| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| 11 // | |
| 12 // Implements core class for intelligibility enhancer. | |
| 13 // | |
| 14 // Details of the model and algorithm can be found in the original paper: | |
| 15 // http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6882788 | |
| 16 // | |
| 17 | |
| 18 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc
er.h" | 11 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc
er.h" |
| 19 | 12 |
| 20 #include <cmath> | 13 #include <cmath> |
| 21 #include <cstdlib> | 14 #include <cstdlib> |
| 22 | 15 |
| 23 #include <algorithm> | 16 #include <algorithm> |
| 24 | 17 |
| 25 #include "webrtc/base/checks.h" | 18 #include "webrtc/base/checks.h" |
| 26 #include "webrtc/common_audio/vad/include/webrtc_vad.h" | 19 #include "webrtc/common_audio/vad/include/webrtc_vad.h" |
| 27 #include "webrtc/common_audio/window_generator.h" | 20 #include "webrtc/common_audio/window_generator.h" |
| 28 | 21 |
| 29 using std::complex; | 22 using std::complex; |
| 30 using std::max; | 23 using std::max; |
| 31 using std::min; | 24 using std::min; |
| 32 | 25 |
| 33 namespace webrtc { | 26 namespace webrtc { |
| 34 | 27 |
| 35 const int IntelligibilityEnhancer::kErbResolution = 2; | 28 const int IntelligibilityEnhancer::kErbResolution = 2; |
| 36 const int IntelligibilityEnhancer::kWindowSizeMs = 2; | 29 const int IntelligibilityEnhancer::kWindowSizeMs = 2; |
| 37 const int IntelligibilityEnhancer::kChunkSizeMs = 10; // Size provided by APM. | 30 // The size of the chunk provided by APM, in milliseconds. |
| 31 const int IntelligibilityEnhancer::kChunkSizeMs = 10; |
| 38 const int IntelligibilityEnhancer::kAnalyzeRate = 800; | 32 const int IntelligibilityEnhancer::kAnalyzeRate = 800; |
| 39 const int IntelligibilityEnhancer::kVarianceRate = 2; | 33 const int IntelligibilityEnhancer::kVarianceRate = 2; |
| 40 const float IntelligibilityEnhancer::kClipFreq = 200.0f; | 34 const float IntelligibilityEnhancer::kClipFreq = 200.0f; |
| 41 const float IntelligibilityEnhancer::kConfigRho = 0.02f; | 35 const float IntelligibilityEnhancer::kConfigRho = 0.02f; |
| 42 const float IntelligibilityEnhancer::kKbdAlpha = 1.5f; | 36 const float IntelligibilityEnhancer::kKbdAlpha = 1.5f; |
| 43 | |
| 44 // To disable gain update smoothing, set gain limit to be VERY high. | |
| 45 // TODO(ekmeyerson): Add option to disable gain smoothing altogether | |
| 46 // to avoid the extra computation. | |
| 47 const float IntelligibilityEnhancer::kGainChangeLimit = 0.0125f; | 37 const float IntelligibilityEnhancer::kGainChangeLimit = 0.0125f; |
| 48 | 38 |
| 49 using VarianceType = intelligibility::VarianceArray::StepType; | 39 using VarianceType = intelligibility::VarianceArray::StepType; |
| 50 | 40 |
| 51 IntelligibilityEnhancer::TransformCallback::TransformCallback( | 41 IntelligibilityEnhancer::TransformCallback::TransformCallback( |
| 52 IntelligibilityEnhancer* parent, | 42 IntelligibilityEnhancer* parent, |
| 53 IntelligibilityEnhancer::AudioSource source) | 43 IntelligibilityEnhancer::AudioSource source) |
| 54 : parent_(parent), source_(source) { | 44 : parent_(parent), |
| 55 } | 45 source_(source) {} |
| 56 | 46 |
| 57 void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock( | 47 void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock( |
| 58 const complex<float>* const* in_block, | 48 const complex<float>* const* in_block, |
