OLD | NEW |
1 /* | 1 /* |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
| 11 // |
| 12 // Implements core class for intelligibility enhancer. |
| 13 // |
| 14 // Details of the model and algorithm can be found in the original paper: |
| 15 // http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6882788 |
| 16 // |
| 17 |
11 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc
er.h" | 18 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc
er.h" |
12 | 19 |
13 #include <cmath> | 20 #include <cmath> |
14 #include <cstdlib> | 21 #include <cstdlib> |
15 | 22 |
16 #include <algorithm> | 23 #include <algorithm> |
| 24 #include <numeric> |
17 | 25 |
18 #include "webrtc/base/checks.h" | 26 #include "webrtc/base/checks.h" |
19 #include "webrtc/common_audio/vad/include/webrtc_vad.h" | 27 #include "webrtc/common_audio/vad/include/webrtc_vad.h" |
20 #include "webrtc/common_audio/window_generator.h" | 28 #include "webrtc/common_audio/window_generator.h" |
21 | 29 |
22 using std::complex; | 30 using std::complex; |
23 using std::max; | 31 using std::max; |
24 using std::min; | 32 using std::min; |
25 | 33 |
26 namespace webrtc { | 34 namespace webrtc { |
27 | 35 |
28 const int IntelligibilityEnhancer::kErbResolution = 2; | 36 const int IntelligibilityEnhancer::kErbResolution = 2; |
29 const int IntelligibilityEnhancer::kWindowSizeMs = 2; | 37 const int IntelligibilityEnhancer::kWindowSizeMs = 2; |
30 // The size of the chunk provided by APM, in milliseconds. | 38 const int IntelligibilityEnhancer::kChunkSizeMs = 10; // Size provided by APM. |
31 const int IntelligibilityEnhancer::kChunkSizeMs = 10; | |
32 const int IntelligibilityEnhancer::kAnalyzeRate = 800; | 39 const int IntelligibilityEnhancer::kAnalyzeRate = 800; |
33 const int IntelligibilityEnhancer::kVarianceRate = 2; | 40 const int IntelligibilityEnhancer::kVarianceRate = 2; |
34 const float IntelligibilityEnhancer::kClipFreq = 200.0f; | 41 const float IntelligibilityEnhancer::kClipFreq = 200.0f; |
35 const float IntelligibilityEnhancer::kConfigRho = 0.02f; | 42 const float IntelligibilityEnhancer::kConfigRho = 0.02f; |
36 const float IntelligibilityEnhancer::kKbdAlpha = 1.5f; | 43 const float IntelligibilityEnhancer::kKbdAlpha = 1.5f; |
| 44 |
| 45 // To disable gain update smoothing, set gain limit to be VERY high. |
| 46 // TODO(ekmeyerson): Add option to disable gain smoothing altogether |
| 47 // to avoid the extra computation. |
37 const float IntelligibilityEnhancer::kGainChangeLimit = 0.0125f; | 48 const float IntelligibilityEnhancer::kGainChangeLimit = 0.0125f; |
38 | 49 |
39 using VarianceType = intelligibility::VarianceArray::StepType; | 50 using VarianceType = intelligibility::VarianceArray::StepType; |
40 | 51 |
41 IntelligibilityEnhancer::TransformCallback::TransformCallback( | 52 IntelligibilityEnhancer::TransformCallback::TransformCallback( |
42 IntelligibilityEnhancer* parent, | 53 IntelligibilityEnhancer* parent, |
43 IntelligibilityEnhancer::AudioSource source) | 54 IntelligibilityEnhancer::AudioSource source) |
44 : parent_(parent), | 55 : parent_(parent), source_(source) { |
45 source_(source) {} | 56 } |
46 | 57 |
47 void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock( | 58 void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock( |
48 const complex<float>* const* in_block, | 59 const complex<float>* const* in_block, |
49 int in_channels, int frames, int /* out_channels */, | 60 int in_channels, |
| 61 int frames, |
| 62 int /* out_channels */, |
50 complex<float>* const* out_block) { | 63 complex<float>* const* out_block) { |
51 DCHECK_EQ(parent_->freqs_, frames); | 64 DCHECK_EQ(parent_->freqs_, frames); |
52 for (int i = 0; i < in_channels; ++i) { | 65 for (int i = 0; i < in_channels; ++i) { |
