| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| 11 // |
| 12 // Implements helper functions and classes for intelligibility enhancement. |
| 13 // |
| 14 |
| 11 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.
h" | 15 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.
h" |
| 12 | 16 |
| 13 #include <algorithm> | 17 #include <algorithm> |
| 14 #include <cmath> | 18 #include <cmath> |
| 15 #include <cstring> | 19 #include <cstring> |
| 16 | 20 |
| 17 using std::complex; | 21 using std::complex; |
| 18 | 22 |
| 19 namespace { | 23 namespace { |
| 20 | 24 |
| (...skipping 12 matching lines...) Expand all Loading... |
| 33 | 37 |
| 34 // std::isnormal for complex numbers. | 38 // std::isnormal for complex numbers. |
| 35 inline bool cplxnormal(complex<float> c) { | 39 inline bool cplxnormal(complex<float> c) { |
| 36 return std::isnormal(c.real()) && std::isnormal(c.imag()); | 40 return std::isnormal(c.real()) && std::isnormal(c.imag()); |
| 37 } | 41 } |
| 38 | 42 |
| 39 // Apply a small fudge to degenerate complex values. The numbers in the array | 43 // Apply a small fudge to degenerate complex values. The numbers in the array |
| 40 // were chosen randomly, so that even a series of all zeroes has some small | 44 // were chosen randomly, so that even a series of all zeroes has some small |
| 41 // variability. | 45 // variability. |
| 42 inline complex<float> zerofudge(complex<float> c) { | 46 inline complex<float> zerofudge(complex<float> c) { |
| 43 const static complex<float> fudge[7] = { | 47 const static complex<float> fudge[7] = {{0.001f, 0.002f}, |
| 44 {0.001f, 0.002f}, {0.008f, 0.001f}, {0.003f, 0.008f}, {0.0006f, 0.0009f}, | 48 {0.008f, 0.001f}, |
| 45 {0.001f, 0.004f}, {0.003f, 0.004f}, {0.002f, 0.009f} | 49 {0.003f, 0.008f}, |
| 46 }; | 50 {0.0006f, 0.0009f}, |
| 51 {0.001f, 0.004f}, |
| 52 {0.003f, 0.004f}, |
| 53 {0.002f, 0.009f}}; |
| 47 static int fudge_index = 0; | 54 static int fudge_index = 0; |
| 48 if (cplxfinite(c) && !cplxnormal(c)) { | 55 if (cplxfinite(c) && !cplxnormal(c)) { |
| 49 fudge_index = (fudge_index + 1) % 7; | 56 fudge_index = (fudge_index + 1) % 7; |
| 50 return c + fudge[fudge_index]; | 57 return c + fudge[fudge_index]; |
| 51 } | 58 } |
| 52 return c; | 59 return c; |
| 53 } | 60 } |
| 54 | 61 |
| 55 // Incremental mean computation. Return the mean of the series with the | 62 // Incremental mean computation. Return the mean of the series with the |
| 56 // mean |mean| with added |data|. | 63 // mean |mean| with added |data|. |
| 57 inline complex<float> NewMean(complex<float> mean, complex<float> data, | 64 inline complex<float> NewMean(complex<float> mean, |
| 58 int count) { | 65 complex<float> data, |
| 66 int count) { |
| 59 return mean + (data - mean) / static_cast<float>(count); | 67 return mean + (data - mean) / static_cast<float>(count); |
| 60 } | 68 } |
| 61 | 69 |
| 62 inline void AddToMean(complex<float> data, int count, complex<float>* mean) { | 70 inline void AddToMean(complex<float> data, int count, complex<float>* mean) { |
| 63 (*mean) = NewMean(*mean, data, count); | 71 (*mean) = NewMean(*mean, data, count); |
| 64 } | 72 } |
| 65 | 73 |
| 66 } // namespace | 74 } // namespace |
| 67 | 75 |
| 68 using std::min; | 76 using std::min; |
| 69 | 77 |
| 70 namespace webrtc { | 78 namespace webrtc { |
| 71 | 79 |
| 72 namespace intelligibility { | 80 namespace intelligibility { |
| 73 | 81 |
| 74 static const int kWindowBlockSize = 10; | 82 static const int kWindowBlockSize = 10; |
| 75 | 83 |
| 76 VarianceArray::VarianceArray(int freqs, StepType type, int window_size, | 84 VarianceArray::VarianceArray(int freqs, |
| 85 StepType type, |
| 86 int window_size, |
| 77 float decay) | 87 float decay) |
| 78 : running_mean_(new complex<float>[freqs]()), | 88 : running_mean_(new complex<float>[freqs]()), |
| 79 running_mean_sq_(new complex<float>[freqs]()), | 89 running_mean_sq_(new complex<float>[freqs]()), |
| 80 sub_running_mean_(new complex<float>[freqs]()), | 90 sub_running_mean_(new complex<float>[freqs]()), |