| 59 int in_channels, | 49 int in_channels, int frames, int /* out_channels */, |
| 60 int frames, | |
| 61 int /* out_channels */, | |
| 62 complex<float>* const* out_block) { | 50 complex<float>* const* out_block) { |
| 63 DCHECK_EQ(parent_->freqs_, frames); | 51 DCHECK_EQ(parent_->freqs_, frames); |
| 64 for (int i = 0; i < in_channels; ++i) { | 52 for (int i = 0; i < in_channels; ++i) { |
| 65 parent_->DispatchAudio(source_, in_block[i], out_block[i]); | 53 parent_->DispatchAudio(source_, in_block[i], out_block[i]); |
| 66 } | 54 } |
| 67 } | 55 } |
| 68 | 56 |
| 69 IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution, | 57 IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution, |
| 70 int sample_rate_hz, | 58 int sample_rate_hz, |
| 71 int channels, | 59 int channels, |
| 72 int cv_type, | 60 int cv_type, float cv_alpha, |
| 73 float cv_alpha, | |
| 74 int cv_win, | 61 int cv_win, |
| 75 int analysis_rate, | 62 int analysis_rate, |
| 76 int variance_rate, | 63 int variance_rate, |
| 77 float gain_limit) | 64 float gain_limit) |
| 78 : freqs_(RealFourier::ComplexLength( | 65 : freqs_(RealFourier::ComplexLength(RealFourier::FftOrder( |
| 79 RealFourier::FftOrder(sample_rate_hz * kWindowSizeMs / 1000))), | 66 sample_rate_hz * kWindowSizeMs / 1000))), |
| 80 window_size_(1 << RealFourier::FftOrder(freqs_)), | 67 window_size_(1 << RealFourier::FftOrder(freqs_)), |
| 81 chunk_length_(sample_rate_hz * kChunkSizeMs / 1000), | 68 chunk_length_(sample_rate_hz * kChunkSizeMs / 1000), |
| 82 bank_size_(GetBankSize(sample_rate_hz, erb_resolution)), | 69 bank_size_(GetBankSize(sample_rate_hz, erb_resolution)), |
| 83 sample_rate_hz_(sample_rate_hz), | 70 sample_rate_hz_(sample_rate_hz), |
| 84 erb_resolution_(erb_resolution), | 71 erb_resolution_(erb_resolution), |
| 85 channels_(channels), | 72 channels_(channels), |
| 86 analysis_rate_(analysis_rate), | 73 analysis_rate_(analysis_rate), |
| 87 variance_rate_(variance_rate), | 74 variance_rate_(variance_rate), |
| 88 clear_variance_(freqs_, | 75 clear_variance_(freqs_, static_cast<VarianceType>(cv_type), cv_win, |
| 89 static_cast<VarianceType>(cv_type), | |
| 90 cv_win, | |
| 91 cv_alpha), | 76 cv_alpha), |
| 92 noise_variance_(freqs_, VarianceType::kStepInfinite, 475, 0.01f), | 77 noise_variance_(freqs_, VarianceType::kStepInfinite, 475, 0.01f), |
| 93 filtered_clear_var_(new float[bank_size_]), | 78 filtered_clear_var_(new float[bank_size_]), |
| 94 filtered_noise_var_(new float[bank_size_]), | 79 filtered_noise_var_(new float[bank_size_]), |
| 95 filter_bank_(nullptr), | 80 filter_bank_(nullptr), |
| 96 center_freqs_(new float[bank_size_]), | 81 center_freqs_(new float[bank_size_]), |
| 97 rho_(new float[bank_size_]), | 82 rho_(new float[bank_size_]), |
| 98 gains_eq_(new float[bank_size_]), | 83 gains_eq_(new float[bank_size_]), |
| 99 gain_applier_(freqs_, gain_limit), | 84 gain_applier_(freqs_, gain_limit), |
| 100 temp_out_buffer_(nullptr), | 85 temp_out_buffer_(nullptr), |
| 101 input_audio_(new float* [channels]), | 86 input_audio_(new float*[channels]), |
| 102 kbd_window_(new float[window_size_]), | 87 kbd_window_(new float[window_size_]), |
| 103 render_callback_(this, AudioSource::kRenderStream), | 88 render_callback_(this, AudioSource::kRenderStream), |
| 104 capture_callback_(this, AudioSource::kCaptureStream), | 89 capture_callback_(this, AudioSource::kCaptureStream), |