53 parent_->DispatchAudio(source_, in_block[i], out_block[i]); | 66 parent_->DispatchAudio(source_, in_block[i], out_block[i]); |
54 } | 67 } |
55 } | 68 } |
56 | 69 |
57 IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution, | 70 IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution, |
58 int sample_rate_hz, | 71 int sample_rate_hz, |
59 int channels, | 72 int channels, |
60 int cv_type, float cv_alpha, | 73 int cv_type, |
| 74 float cv_alpha, |
61 int cv_win, | 75 int cv_win, |
62 int analysis_rate, | 76 int analysis_rate, |
63 int variance_rate, | 77 int variance_rate, |
64 float gain_limit) | 78 float gain_limit) |
65 : freqs_(RealFourier::ComplexLength(RealFourier::FftOrder( | 79 : freqs_(RealFourier::ComplexLength( |
66 sample_rate_hz * kWindowSizeMs / 1000))), | 80 RealFourier::FftOrder(sample_rate_hz * kWindowSizeMs / 1000))), |
67 window_size_(1 << RealFourier::FftOrder(freqs_)), | 81 window_size_(1 << RealFourier::FftOrder(freqs_)), |
68 chunk_length_(sample_rate_hz * kChunkSizeMs / 1000), | 82 chunk_length_(sample_rate_hz * kChunkSizeMs / 1000), |
69 bank_size_(GetBankSize(sample_rate_hz, erb_resolution)), | 83 bank_size_(GetBankSize(sample_rate_hz, erb_resolution)), |
70 sample_rate_hz_(sample_rate_hz), | 84 sample_rate_hz_(sample_rate_hz), |
71 erb_resolution_(erb_resolution), | 85 erb_resolution_(erb_resolution), |
72 channels_(channels), | 86 channels_(channels), |
73 analysis_rate_(analysis_rate), | 87 analysis_rate_(analysis_rate), |
74 variance_rate_(variance_rate), | 88 variance_rate_(variance_rate), |
75 clear_variance_(freqs_, static_cast<VarianceType>(cv_type), cv_win, | 89 clear_variance_(freqs_, |
| 90 static_cast<VarianceType>(cv_type), |
| 91 cv_win, |
76 cv_alpha), | 92 cv_alpha), |
77 noise_variance_(freqs_, VarianceType::kStepInfinite, 475, 0.01f), | 93 noise_variance_(freqs_, VarianceType::kStepInfinite, 475, 0.01f), |
78 filtered_clear_var_(new float[bank_size_]), | 94 filtered_clear_var_(new float[bank_size_]), |
79 filtered_noise_var_(new float[bank_size_]), | 95 filtered_noise_var_(new float[bank_size_]), |
80 filter_bank_(nullptr), | 96 filter_bank_(nullptr), |
81 center_freqs_(new float[bank_size_]), | 97 center_freqs_(new float[bank_size_]), |
82 rho_(new float[bank_size_]), | 98 rho_(new float[bank_size_]), |
83 gains_eq_(new float[bank_size_]), | 99 gains_eq_(new float[bank_size_]), |
84 gain_applier_(freqs_, gain_limit), | 100 gain_applier_(freqs_, gain_limit), |
85 temp_out_buffer_(nullptr), | 101 temp_out_buffer_(nullptr), |
86 input_audio_(new float*[channels]), | 102 input_audio_(new float* [channels]), |
87 kbd_window_(new float[window_size_]), | 103 kbd_window_(new float[window_size_]), |
88 render_callback_(this, AudioSource::kRenderStream), | 104 render_callback_(this, AudioSource::kRenderStream), |
89 capture_callback_(this, AudioSource::kCaptureStream), | 105 capture_callback_(this, AudioSource::kCaptureStream), |
90 block_count_(0), | 106 block_count_(0), |
91 analysis_step_(0), | 107 analysis_step_(0), |
92 vad_high_(nullptr), | 108 vad_high_(WebRtcVad_Create()), |
93 vad_low_(nullptr), | 109 vad_low_(WebRtcVad_Create()), |
94 vad_tmp_buffer_(new int16_t[chunk_length_]) { | 110 vad_tmp_buffer_(new int16_t[chunk_length_]) { |
95 DCHECK_LE(kConfigRho, 1.0f); | 111 DCHECK_LE(kConfigRho, 1.0f); |
96 | 112 |
97 CreateErbBank(); | 113 CreateErbBank(); |
98 | 114 |
99 WebRtcVad_Create(&vad_high_); | |
100 WebRtcVad_Init(vad_high_); | 115 WebRtcVad_Init(vad_high_); |
101 WebRtcVad_set_mode(vad_high_, 0); // high likelihood of speech | 116 WebRtcVad_set_mode(vad_high_, 0); // High likelihood of speech. |
102 WebRtcVad_Create(&vad_low_); | |
103 WebRtcVad_Init(vad_low_); | 117 WebRtcVad_Init(vad_low_); |
104 WebRtcVad_set_mode(vad_low_, 3); // low likelihood of speech | 118 WebRtcVad_set_mode(vad_low_, 3); // Low likelihood of speech. |
