffer);
118 return false;
119 }
120 size_t bytes_remaining = block_buffer_size;
121 while (bytes_remaining > 0) {
122 // The size type here must match |nalu_header_size|, we expect 4 bytes.
123 // Read the length of the next packet of data. Must convert from big endian
124 // to host endian.
125 DCHECK_GE(bytes_remaining, (size_t)nalu_header_size);
126 uint32_t* uint32_data_ptr = reinterpret_cast<uint32*>(data_ptr);
127 uint32_t packet_size = CFSwapInt32BigToHost(*uint32_data_ptr);
128 // Update buffer.
129 annexb_buffer->AppendData(kAnnexBHeaderBytes, sizeof(kAnnexBHeaderBytes));
130 annexb_buffer->AppendData(data_ptr + nalu_header_size, packet_size);
131 // Update fragmentation.
132 frag_offsets.push_back(nalu_offset + sizeof(kAnnexBHeaderBytes));
133 frag_lengths.push_back(packet_size);
134 nalu_offset += sizeof(kAnnexBHeaderBytes) + packet_size;
135
136 size_t bytes_written = packet_size + nalu_header_size;
137 bytes_remaining -= bytes_written;
138 data_ptr += bytes_written;
139 }
140 DCHECK_EQ(bytes_remaining, (size_t)0);
141
142 rtc::scoped_ptr<webrtc::RTPFragmentationHeader> header;
143 header.reset(new webrtc::RTPFragmentationHeader());
144 header->VerifyAndAllocateFragmentationHeader(frag_offsets.size());
145 DCHECK_EQ(frag_lengths.size(), frag_offsets.size());
146 for (size_t i = 0; i < frag_offsets.size(); ++i) {
147 header->fragmentationOffset[i] = frag_offsets[i];
148 header->fragmentationLength[i] = frag_lengths[i];
149 header->fragmentationPlType[i] = 0;
150 header->fragmentationTimeDiff[i] = 0;
151 }
152 *out_header = header.release();
153 CFRelease(contiguous_buffer);
154 return true;
155 }
156
157 bool H264AnnexBBufferToCMSampleBuffer(
158 const uint8_t* annexb_buffer,
159 size_t annexb_buffer_size,
160 CMVideoFormatDescriptionRef video_format,
161 CMSampleBufferRef* out_sample_buffer) {
162 DCHECK(annexb_buffer);
163 DCHECK(out_sample_buffer);
164 *out_sample_buffer = nullptr;
165
166 // The buffer we receive via RTP has 00 00 00 01 start code artifically
167 // embedded by the RTP depacketizer. Extract NALU information.
168 // TODO(tkchin): handle potential case where sps and pps are delivered
169 // separately.
170 uint8_t first_nalu_type = annexb_buffer[4] & 0x1f;
171 bool is_first_nalu_type_sps = first_nalu_type == 0x7;
172
173 AnnexBBufferReader reader(annexb_buffer, annexb_buffer_size);
174 CMVideoFormatDescriptionRef description = nullptr;
175 OSStatus status = noErr;
176 if (is_first_nalu_type_sps) {
177 // Parse the SPS and PPS into a CMVideoFormatDescription.
178 const uint8_t* param_set_ptrs[2] = {};
179 size_t param_set_sizes[2] = {};
180 if (!reader.ReadNalu(&param_set_ptrs[0], &param_set_sizes[0])) {
181 LOG(LS_ERROR) << "Failed to read SPS";
182 return false;
183 }
184 if (!reader.ReadNalu(&param_set_ptrs[1], &param_set_sizes[1])) {
185 LOG(LS_ERROR) << "Failed to read PPS";
186 return false;
187 }
188 status = CMVideoFormatDescriptionCreateFromH264ParameterSets(
189 kCFAllocatorDefault, 2, param_set_ptrs, param_set_sizes, 4,
190 &description);
191 if (status != noErr) {
192 LOG(LS_ERROR) << "Failed to create video format description.";
193 return false;
194 }
195 } else {
196 DCHECK(video_format);
197 description = video_format;
198 // We don't need to retain, but it makes logic easier since we are creating
199 // in the other block.
200 CFRetain(description);
201 }
202
203 // Allocate memory as a block buffer.
204 // TODO(tkchin): figure out how to use a pool.
205 CMBlockBufferRef block_buffer = nullptr;
206 status = CMBlockBufferCreateWithMemoryBlock(
207 nullptr, nullptr, reader.BytesRemaining(), nullptr, nullptr, 0,
208 reader.BytesRemaining(), kCMBlockBufferAssureMemoryNowFlag,
209 &block_buffer);
210 if (status != kCMBlockBufferNoErr) {
211 LOG(LS_ERROR) << "Failed to create block buffer.";
212 CFRelease(description);
213 return false;
214 }
215
216 // Make sure block buffer is contiguous.
217 CMBlockBufferRef contiguous_buffer = nullptr;
218 if (!CMBlockBufferIsRangeContiguous(block_buffer, 0, 0)) {
219 status = CMBlockBufferCreateContiguous(
220 nullptr, block_buffer, nullptr, nullptr, 0, 0, 0, &contiguous_buffer);
221 if (status != noErr) {
222 LOG(LS_ERROR) << "Failed to flatten non-contiguous block buffer: "
223 << status;
224 CFRelease(description);
225 CFRelease(block_buffer);
226 return false;
227 }
228 } else {
229 contiguous_buffer = block_buffer;
230 block_buffer = nullptr;
231 }
232
233 // Get a raw pointer into allocated memory.