| 105 block_count_(0), | 90 block_count_(0), |
| 106 analysis_step_(0), | 91 analysis_step_(0), |
| 107 vad_high_(WebRtcVad_Create()), | 92 vad_high_(nullptr), |
| 108 vad_low_(WebRtcVad_Create()), | 93 vad_low_(nullptr), |
| 109 vad_tmp_buffer_(new int16_t[chunk_length_]) { | 94 vad_tmp_buffer_(new int16_t[chunk_length_]) { |
| 110 DCHECK_LE(kConfigRho, 1.0f); | 95 DCHECK_LE(kConfigRho, 1.0f); |
| 111 | 96 |
| 112 CreateErbBank(); | 97 CreateErbBank(); |
| 113 | 98 |
| 99 WebRtcVad_Create(&vad_high_); |
| 114 WebRtcVad_Init(vad_high_); | 100 WebRtcVad_Init(vad_high_); |
| 115 WebRtcVad_set_mode(vad_high_, 0); // High likelihood of speech. | 101 WebRtcVad_set_mode(vad_high_, 0); // high likelihood of speech |
| 102 WebRtcVad_Create(&vad_low_); |
| 116 WebRtcVad_Init(vad_low_); | 103 WebRtcVad_Init(vad_low_); |
| 117 WebRtcVad_set_mode(vad_low_, 3); // Low likelihood of speech. | 104 WebRtcVad_set_mode(vad_low_, 3); // low likelihood of speech |
| 118 | 105 |
| 119 temp_out_buffer_ = static_cast<float**>( | 106 temp_out_buffer_ = static_cast<float**>(malloc( |
| 120 malloc(sizeof(*temp_out_buffer_) * channels_ + | 107 sizeof(*temp_out_buffer_) * channels_ + |
| 121 sizeof(**temp_out_buffer_) * chunk_length_ * channels_)); | 108 sizeof(**temp_out_buffer_) * chunk_length_ * channels_)); |
| 122 for (int i = 0; i < channels_; ++i) { | 109 for (int i = 0; i < channels_; ++i) { |
| 123 temp_out_buffer_[i] = | 110 temp_out_buffer_[i] = reinterpret_cast<float*>(temp_out_buffer_ + channels_) |
| 124 reinterpret_cast<float*>(temp_out_buffer_ + channels_) + | 111 + chunk_length_ * i; |
| 125 chunk_length_ * i; | |
| 126 } | 112 } |
| 127 | 113 |
| 128 // Assumes all rho equal. | |
| 129 for (int i = 0; i < bank_size_; ++i) { | 114 for (int i = 0; i < bank_size_; ++i) { |
| 130 rho_[i] = kConfigRho * kConfigRho; | 115 rho_[i] = kConfigRho * kConfigRho; |
| 131 } | 116 } |
| 132 | 117 |
| 133 float freqs_khz = kClipFreq / 1000.0f; | 118 float freqs_khz = kClipFreq / 1000.0f; |
| 134 int erb_index = static_cast<int>(ceilf( | 119 int erb_index = static_cast<int>(ceilf(11.17f * logf((freqs_khz + 0.312f) / |
| 135 11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f)); | 120 (freqs_khz + 14.6575f)) |
| 121 + 43.0f)); |
| 136 start_freq_ = max(1, erb_index * kErbResolution); | 122 start_freq_ = max(1, erb_index * kErbResolution); |
| 137 | 123 |
| 138 WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_, | 124 WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_, |
| 139 kbd_window_.get()); | 125 kbd_window_.get()); |
| 140 render_mangler_.reset(new LappedTransform( | 126 render_mangler_.reset(new LappedTransform(channels_, channels_, |
| 141 channels_, channels_, chunk_length_, kbd_window_.get(), window_size_, | 127 chunk_length_, |
| 142 window_size_ / 2, &render_callback_)); | 128 kbd_window_.get(), |
| 143 capture_mangler_.reset(new LappedTransform( | 129 window_size_, |
| 144 channels_, channels_, chunk_length_, kbd_window_.get(), window_size_, | 130 window_size_ / 2, |
| 145 window_size_ / 2, &capture_callback_)); | 131 &render_callback_)); |
| 132 capture_mangler_.reset(new LappedTransform(channels_, channels_, |
| 133 chunk_length_, |
| 134 kbd_window_.get(), |
| 135 window_size_, |
| 136 window_size_ / 2, |
| 137 &capture_callback_)); |
| 146 } | 138 } |
| 147 | 139 |