| 81 sub_running_mean_sq_(new complex<float>[freqs]()), | 91 sub_running_mean_sq_(new complex<float>[freqs]()), |
| 82 variance_(new float[freqs]()), | 92 variance_(new float[freqs]()), |
| 83 conj_sum_(new float[freqs]()), | 93 conj_sum_(new float[freqs]()), |
| 84 freqs_(freqs), | 94 freqs_(freqs), |
| 85 window_size_(window_size), | 95 window_size_(window_size), |
| 86 decay_(decay), | 96 decay_(decay), |
| 87 history_cursor_(0), | 97 history_cursor_(0), |
| 88 count_(0), | 98 count_(0), |
| 89 array_mean_(0.0f) { | 99 array_mean_(0.0f) { |
| 90 history_.reset(new scoped_ptr<complex<float>[]>[freqs_]()); | 100 history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
| 91 for (int i = 0; i < freqs_; ++i) { | 101 for (int i = 0; i < freqs_; ++i) { |
| 92 history_[i].reset(new complex<float>[window_size_]()); | 102 history_[i].reset(new complex<float>[window_size_]()); |
| 93 } | 103 } |
| 94 subhistory_.reset(new scoped_ptr<complex<float>[]>[freqs_]()); | 104 subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
| 95 for (int i = 0; i < freqs_; ++i) { | 105 for (int i = 0; i < freqs_; ++i) { |
| 96 subhistory_[i].reset(new complex<float>[window_size_]()); | 106 subhistory_[i].reset(new complex<float>[window_size_]()); |
| 97 } | 107 } |
| 98 subhistory_sq_.reset(new scoped_ptr<complex<float>[]>[freqs_]()); | 108 subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
| 99 for (int i = 0; i < freqs_; ++i) { | 109 for (int i = 0; i < freqs_; ++i) { |
| 100 subhistory_sq_[i].reset(new complex<float>[window_size_]()); | 110 subhistory_sq_[i].reset(new complex<float>[window_size_]()); |
| 101 } | 111 } |
| 102 switch (type) { | 112 switch (type) { |
| 103 case kStepInfinite: | 113 case kStepInfinite: |
| 104 step_func_ = &VarianceArray::InfiniteStep; | 114 step_func_ = &VarianceArray::InfiniteStep; |
| 105 break; | 115 break; |
| 106 case kStepDecaying: | 116 case kStepDecaying: |
| 107 step_func_ = &VarianceArray::DecayStep; | 117 step_func_ = &VarianceArray::DecayStep; |
| 108 break; | 118 break; |
| (...skipping 15 matching lines...) Expand all Loading... |
| 124 complex<float> sample = data[i]; | 134 complex<float> sample = data[i]; |
| 125 if (!skip_fudge) { | 135 if (!skip_fudge) { |
| 126 sample = zerofudge(sample); | 136 sample = zerofudge(sample); |
| 127 } | 137 } |
| 128 if (count_ == 1) { | 138 if (count_ == 1) { |
| 129 running_mean_[i] = sample; | 139 running_mean_[i] = sample; |
| 130 variance_[i] = 0.0f; | 140 variance_[i] = 0.0f; |
| 131 } else { | 141 } else { |
| 132 float old_sum = conj_sum_[i]; | 142 float old_sum = conj_sum_[i]; |
| 133 complex<float> old_mean = running_mean_[i]; | 143 complex<float> old_mean = running_mean_[i]; |
| 134 running_mean_[i] = old_mean + (sample - old_mean) / | 144 running_mean_[i] = |
| 135 static_cast<float>(count_); | 145 old_mean + (sample - old_mean) / static_cast<float>(count_); |
| 136 conj_sum_[i] = (old_sum + std::conj(sample - old_mean) * | 146 conj_sum_[i] = |
| 137 (sample - running_mean_[i])).real(); | 147 (old_sum + std::conj(sample - old_mean) * (sample - running_mean_[i])) |
| 138 variance_[i] = conj_sum_[i] / (count_ - 1); // + fudge[fudge_index].real()
; | 148 .real(); |
| 149 variance_[i] = |
| 150 conj_sum_[i] / (count_ - 1); // + fudge[fudge_index].real(); |
| 139 if (skip_fudge && false) { | 151 if (skip_fudge && false) { |
| 140 //variance_[i] -= fudge[fudge_index].real(); | 152 // variance_[i] -= fudge[fudge_index].real(); |
| 141 } | 153 } |
| 142 } | 154 } |
| 143 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | 155 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| 144 } | 156 } |
| 145 } | 157 } |
| 146 | 158 |
| 147 // Compute the variance from the beginning, with exponential decaying of the | 159 // Compute the variance from the beginning, with exponential decaying of the |
| 148 // series data. | 160 // series data. |
| 149 void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { | 161 void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { |
| 150 array_mean_ = 0.0f; | 162 array_mean_ = 0.0f; |
| 151 ++count_; | 163 ++count_; |
| 152 for (int i = 0; i < freqs_; ++i) { | 164 for (int i = 0; i < freqs_; ++i) { |
| 153 complex<float> sample = data[i]; | 165 complex<float> sample = data[i]; |
| 154 sample = zerofudge(sample); | 166 sample = zerofudge(sample); |
| 155 | 167 |
| 156 if (count_ == 1) { | 168 if (count_ == 1) { |
| 157 running_mean_[i] = sample; | 169 running_mean_[i] = sample; |
| 158 running_mean_sq_[i] = sample * std::conj(sample); | 170 running_mean_sq_[i] = sample * std::conj(sample); |
| 159 variance_[i] = 0.0f; | 171 variance_[i] = 0.0f; |
| 160 } else { | 172 } else { |
| 161 complex<float> prev = running_mean_[i]; | 173 complex<float> prev = running_mean_[i]; |
| 162 complex<float> prev2 = running_mean_sq_[i]; | 174 complex<float> prev2 = running_mean_sq_[i]; |
| 163 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample; | 175 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample; |
| 164 running_mean_sq_[i] = decay_ * prev2 + | 176 running_mean_sq_[i] = |
| 165 (1.0f - decay_) * sample * std::conj(sample); | 177 decay_ * prev2 + (1.0f - decay_) * sample * std::conj(sample); |
| 166 //variance_[i] = decay_ * variance_[i] + (1.0f - decay_) * ( | 178 // variance_[i] = decay_ * variance_[i] + (1.0f - decay_) * ( |
| 167 // (sample - running_mean_[i]) * std::conj(sample - running_mean_[i])).re
al(); | 179 // (sample - running_mean_[i]) * std::conj(sample - |
| 168 variance_[i] = (running_mean_sq_[i] - running_mean_[i] * std::conj(running
_mean_[i])).real(); | 180 // running_mean_[i])).real(); |
| 181 variance_[i] = (running_mean_sq_[i] - |
| 182 running_mean_[i] * std::conj(running_mean_[i])).real(); |
| 169 } | 183 } |
| 170 | 184 |
| 171 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | 185 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| 172 } | 186 } |
| 173 } | 187 } |
| 174 | 188 |
| 175 // Windowed variance computation. On each step, the variances for the | 189 // Windowed variance computation. On each step, the variances for the |
| 176 // window are recomputed from scratch, using Welford's algorithm. | 190 // window are recomputed from scratch, using Welford's algorithm. |
| 177 void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { | 191 void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { |
| 178 int num = min(count_ + 1, window_size_); | 192 int num = min(count_ + 1, window_size_); |
| 179 array_mean_ = 0.0f; | 193 array_mean_ = 0.0f; |
| 180 for (int i = 0; i < freqs_; ++i) { | 194 for (int i = 0; i < freqs_; ++i) { |
| 181 complex<float> mean; | 195 complex<float> mean; |
| 182 float conj_sum = 0.0f; | 196 float conj_sum = 0.0f; |
| 183 | 197 |
| 184 history_[i][history_cursor_] = data[i]; | 198 history_[i][history_cursor_] = data[i]; |
| 185 | 199 |
| 186 mean = history_[i][history_cursor_]; | 200 mean = history_[i][history_cursor_]; |
| 187 variance_[i] = 0.0f; | 201 variance_[i] = 0.0f; |
| 188 for (int j = 1; j < num; ++j) { | 202 for (int j = 1; j < num; ++j) { |
| 189 complex<float> sample = zerofudge( | 203 complex<float> sample = |
| 190 history_[i][(history_cursor_ + j) % window_size_]); | 204 zerofudge(history_[i][(history_cursor_ + j) % window_size_]); |
| 191 sample = history_[i][(history_cursor_ + j) % window_size_]; | 205 sample = history_[i][(history_cursor_ + j) % window_size_]; |
| 192 float old_sum = conj_sum; | 206 float old_sum = conj_sum; |
| 193 complex<float> old_mean = mean; | 207 complex<float> old_mean = mean; |
| 194 | 208 |
| 195 mean = old_mean + (sample - old_mean) / static_cast<float>(j + 1); | 209 mean = old_mean + (sample - old_mean) / static_cast<float>(j + 1); |
| 196 conj_sum = (old_sum + std::conj(sample - old_mean) * | 210 conj_sum = |
| 197 (sample - mean)).real(); | 211 (old_sum + std::conj(sample - old_mean) * (sample - mean)).real(); |
| 198 variance_[i] = conj_sum / (j); | 212 variance_[i] = conj_sum / (j); |
| 199 } | 213 } |
