OLD | NEW |
1 /* | 1 /* |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
| 11 // |
| 12 // Implements helper functions and classes for intelligibility enhancement. |
| 13 // |
| 14 |
11 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.
h" | 15 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.
h" |
12 | 16 |
13 #include <algorithm> | 17 #include <algorithm> |
14 #include <cmath> | 18 #include <cmath> |
15 #include <cstring> | 19 #include <cstring> |
16 | 20 |
17 using std::complex; | 21 using std::complex; |
18 | 22 |
19 namespace { | 23 namespace { |
20 | 24 |
(...skipping 12 matching lines...) Expand all Loading... |
33 | 37 |
34 // std::isnormal for complex numbers. | 38 // std::isnormal for complex numbers. |
35 inline bool cplxnormal(complex<float> c) { | 39 inline bool cplxnormal(complex<float> c) { |
36 return std::isnormal(c.real()) && std::isnormal(c.imag()); | 40 return std::isnormal(c.real()) && std::isnormal(c.imag()); |
37 } | 41 } |
38 | 42 |
39 // Apply a small fudge to degenerate complex values. The numbers in the array | 43 // Apply a small fudge to degenerate complex values. The numbers in the array |
40 // were chosen randomly, so that even a series of all zeroes has some small | 44 // were chosen randomly, so that even a series of all zeroes has some small |
41 // variability. | 45 // variability. |
42 inline complex<float> zerofudge(complex<float> c) { | 46 inline complex<float> zerofudge(complex<float> c) { |
43 const static complex<float> fudge[7] = { | 47 const static complex<float> fudge[7] = {{0.001f, 0.002f}, |
44 {0.001f, 0.002f}, {0.008f, 0.001f}, {0.003f, 0.008f}, {0.0006f, 0.0009f}, | 48 {0.008f, 0.001f}, |
45 {0.001f, 0.004f}, {0.003f, 0.004f}, {0.002f, 0.009f} | 49 {0.003f, 0.008f}, |
46 }; | 50 {0.0006f, 0.0009f}, |
| 51 {0.001f, 0.004f}, |
| 52 {0.003f, 0.004f}, |
| 53 {0.002f, 0.009f}}; |
47 static int fudge_index = 0; | 54 static int fudge_index = 0; |
48 if (cplxfinite(c) && !cplxnormal(c)) { | 55 if (cplxfinite(c) && !cplxnormal(c)) { |
49 fudge_index = (fudge_index + 1) % 7; | 56 fudge_index = (fudge_index + 1) % 7; |
50 return c + fudge[fudge_index]; | 57 return c + fudge[fudge_index]; |
51 } | 58 } |
52 return c; | 59 return c; |
53 } | 60 } |
54 | 61 |
55 // Incremental mean computation. Return the mean of the series with the | 62 // Incremental mean computation. Return the mean of the series with the |
56 // mean |mean| with added |data|. | 63 // mean |mean| with added |data|. |
57 inline complex<float> NewMean(complex<float> mean, complex<float> data, | 64 inline complex<float> NewMean(complex<float> mean, |
58 int count) { | 65 complex<float> data, |
| 66 int count) { |
59 return mean + (data - mean) / static_cast<float>(count); | 67 return mean + (data - mean) / static_cast<float>(count); |
60 } | 68 } |
61 | 69 |
62 inline void AddToMean(complex<float> data, int count, complex<float>* mean) { | 70 inline void AddToMean(complex<float> data, int count, complex<float>* mean) { |
63 (*mean) = NewMean(*mean, data, count); | 71 (*mean) = NewMean(*mean, data, count); |
64 } | 72 } |
65 | 73 |
66 } // namespace | 74 } // namespace |
67 | 75 |
68 using std::min; | 76 using std::min; |
69 | 77 |
70 namespace webrtc { | 78 namespace webrtc { |
71 | 79 |
72 namespace intelligibility { | 80 namespace intelligibility { |
73 | 81 |
74 static const int kWindowBlockSize = 10; | 82 static const int kWindowBlockSize = 10; |
75 | 83 |
76 VarianceArray::VarianceArray(int freqs, StepType type, int window_size, | 84 VarianceArray::VarianceArray(int freqs, |
| 85 StepType type, |
| 86 int window_size, |
77 float decay) | 87 float decay) |
78 : running_mean_(new complex<float>[freqs]()), | 88 : running_mean_(new complex<float>[freqs]()), |
79 running_mean_sq_(new complex<float>[freqs]()), | 89 running_mean_sq_(new complex<float>[freqs]()), |
80 sub_running_mean_(new complex<float>[freqs]()), | 90 sub_running_mean_(new complex<float>[freqs]()), |