| 148 IntelligibilityEnhancer::~IntelligibilityEnhancer() { | 140 IntelligibilityEnhancer::~IntelligibilityEnhancer() { |
| 149 WebRtcVad_Free(vad_low_); | 141 WebRtcVad_Free(vad_low_); |
| 150 WebRtcVad_Free(vad_high_); | 142 WebRtcVad_Free(vad_high_); |
| 151 free(filter_bank_); | 143 free(filter_bank_); |
| 152 } | 144 } |
| 153 | 145 |
| 154 void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio) { | 146 void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio) { |
| 155 for (int i = 0; i < chunk_length_; ++i) { | 147 for (int i = 0; i < chunk_length_; ++i) { |
| 156 vad_tmp_buffer_[i] = (int16_t)audio[0][i]; | 148 vad_tmp_buffer_[i] = (int16_t)audio[0][i]; |
| 157 } | 149 } |
| 158 has_voice_low_ = WebRtcVad_Process(vad_low_, sample_rate_hz_, | 150 has_voice_low_ = WebRtcVad_Process(vad_low_, sample_rate_hz_, |
| 159 vad_tmp_buffer_.get(), chunk_length_) == 1; | 151 vad_tmp_buffer_.get(), chunk_length_) == 1; |
| 160 | 152 |
| 161 // Process and enhance chunk of |audio| | |
| 162 render_mangler_->ProcessChunk(audio, temp_out_buffer_); | 153 render_mangler_->ProcessChunk(audio, temp_out_buffer_); |
| 163 | |
| 164 for (int i = 0; i < channels_; ++i) { | 154 for (int i = 0; i < channels_; ++i) { |
| 165 memcpy(audio[i], temp_out_buffer_[i], | 155 memcpy(audio[i], temp_out_buffer_[i], |
| 166 chunk_length_ * sizeof(**temp_out_buffer_)); | 156 chunk_length_ * sizeof(**temp_out_buffer_)); |
| 167 } | 157 } |
| 168 } | 158 } |
| 169 | 159 |
| 170 void IntelligibilityEnhancer::ProcessCaptureAudio(float* const* audio) { | 160 void IntelligibilityEnhancer::ProcessCaptureAudio(float* const* audio) { |
| 171 for (int i = 0; i < chunk_length_; ++i) { | 161 for (int i = 0; i < chunk_length_; ++i) { |
| 172 vad_tmp_buffer_[i] = (int16_t)audio[0][i]; | 162 vad_tmp_buffer_[i] = (int16_t)audio[0][i]; |
| 173 } | 163 } |
| 174 // TODO(bercic): The VAD was always detecting voice in the noise stream, | 164 // TODO(bercic): the VAD was always detecting voice in the noise stream, |
| 175 // no matter what the aggressiveness, so it was temporarily disabled here. | 165 // no matter what the aggressiveness, so it was temporarily disabled here |
| 176 | 166 |
| 177 #if 0 | 167 //if (WebRtcVad_Process(vad_high_, sample_rate_hz_, vad_tmp_buffer_.get(), |
| 178 if (WebRtcVad_Process(vad_high_, sample_rate_hz_, vad_tmp_buffer_.get(), | 168 // chunk_length_) == 1) { |
| 179 chunk_length_) == 1) { | 169 // printf("capture HAS speech\n"); |
| 180 printf("capture HAS speech\n"); | 170 // return; |
| 181 return; | 171 //} |
| 182 } | 172 //printf("capture NO speech\n"); |
| 183 printf("capture NO speech\n"); | |
| 184 #endif | |
| 185 | |
| 186 capture_mangler_->ProcessChunk(audio, temp_out_buffer_); | 173 capture_mangler_->ProcessChunk(audio, temp_out_buffer_); |
| 187 } | 174 } |
| 188 | 175 |
| 189 void IntelligibilityEnhancer::DispatchAudio( | 176 void IntelligibilityEnhancer::DispatchAudio( |
| 190 IntelligibilityEnhancer::AudioSource source, | 177 IntelligibilityEnhancer::AudioSource source, |
| 191 const complex<float>* in_block, | 178 const complex<float>* in_block, complex<float>* out_block) { |
| 192 complex<float>* out_block) { | |
| 193 switch (source) { | 179 switch (source) { |
| 194 case kRenderStream: | 180 case kRenderStream: |
| 195 ProcessClearBlock(in_block, out_block); | 181 ProcessClearBlock(in_block, out_block); |
| 196 break; | 182 break; |