| 200 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | 214 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| 201 } | 215 } |
| 202 history_cursor_ = (history_cursor_ + 1) % window_size_; | 216 history_cursor_ = (history_cursor_ + 1) % window_size_; |
| 203 ++count_; | 217 ++count_; |
| 204 } | 218 } |
| 205 | 219 |
| 206 // Variance with a window of blocks. Within each block, the variances are | 220 // Variance with a window of blocks. Within each block, the variances are |
| 207 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. | 221 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. |
| 208 // Once a block is filled with kWindowBlockSize samples, it is added to the | 222 // Once a block is filled with kWindowBlockSize samples, it is added to the |
| 209 // history window and a new block is started. The variances for the window | 223 // history window and a new block is started. The variances for the window |
| 210 // are recomputed from scratch at each of these transitions. | 224 // are recomputed from scratch at each of these transitions. |
| 211 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { | 225 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { |
| 212 int blocks = min(window_size_, history_cursor_); | 226 int blocks = min(window_size_, history_cursor_); |
| 213 for (int i = 0; i < freqs_; ++i) { | 227 for (int i = 0; i < freqs_; ++i) { |
| 214 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); | 228 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); |
| 215 AddToMean(data[i] * std::conj(data[i]), count_ + 1, | 229 AddToMean(data[i] * std::conj(data[i]), count_ + 1, |
| 216 &sub_running_mean_sq_[i]); | 230 &sub_running_mean_sq_[i]); |
| 217 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; | 231 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; |
| 218 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; | 232 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; |
| 219 | 233 |
| 220 variance_[i] = (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], | 234 variance_[i] = |
| 221 blocks) - | 235 (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - |
| 222 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * | 236 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * |
| 223 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], | 237 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) |
| 224 blocks))).real(); | 238 .real(); |
| 225 if (count_ == kWindowBlockSize - 1) { | 239 if (count_ == kWindowBlockSize - 1) { |
| 226 sub_running_mean_[i] = complex<float>(0.0f, 0.0f); | 240 sub_running_mean_[i] = complex<float>(0.0f, 0.0f); |
| 227 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); | 241 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
| 228 running_mean_[i] = complex<float>(0.0f, 0.0f); | 242 running_mean_[i] = complex<float>(0.0f, 0.0f); |
| 229 running_mean_sq_[i] = complex<float>(0.0f, 0.0f); | 243 running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
| 230 for (int j = 0; j < min(window_size_, history_cursor_); ++j) { | 244 for (int j = 0; j < min(window_size_, history_cursor_); ++j) { |
| 231 AddToMean(subhistory_[i][j], j, &running_mean_[i]); | 245 AddToMean(subhistory_[i][j], j, &running_mean_[i]); |
| 232 AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]); | 246 AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]); |
| 233 } | 247 } |
| 234 ++history_cursor_; | 248 ++history_cursor_; |
| (...skipping 42 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 277 factor = 1.0f; | 291 factor = 1.0f; |
| 278 } | 292 } |
| 279 out_block[i] = factor * in_block[i]; | 293 out_block[i] = factor * in_block[i]; |
| 280 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); | 294 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); |
| 281 } | 295 } |
| 282 } | 296 } |
| 283 | 297 |
| 284 } // namespace intelligibility | 298 } // namespace intelligibility |
| 285 | 299 |
| 286 } // namespace webrtc | 300 } // namespace webrtc |
| 287 | |
| OLD | NEW |