81 sub_running_mean_sq_(new complex<float>[freqs]()), | 91 sub_running_mean_sq_(new complex<float>[freqs]()), |
82 variance_(new float[freqs]()), | 92 variance_(new float[freqs]()), |
83 conj_sum_(new float[freqs]()), | 93 conj_sum_(new float[freqs]()), |
84 freqs_(freqs), | 94 freqs_(freqs), |
85 window_size_(window_size), | 95 window_size_(window_size), |
86 decay_(decay), | 96 decay_(decay), |
87 history_cursor_(0), | 97 history_cursor_(0), |
88 count_(0), | 98 count_(0), |
89 array_mean_(0.0f) { | 99 array_mean_(0.0f) { |
90 history_.reset(new scoped_ptr<complex<float>[]>[freqs_]()); | 100 history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
91 for (int i = 0; i < freqs_; ++i) { | 101 for (int i = 0; i < freqs_; ++i) { |
92 history_[i].reset(new complex<float>[window_size_]()); | 102 history_[i].reset(new complex<float>[window_size_]()); |
93 } | 103 } |
94 subhistory_.reset(new scoped_ptr<complex<float>[]>[freqs_]()); | 104 subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
95 for (int i = 0; i < freqs_; ++i) { | 105 for (int i = 0; i < freqs_; ++i) { |
96 subhistory_[i].reset(new complex<float>[window_size_]()); | 106 subhistory_[i].reset(new complex<float>[window_size_]()); |
97 } | 107 } |
98 subhistory_sq_.reset(new scoped_ptr<complex<float>[]>[freqs_]()); | 108 subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
99 for (int i = 0; i < freqs_; ++i) { | 109 for (int i = 0; i < freqs_; ++i) { |
100 subhistory_sq_[i].reset(new complex<float>[window_size_]()); | 110 subhistory_sq_[i].reset(new complex<float>[window_size_]()); |
101 } | 111 } |
102 switch (type) { | 112 switch (type) { |
103 case kStepInfinite: | 113 case kStepInfinite: |
104 step_func_ = &VarianceArray::InfiniteStep; | 114 step_func_ = &VarianceArray::InfiniteStep; |
105 break; | 115 break; |
106 case kStepDecaying: | 116 case kStepDecaying: |
107 step_func_ = &VarianceArray::DecayStep; | 117 step_func_ = &VarianceArray::DecayStep; |
108 break; | 118 break; |
(...skipping 15 matching lines...) Expand all Loading... |
124 complex<float> sample = data[i]; | 134 complex<float> sample = data[i]; |
125 if (!skip_fudge) { | 135 if (!skip_fudge) { |
126 sample = zerofudge(sample); | 136 sample = zerofudge(sample); |
127 } | 137 } |
128 if (count_ == 1) { | 138 if (count_ == 1) { |
129 running_mean_[i] = sample; | 139 running_mean_[i] = sample; |
130 variance_[i] = 0.0f; | 140 variance_[i] = 0.0f; |
131 } else { | 141 } else { |
132 float old_sum = conj_sum_[i]; | 142 float old_sum = conj_sum_[i]; |
133 complex<float> old_mean = running_mean_[i]; | 143 complex<float> old_mean = running_mean_[i]; |
134 running_mean_[i] = old_mean + (sample - old_mean) / | 144 running_mean_[i] = |
135 static_cast<float>(count_); | 145 old_mean + (sample - old_mean) / static_cast<float>(count_); |
136 conj_sum_[i] = (old_sum + std::conj(sample - old_mean) * | 146 conj_sum_[i] = |
137 (sample - running_mean_[i])).real(); | 147 (old_sum + std::conj(sample - old_mean) * (sample - running_mean_[i])) |
138 variance_[i] = conj_sum_[i] / (count_ - 1); // + fudge[fudge_index].real()
; | 148 .real(); |
| 149 variance_[i] = |
| 150 conj_sum_[i] / (count_ - 1); // + fudge[fudge_index].real(); |
139 if (skip_fudge && false) { | 151 if (skip_fudge && false) { |
140 //variance_[i] -= fudge[fudge_index].real(); | 152 // variance_[i] -= fudge[fudge_index].real(); |
141 } | 153 } |
142 } | 154 } |
143 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | 155 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
144 } | 156 } |
145 } | 157 } |
146 | 158 |
147 // Compute the variance from the beginning, with exponential decaying of the | 159 // Compute the variance from the beginning, with exponential decaying of the |
148 // series data. | 160 // series data. |
149 void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { | 161 void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { |
150 array_mean_ = 0.0f; | 162 array_mean_ = 0.0f; |
151 ++count_; | 163 ++count_; |
152 for (int i = 0; i < freqs_; ++i) { | 164 for (int i = 0; i < freqs_; ++i) { |
153 complex<float> sample = data[i]; | 165 complex<float> sample = data[i]; |
154 sample = zerofudge(sample); | 166 sample = zerofudge(sample); |
155 | 167 |
156 if (count_ == 1) { | 168 if (count_ == 1) { |
157 running_mean_[i] = sample; | 169 running_mean_[i] = sample; |
158 running_mean_sq_[i] = sample * std::conj(sample); | 170 running_mean_sq_[i] = sample * std::conj(sample); |
159 variance_[i] = 0.0f; | 171 variance_[i] = 0.0f; |
160 } else { | 172 } else { |
161 complex<float> prev = running_mean_[i]; | 173 complex<float> prev = running_mean_[i]; |
162 complex<float> prev2 = running_mean_sq_[i]; | 174 complex<float> prev2 = running_mean_sq_[i]; |
163 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample; | 175 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample; |
164 running_mean_sq_[i] = decay_ * prev2 + | 176 running_mean_sq_[i] = |
165 (1.0f - decay_) * sample * std::conj(sample); | 177 decay_ * prev2 + (1.0f - decay_) * sample * std::conj(sample); |
166 //variance_[i] = decay_ * variance_[i] + (1.0f - decay_) * ( | 178 // variance_[i] = decay_ * variance_[i] + (1.0f - decay_) * ( |
167 // (sample - running_mean_[i]) * std::conj(sample - running_mean_[i])).re
al(); | 179 // (sample - running_mean_[i]) * std::conj(sample - |
168 variance_[i] = (running_mean_sq_[i] - running_mean_[i] * std::conj(running
_mean_[i])).real(); | 180 // running_mean_[i])).real(); |
| 181 variance_[i] = (running_mean_sq_[i] - |
| 182 running_mean_[i] * std::conj(running_mean_[i])).real(); |
169 } | 183 } |
170 | 184 |
171 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | 185 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
172 } | 186 } |
173 } | 187 } |
174 | 188 |
175 // Windowed variance computation. On each step, the variances for the | 189 // Windowed variance computation. On each step, the variances for the |
176 // window are recomputed from scratch, using Welford's algorithm. | 190 // window are recomputed from scratch, using Welford's algorithm. |
177 void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { | 191 void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { |
178 int num = min(count_ + 1, window_size_); | 192 int num = min(count_ + 1, window_size_); |
179 array_mean_ = 0.0f; | 193 array_mean_ = 0.0f; |
180 for (int i = 0; i < freqs_; ++i) { | 194 for (int i = 0; i < freqs_; ++i) { |
181 complex<float> mean; | 195 complex<float> mean; |
182 float conj_sum = 0.0f; | 196 float conj_sum = 0.0f; |
183 | 197 |
184 history_[i][history_cursor_] = data[i]; | 198 history_[i][history_cursor_] = data[i]; |
185 | 199 |
186 mean = history_[i][history_cursor_]; | 200 mean = history_[i][history_cursor_]; |
187 variance_[i] = 0.0f; | 201 variance_[i] = 0.0f; |
188 for (int j = 1; j < num; ++j) { | 202 for (int j = 1; j < num; ++j) { |
189 complex<float> sample = zerofudge( | 203 complex<float> sample = |
190 history_[i][(history_cursor_ + j) % window_size_]); | 204 zerofudge(history_[i][(history_cursor_ + j) % window_size_]); |
191 sample = history_[i][(history_cursor_ + j) % window_size_]; | 205 sample = history_[i][(history_cursor_ + j) % window_size_]; |
192 float old_sum = conj_sum; | 206 float old_sum = conj_sum; |
193 complex<float> old_mean = mean; | 207 complex<float> old_mean = mean; |
194 | 208 |
195 mean = old_mean + (sample - old_mean) / static_cast<float>(j + 1); | 209 mean = old_mean + (sample - old_mean) / static_cast<float>(j + 1); |
196 conj_sum = (old_sum + std::conj(sample - old_mean) * | 210 conj_sum = |
197 (sample - mean)).real(); | 211 (old_sum + std::conj(sample - old_mean) * (sample - mean)).real(); |
198 variance_[i] = conj_sum / (j); | 212 variance_[i] = conj_sum / (j); |
199 } | 213 } |