| 197 case kCaptureStream: | 183 case kCaptureStream: |
| 198 ProcessNoiseBlock(in_block, out_block); | 184 ProcessNoiseBlock(in_block, out_block); |
| 199 break; | 185 break; |
| 200 } | 186 } |
| 201 } | 187 } |
| 202 | 188 |
| 203 void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block, | 189 void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block, |
| 204 complex<float>* out_block) { | 190 complex<float>* out_block) { |
| 205 float power_target; | 191 float power_target; |
| 206 | 192 |
| 207 if (block_count_ < 2) { | 193 if (block_count_ < 2) { |
| 208 memset(out_block, 0, freqs_ * sizeof(*out_block)); | 194 memset(out_block, 0, freqs_ * sizeof(*out_block)); |
| 209 ++block_count_; | 195 ++block_count_; |
| 210 return; | 196 return; |
| 211 } | 197 } |
| 212 | 198 |
| 213 // For now, always assumes enhancement is necessary. | |
| 214 // TODO(ekmeyerson): Change to only enhance if necessary, | |
| 215 // based on experiments with different cutoffs. | |
| 216 if (has_voice_low_ || true) { | 199 if (has_voice_low_ || true) { |
| 217 clear_variance_.Step(in_block, false); | 200 clear_variance_.Step(in_block, false); |
| 218 power_target = std::accumulate(clear_variance_.variance(), | 201 power_target = std::accumulate(clear_variance_.variance(), |
| 219 clear_variance_.variance() + freqs_, 0.0f); | 202 clear_variance_.variance() + freqs_, 0.0f); |
| 220 | 203 |
| 221 if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { | 204 if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { |
| 222 AnalyzeClearBlock(power_target); | 205 AnalyzeClearBlock(power_target); |
| 223 ++analysis_step_; | 206 ++analysis_step_; |
| 224 if (analysis_step_ == variance_rate_) { | 207 if (analysis_step_ == variance_rate_) { |
| 225 analysis_step_ = 0; | 208 analysis_step_ = 0; |
| 226 clear_variance_.Clear(); | 209 clear_variance_.Clear(); |
| 227 noise_variance_.Clear(); | 210 noise_variance_.Clear(); |
| 228 } | 211 } |
| 229 } | 212 } |
| 230 ++block_count_; | 213 ++block_count_; |
| 231 } | 214 } |
| 232 | 215 |
| 233 /* efidata(n,:) = sqrt(b(n)) * fidata(n,:) */ | 216 /* efidata(n,:) = sqrt(b(n)) * fidata(n,:) */ |
| 234 gain_applier_.Apply(in_block, out_block); | 217 gain_applier_.Apply(in_block, out_block); |
| 235 } | 218 } |
| 236 | 219 |
| 237 void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) { | 220 void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) { |
| 238 FilterVariance(clear_variance_.variance(), filtered_clear_var_.get()); | 221 FilterVariance(clear_variance_.variance(), filtered_clear_var_.get()); |
| 239 FilterVariance(noise_variance_.variance(), filtered_noise_var_.get()); | 222 FilterVariance(noise_variance_.variance(), filtered_noise_var_.get()); |
| 240 | 223 |
| 241 // Bisection search for optimal |lambda| | 224 /* lambda binary search */ |
| 242 | 225 |
| 243 float lambda_bot = -1.0f, lambda_top = -10e-18f, lambda; | 226 float lambda_bot = -1.0f, lambda_top = -10e-18f, lambda; |
| 244 float power_bot, power_top, power; | 227 float power_bot, power_top, power; |
| 245 SolveForGainsGivenLambda(lambda_top, start_freq_, gains_eq_.get()); | 228 SolveEquation14(lambda_top, start_freq_, gains_eq_.get()); |
| 246 power_top = | 229 power_top = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), |
| 247 DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); | 230 bank_size_); |