234 size_t block_buffer_size = 0;
235 char* data_ptr = nullptr;
236 status = CMBlockBufferGetDataPointer(contiguous_buffer, 0, nullptr,
237 &block_buffer_size, &data_ptr);
238 if (status != kCMBlockBufferNoErr) {
239 LOG(LS_ERROR) << "Failed to get block buffer data pointer.";
240 CFRelease(description);
241 CFRelease(contiguous_buffer);
242 return false;
243 }
244 DCHECK(block_buffer_size == reader.BytesRemaining());
245
246 // Write Avcc NALUs into block buffer memory.
247 AvccBufferWriter writer(reinterpret_cast<uint8_t*>(data_ptr),
248 block_buffer_size);
249 while (reader.BytesRemaining() > 0) {
250 const uint8_t* nalu_data_ptr = nullptr;
251 size_t nalu_data_size = 0;
252 if (reader.ReadNalu(&nalu_data_ptr, &nalu_data_size)) {
253 writer.WriteNalu(nalu_data_ptr, nalu_data_size);
254 }
255 }
256
257 // Create sample buffer.
258 status = CMSampleBufferCreate(nullptr, contiguous_buffer, true, nullptr,
259 nullptr, description, 1, 0, nullptr, 0, nullptr,
260 out_sample_buffer);
261 if (status != noErr) {
262 LOG(LS_ERROR) << "Failed to create sample buffer.";
263 CFRelease(description);
264 CFRelease(contiguous_buffer);
265 return false;
266 }
267 CFRelease(description);
268 CFRelease(contiguous_buffer);
269 return true;
270 }
271
272 AnnexBBufferReader::AnnexBBufferReader(const uint8_t* annexb_buffer,
273 size_t length)
274 : start_(annexb_buffer), offset_(0), next_offset_(0), length_(length) {
275 DCHECK(annexb_buffer);
276 offset_ = FindNextNaluHeader(start_, length_, 0);
277 next_offset_ =
278 FindNextNaluHeader(start_, length_, offset_ + sizeof(kAnnexBHeaderBytes));
279 }
280
281 bool AnnexBBufferReader::ReadNalu(const uint8_t** out_nalu,
282 size_t* out_length) {
283 DCHECK(out_nalu);
284 DCHECK(out_length);
285 *out_nalu = nullptr;
286 *out_length = 0;
287
288 size_t data_offset = offset_ + sizeof(kAnnexBHeaderBytes);
289 if (data_offset > length_) {
290 return false;
291 }
292 *out_nalu = start_ + data_offset;
293 *out_length = next_offset_ - data_offset;
294 offset_ = next_offset_;
295 next_offset_ =
296 FindNextNaluHeader(start_, length_, offset_ + sizeof(kAnnexBHeaderBytes));
297 return true;
298 }
299
300 size_t AnnexBBufferReader::BytesRemaining() const {
301 return length_ - offset_;
302 }
303
304 size_t AnnexBBufferReader::FindNextNaluHeader(const uint8_t* start,
305 size_t length,
306 size_t offset) const {
307 DCHECK(start);
308 if (offset + sizeof(kAnnexBHeaderBytes) > length) {
309 return length;
310 }
311 // NALUs are separated by an 00 00 00 01 header. Scan the byte stream
312 // starting from the offset for the next such sequence.
313 const uint8_t* current = start + offset;
314 // The loop reads sizeof(kAnnexBHeaderBytes) at a time, so stop when there
315 // aren't enough bytes remaining.
316 const uint8_t* const end = start + length - sizeof(kAnnexBHeaderBytes);
317 while (current < end) {
318 if (current[3] > 1) {
319 current += 4;
320 } else if (current[3] == 1 && current[2] == 0 && current[1] == 0 &&
321 current[0] == 0) {
322 return current - start;
323 } else {
324 ++current;
325 }
326 }
327 return length;
328 }
329
330 AvccBufferWriter::AvccBufferWriter(uint8_t* const avcc_buffer, size_t length)
331 : start_(avcc_buffer), offset_(0), length_(length) {
332 DCHECK(avcc_buffer);
333 }
334
335 bool AvccBufferWriter::WriteNalu(const uint8_t* data, size_t data_size) {
336 // Check if we can write this length of data.
337 if (data_size + kAvccHeaderByteSize > BytesRemaining()) {
338 return false;
339 }
340 // Write length header, which needs to be big endian.
341 uint32_t big_endian_length = CFSwapInt32HostToBig(data_size);
342 memcpy(start_ + offset_, &big_endian_length, sizeof(big_endian_length));
343 offset_ += sizeof(big_endian_length);
344 // Write data.
345 memcpy(start_ + offset_, data, data_size);
346 offset_ += data_size;
347 return true;
348 }
349
350 size_t AvccBufferWriter::BytesRemaining() const {
351 return length_ - offset_;
352 }
353
354 } // namespace webrtc
355
356 #endif // defined(WEBRTC_VIDEO_TOOLBOX_SUPPORTED)
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698