200 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | 214 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
201 } | 215 } |
202 history_cursor_ = (history_cursor_ + 1) % window_size_; | 216 history_cursor_ = (history_cursor_ + 1) % window_size_; |
203 ++count_; | 217 ++count_; |
204 } | 218 } |
205 | 219 |
206 // Variance with a window of blocks. Within each block, the variances are | 220 // Variance with a window of blocks. Within each block, the variances are |
207 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. | 221 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. |
208 // Once a block is filled with kWindowBlockSize samples, it is added to the | 222 // Once a block is filled with kWindowBlockSize samples, it is added to the |
209 // history window and a new block is started. The variances for the window | 223 // history window and a new block is started. The variances for the window |
210 // are recomputed from scratch at each of these transitions. | 224 // are recomputed from scratch at each of these transitions. |
211 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { | 225 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { |
212 int blocks = min(window_size_, history_cursor_); | 226 int blocks = min(window_size_, history_cursor_); |
213 for (int i = 0; i < freqs_; ++i) { | 227 for (int i = 0; i < freqs_; ++i) { |
214 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); | 228 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); |
215 AddToMean(data[i] * std::conj(data[i]), count_ + 1, | 229 AddToMean(data[i] * std::conj(data[i]), count_ + 1, |
216 &sub_running_mean_sq_[i]); | 230 &sub_running_mean_sq_[i]); |
217 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; | 231 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; |
218 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; | 232 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; |
219 | 233 |
220 variance_[i] = (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], | 234 variance_[i] = |
221 blocks) - | 235 (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - |
222 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * | 236 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * |
223 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], | 237 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) |
224 blocks))).real(); | 238 .real(); |
225 if (count_ == kWindowBlockSize - 1) { | 239 if (count_ == kWindowBlockSize - 1) { |
226 sub_running_mean_[i] = complex<float>(0.0f, 0.0f); | 240 sub_running_mean_[i] = complex<float>(0.0f, 0.0f); |
227 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); | 241 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
228 running_mean_[i] = complex<float>(0.0f, 0.0f); | 242 running_mean_[i] = complex<float>(0.0f, 0.0f); |
229 running_mean_sq_[i] = complex<float>(0.0f, 0.0f); | 243 running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
230 for (int j = 0; j < min(window_size_, history_cursor_); ++j) { | 244 for (int j = 0; j < min(window_size_, history_cursor_); ++j) { |
231 AddToMean(subhistory_[i][j], j, &running_mean_[i]); | 245 AddToMean(subhistory_[i][j], j, &running_mean_[i]); |
232 AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]); | 246 AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]); |
233 } | 247 } |
234 ++history_cursor_; | 248 ++history_cursor_; |
(...skipping 42 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
277 factor = 1.0f; | 291 factor = 1.0f; |
278 } | 292 } |
279 out_block[i] = factor * in_block[i]; | 293 out_block[i] = factor * in_block[i]; |
280 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); | 294 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); |
281 } | 295 } |
282 } | 296 } |
283 | 297 |
284 } // namespace intelligibility | 298 } // namespace intelligibility |
285 | 299 |
286 } // namespace webrtc | 300 } // namespace webrtc |
287 | |
OLD | NEW |