| 248 SolveForGainsGivenLambda(lambda_bot, start_freq_, gains_eq_.get()); | 231 SolveEquation14(lambda_bot, start_freq_, gains_eq_.get()); |
| 249 power_bot = | 232 power_bot = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), |
| 250 DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); | 233 bank_size_); |
| 251 DCHECK(power_target >= power_bot && power_target <= power_top); | 234 DCHECK(power_target >= power_bot && power_target <= power_top); |
| 252 | 235 |
| 253 float power_ratio = 2.0f; // Ratio of achieved power to target power. | 236 float power_ratio = 2.0f; |
| 254 const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values | |
| 255 const int kMaxIters = 100; // for these, based on experiments. | |
| 256 int iters = 0; | 237 int iters = 0; |
| 257 while (fabs(power_ratio - 1.0f) > kConvergeThresh && iters <= kMaxIters) { | 238 while (fabs(power_ratio - 1.0f) > 0.001f && iters <= 100) { |
| 258 lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; | 239 lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; |
| 259 SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); | 240 SolveEquation14(lambda, start_freq_, gains_eq_.get()); |
| 260 power = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); | 241 power = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
| 261 if (power < power_target) { | 242 if (power < power_target) { |
| 262 lambda_bot = lambda; | 243 lambda_bot = lambda; |
| 263 } else { | 244 } else { |
| 264 lambda_top = lambda; | 245 lambda_top = lambda; |
| 265 } | 246 } |
| 266 power_ratio = fabs(power / power_target); | 247 power_ratio = fabs(power / power_target); |
| 267 ++iters; | 248 ++iters; |
| 268 } | 249 } |
| 269 | 250 |
| 270 // (ERB gain) = filterbank' * (freq gain) | 251 /* b = filterbank' * b */ |
| 271 float* gains = gain_applier_.target(); | 252 float* gains = gain_applier_.target(); |
| 272 for (int i = 0; i < freqs_; ++i) { | 253 for (int i = 0; i < freqs_; ++i) { |
| 273 gains[i] = 0.0f; | 254 gains[i] = 0.0f; |
| 274 for (int j = 0; j < bank_size_; ++j) { | 255 for (int j = 0; j < bank_size_; ++j) { |
| 275 gains[i] = fmaf(filter_bank_[j][i], gains_eq_[j], gains[i]); | 256 gains[i] = fmaf(filter_bank_[j][i], gains_eq_[j], gains[i]); |
| 276 } | 257 } |
| 277 } | 258 } |
| 278 } | 259 } |
| 279 | 260 |
| 280 void IntelligibilityEnhancer::ProcessNoiseBlock(const complex<float>* in_block, | 261 void IntelligibilityEnhancer::ProcessNoiseBlock(const complex<float>* in_block, |
| 281 complex<float>* /*out_block*/) { | 262 complex<float>* /*out_block*/) { |
| 282 noise_variance_.Step(in_block); | 263 noise_variance_.Step(in_block); |
| 283 } | 264 } |
| 284 | 265 |
| 285 int IntelligibilityEnhancer::GetBankSize(int sample_rate, int erb_resolution) { | 266 int IntelligibilityEnhancer::GetBankSize(int sample_rate, int erb_resolution) { |
| 286 float freq_limit = sample_rate / 2000.0f; | 267 float freq_limit = sample_rate / 2000.0f; |
| 287 int erb_scale = ceilf( | 268 int erb_scale = ceilf(11.17f * logf((freq_limit + 0.312f) / |
| 288 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.0f); | 269 (freq_limit + 14.6575f)) + 43.0f); |
| 289 return erb_scale * erb_resolution; | 270 return erb_scale * erb_resolution; |
| 290 } | 271 } |
| 291 | 272 |
| 292 void IntelligibilityEnhancer::CreateErbBank() { | 273 void IntelligibilityEnhancer::CreateErbBank() { |