105 | 119 |
106 temp_out_buffer_ = static_cast<float**>(malloc( | 120 temp_out_buffer_ = static_cast<float**>( |
107 sizeof(*temp_out_buffer_) * channels_ + | 121 malloc(sizeof(*temp_out_buffer_) * channels_ + |
108 sizeof(**temp_out_buffer_) * chunk_length_ * channels_)); | 122 sizeof(**temp_out_buffer_) * chunk_length_ * channels_)); |
109 for (int i = 0; i < channels_; ++i) { | 123 for (int i = 0; i < channels_; ++i) { |
110 temp_out_buffer_[i] = reinterpret_cast<float*>(temp_out_buffer_ + channels_) | 124 temp_out_buffer_[i] = |
111 + chunk_length_ * i; | 125 reinterpret_cast<float*>(temp_out_buffer_ + channels_) + |
| 126 chunk_length_ * i; |
112 } | 127 } |
113 | 128 |
| 129 // Assumes all rho equal. |
114 for (int i = 0; i < bank_size_; ++i) { | 130 for (int i = 0; i < bank_size_; ++i) { |
115 rho_[i] = kConfigRho * kConfigRho; | 131 rho_[i] = kConfigRho * kConfigRho; |
116 } | 132 } |
117 | 133 |
118 float freqs_khz = kClipFreq / 1000.0f; | 134 float freqs_khz = kClipFreq / 1000.0f; |
119 int erb_index = static_cast<int>(ceilf(11.17f * logf((freqs_khz + 0.312f) / | 135 int erb_index = static_cast<int>(ceilf( |
120 (freqs_khz + 14.6575f)) | 136 11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f)); |
121 + 43.0f)); | |
122 start_freq_ = max(1, erb_index * kErbResolution); | 137 start_freq_ = max(1, erb_index * kErbResolution); |
123 | 138 |
124 WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_, | 139 WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_, |
125 kbd_window_.get()); | 140 kbd_window_.get()); |
126 render_mangler_.reset(new LappedTransform(channels_, channels_, | 141 render_mangler_.reset(new LappedTransform( |
127 chunk_length_, | 142 channels_, channels_, chunk_length_, kbd_window_.get(), window_size_, |
128 kbd_window_.get(), | 143 window_size_ / 2, &render_callback_)); |
129 window_size_, | 144 capture_mangler_.reset(new LappedTransform( |
130 window_size_ / 2, | 145 channels_, channels_, chunk_length_, kbd_window_.get(), window_size_, |
131 &render_callback_)); | 146 window_size_ / 2, &capture_callback_)); |
132 capture_mangler_.reset(new LappedTransform(channels_, channels_, | |
133 chunk_length_, | |
134 kbd_window_.get(), | |
135 window_size_, | |
136 window_size_ / 2, | |
137 &capture_callback_)); | |
138 } | 147 } |
139 | 148 |
140 IntelligibilityEnhancer::~IntelligibilityEnhancer() { | 149 IntelligibilityEnhancer::~IntelligibilityEnhancer() { |
141 WebRtcVad_Free(vad_low_); | 150 WebRtcVad_Free(vad_low_); |
142 WebRtcVad_Free(vad_high_); | 151 WebRtcVad_Free(vad_high_); |
143 free(filter_bank_); | 152 free(filter_bank_); |
144 } | 153 } |
145 | 154 |
146 void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio) { | 155 void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio) { |
147 for (int i = 0; i < chunk_length_; ++i) { | 156 for (int i = 0; i < chunk_length_; ++i) { |
148 vad_tmp_buffer_[i] = (int16_t)audio[0][i]; | 157 vad_tmp_buffer_[i] = (int16_t)audio[0][i]; |
149 } | 158 } |
150 has_voice_low_ = WebRtcVad_Process(vad_low_, sample_rate_hz_, | 159 has_voice_low_ = WebRtcVad_Process(vad_low_, sample_rate_hz_, |
151 vad_tmp_buffer_.get(), chunk_length_) == 1; | 160 vad_tmp_buffer_.get(), chunk_length_) == 1; |
152 | 161 |
| 162 // Process and enhance chunk of |audio| |
153 render_mangler_->ProcessChunk(audio, temp_out_buffer_); | 163 render_mangler_->ProcessChunk(audio, temp_out_buffer_); |
| 164 |
154 for (int i = 0; i < channels_; ++i) { | 165 for (int i = 0; i < channels_; ++i) { |
155 memcpy(audio[i], temp_out_buffer_[i], | 166 memcpy(audio[i], temp_out_buffer_[i], |
156 chunk_length_ * sizeof(**temp_out_buffer_)); | 167 chunk_length_ * sizeof(**temp_out_buffer_)); |
157 } | 168 } |
158 } | 169 } |
159 | 170 |