| 293 int lf = 1, rf = 4; | 274 int lf = 1, rf = 4; |
| 294 | 275 |
| 295 for (int i = 0; i < bank_size_; ++i) { | 276 for (int i = 0; i < bank_size_; ++i) { |
| 296 float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_)); | 277 float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_)); |
| 297 center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); | 278 center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); |
| 298 center_freqs_[i] -= 14678.49f; | 279 center_freqs_[i] -= 14678.49f; |
| 299 } | 280 } |
| 300 float last_center_freq = center_freqs_[bank_size_ - 1]; | 281 float last_center_freq = center_freqs_[bank_size_ - 1]; |
| 301 for (int i = 0; i < bank_size_; ++i) { | 282 for (int i = 0; i < bank_size_; ++i) { |
| 302 center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; | 283 center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; |
| 303 } | 284 } |
| 304 | 285 |
| 305 filter_bank_ = static_cast<float**>( | 286 filter_bank_ = static_cast<float**>(malloc( |
| 306 malloc(sizeof(*filter_bank_) * bank_size_ + | 287 sizeof(*filter_bank_) * bank_size_ + |
| 307 sizeof(**filter_bank_) * freqs_ * bank_size_)); | 288 sizeof(**filter_bank_) * freqs_ * bank_size_)); |
| 308 for (int i = 0; i < bank_size_; ++i) { | 289 for (int i = 0; i < bank_size_; ++i) { |
| 309 filter_bank_[i] = | 290 filter_bank_[i] = reinterpret_cast<float*>(filter_bank_ + bank_size_) + |
| 310 reinterpret_cast<float*>(filter_bank_ + bank_size_) + freqs_ * i; | 291 freqs_ * i; |
| 311 } | 292 } |
| 312 | 293 |
| 313 for (int i = 1; i <= bank_size_; ++i) { | 294 for (int i = 1; i <= bank_size_; ++i) { |
| 314 int lll, ll, rr, rrr; | 295 int lll, ll, rr, rrr; |
| 315 lll = round(center_freqs_[max(1, i - lf) - 1] * freqs_ / | 296 lll = round(center_freqs_[max(1, i - lf) - 1] * freqs_ / |
| 316 (0.5f * sample_rate_hz_)); | 297 (0.5f * sample_rate_hz_)); |
| 317 ll = | 298 ll = round(center_freqs_[max(1, i ) - 1] * freqs_ / |
| 318 round(center_freqs_[max(1, i) - 1] * freqs_ / (0.5f * sample_rate_hz_)); | 299 (0.5f * sample_rate_hz_)); |
| 319 lll = min(freqs_, max(lll, 1)) - 1; | 300 lll = min(freqs_, max(lll, 1)) - 1; |
| 320 ll = min(freqs_, max(ll, 1)) - 1; | 301 ll = min(freqs_, max(ll, 1)) - 1; |
| 321 | 302 |
| 322 rrr = round(center_freqs_[min(bank_size_, i + rf) - 1] * freqs_ / | 303 rrr = round(center_freqs_[min(bank_size_, i + rf) - 1] * freqs_ / |
| 323 (0.5f * sample_rate_hz_)); | 304 (0.5f * sample_rate_hz_)); |
| 324 rr = round(center_freqs_[min(bank_size_, i + 1) - 1] * freqs_ / | 305 rr = round(center_freqs_[min(bank_size_, i + 1) - 1] * freqs_ / |
| 325 (0.5f * sample_rate_hz_)); | 306 (0.5f * sample_rate_hz_)); |
| 326 rrr = min(freqs_, max(rrr, 1)) - 1; | 307 rrr = min(freqs_, max(rrr, 1)) - 1; |
| 327 rr = min(freqs_, max(rr, 1)) - 1; | 308 rr = min(freqs_, max(rr, 1)) - 1; |
| 328 | 309 |
| 329 float step, element; | 310 float step, element; |
| 330 | 311 |
| 331 step = 1.0f / (ll - lll); | 312 step = 1.0f / (ll - lll); |
| 332 element = 0.0f; | 313 element = 0.0f; |
| 333 for (int j = lll; j <= ll; ++j) { | 314 for (int j = lll; j <= ll; ++j) { |
| 334 filter_bank_[i - 1][j] = element; | 315 filter_bank_[i - 1][j] = element; |
| 335 element += step; | 316 element += step; |
| 336 } | 317 } |
| 337 step = 1.0f / (rrr - rr); | 318 step = 1.0f / (rrr - rr); |
| (...skipping 12 matching lines...) Expand all Loading... |
| 350 sum = 0.0f; | 331 sum = 0.0f; |
| 351 for (int j = 0; j < bank_size_; ++j) { | 332 for (int j = 0; j < bank_size_; ++j) { |
| 352 sum += filter_bank_[j][i]; | 333 sum += filter_bank_[j][i]; |
| 353 } | 334 } |
| 354 for (int j = 0; j < bank_size_; ++j) { | 335 for (int j = 0; j < bank_size_; ++j) { |
| 355 filter_bank_[j][i] /= sum; | 336 filter_bank_[j][i] /= sum; |
| 356 } | 337 } |
| 357 } | 338 } |
| 358 } | 339 } |
| 359 | 340 |
| 360 void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, | 341 void IntelligibilityEnhancer::SolveEquation14(float lambda, int start_freq, |
| 361 int start_freq, | 342 float* sols) { |
| 362 float* sols) { | |
| 363 bool quadratic = (kConfigRho < 1.0f); | 343 bool quadratic = (kConfigRho < 1.0f); |
| 364 const float* var_x0 = filtered_clear_var_.get(); | 344 const float* var_x0 = filtered_clear_var_.get(); |
| 365 const float* var_n0 = filtered_noise_var_.get(); | 345 const float* var_n0 = filtered_noise_var_.get(); |
| 366 | 346 |
| 367 for (int n = 0; n < start_freq; ++n) { | 347 for (int n = 0; n < start_freq; ++n) { |
| 368 sols[n] = 1.0f; | 348 sols[n] = 1.0f; |
| 369 } | 349 } |
| 370 | |
| 371 // Analytic solution for optimal gains. See paper for derivation. | |
| 372 for (int n = start_freq - 1; n < bank_size_; ++n) { | 350 for (int n = start_freq - 1; n < bank_size_; ++n) { |
| 373 float alpha0, beta0, gamma0; | 351 float alpha0, beta0, gamma0; |
| 374 gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] + | 352 gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] + |
| 375 lambda * var_x0[n] * var_n0[n] * var_n0[n]; | 353 lambda * var_x0[n] * var_n0[n] * var_n0[n]; |
| 376 beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n]; | 354 beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n]; |
| 377 if (quadratic) { | 355 if (quadratic) { |
| 378 alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n]; | 356 alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n]; |
| 379 sols[n] = | 357 sols[n] = (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) |
| 380 (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / (2 * alpha0); | 358 / (2 * alpha0); |
| 381 } else { | 359 } else { |
| 382 sols[n] = -gamma0 / beta0; | 360 sols[n] = -gamma0 / beta0; |
| 383 } | 361 } |
| 384 sols[n] = fmax(0, sols[n]); | 362 sols[n] = fmax(0, sols[n]); |
| 385 } | 363 } |
| 386 } | 364 } |
| 387 | 365 |
| 388 void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) { | 366 void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) { |
| 389 for (int i = 0; i < bank_size_; ++i) { | 367 for (int i = 0; i < bank_size_; ++i) { |
| 390 result[i] = DotProduct(filter_bank_[i], var, freqs_); | 368 result[i] = DotProduct(filter_bank_[i], var, freqs_); |
| 391 } | 369 } |
| 392 } | 370 } |
| 393 | 371 |
| 394 float IntelligibilityEnhancer::DotProduct(const float* a, | 372 float IntelligibilityEnhancer::DotProduct(const float* a, const float* b, |
| 395 const float* b, | 373 int length) { |
| 396 int length) { | |
| 397 float ret = 0.0f; | 374 float ret = 0.0f; |
| 398 | 375 |
| 399 for (int i = 0; i < length; ++i) { | 376 for (int i = 0; i < length; ++i) { |
| 400 ret = fmaf(a[i], b[i], ret); | 377 ret = fmaf(a[i], b[i], ret); |
| 401 } | 378 } |
| 402 return ret; | 379 return ret; |
| 403 } | 380 } |
| 404 | 381 |
| 405 } // namespace webrtc | 382 } // namespace webrtc |
| 383 |
| OLD | NEW |