160 void IntelligibilityEnhancer::ProcessCaptureAudio(float* const* audio) { | 171 void IntelligibilityEnhancer::ProcessCaptureAudio(float* const* audio) { |
161 for (int i = 0; i < chunk_length_; ++i) { | 172 for (int i = 0; i < chunk_length_; ++i) { |
162 vad_tmp_buffer_[i] = (int16_t)audio[0][i]; | 173 vad_tmp_buffer_[i] = (int16_t)audio[0][i]; |
163 } | 174 } |
164 // TODO(bercic): the VAD was always detecting voice in the noise stream, | 175 // TODO(bercic): The VAD was always detecting voice in the noise stream, |
165 // no matter what the aggressiveness, so it was temporarily disabled here | 176 // no matter what the aggressiveness, so it was temporarily disabled here. |
166 | 177 |
167 //if (WebRtcVad_Process(vad_high_, sample_rate_hz_, vad_tmp_buffer_.get(), | 178 #if 0 |
168 // chunk_length_) == 1) { | 179 if (WebRtcVad_Process(vad_high_, sample_rate_hz_, vad_tmp_buffer_.get(), |
169 // printf("capture HAS speech\n"); | 180 chunk_length_) == 1) { |
170 // return; | 181 printf("capture HAS speech\n"); |
171 //} | 182 return; |
172 //printf("capture NO speech\n"); | 183 } |
| 184 printf("capture NO speech\n"); |
| 185 #endif |
| 186 |
173 capture_mangler_->ProcessChunk(audio, temp_out_buffer_); | 187 capture_mangler_->ProcessChunk(audio, temp_out_buffer_); |
174 } | 188 } |
175 | 189 |
176 void IntelligibilityEnhancer::DispatchAudio( | 190 void IntelligibilityEnhancer::DispatchAudio( |
177 IntelligibilityEnhancer::AudioSource source, | 191 IntelligibilityEnhancer::AudioSource source, |
178 const complex<float>* in_block, complex<float>* out_block) { | 192 const complex<float>* in_block, |
| 193 complex<float>* out_block) { |
179 switch (source) { | 194 switch (source) { |
180 case kRenderStream: | 195 case kRenderStream: |
181 ProcessClearBlock(in_block, out_block); | 196 ProcessClearBlock(in_block, out_block); |
182 break; | 197 break; |
183 case kCaptureStream: | 198 case kCaptureStream: |
184 ProcessNoiseBlock(in_block, out_block); | 199 ProcessNoiseBlock(in_block, out_block); |
185 break; | 200 break; |
186 } | 201 } |
187 } | 202 } |
188 | 203 |
189 void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block, | 204 void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block, |
190 complex<float>* out_block) { | 205 complex<float>* out_block) { |
191 float power_target; | 206 float power_target; |
192 | 207 |
193 if (block_count_ < 2) { | 208 if (block_count_ < 2) { |
194 memset(out_block, 0, freqs_ * sizeof(*out_block)); | 209 memset(out_block, 0, freqs_ * sizeof(*out_block)); |
195 ++block_count_; | 210 ++block_count_; |
196 return; | 211 return; |
197 } | 212 } |
198 | 213 |
| 214 // For now, always assumes enhancement is necessary. |
| 215 // TODO(ekmeyerson): Change to only enhance if necessary, |
| 216 // based on experiments with different cutoffs. |
199 if (has_voice_low_ || true) { | 217 if (has_voice_low_ || true) { |
200 clear_variance_.Step(in_block, false); | 218 clear_variance_.Step(in_block, false); |
201 power_target = std::accumulate(clear_variance_.variance(), | 219 power_target = std::accumulate(clear_variance_.variance(), |
202 clear_variance_.variance() + freqs_, 0.0f); | 220 clear_variance_.variance() + freqs_, 0.0f); |
203 | 221 |
204 if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { | 222 if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { |
205 AnalyzeClearBlock(power_target); | 223 AnalyzeClearBlock(power_target); |
206 ++analysis_step_; | 224 ++analysis_step_; |
207 if (analysis_step_ == variance_rate_) { | 225 if (analysis_step_ == variance_rate_) { |
208 analysis_step_ = 0; | 226 analysis_step_ = 0; |
209 clear_variance_.Clear(); | 227 clear_variance_.Clear(); |
210 noise_variance_.Clear(); | 228 noise_variance_.Clear(); |
211 } | 229 } |
212 } | 230 } |
213 ++block_count_; | 231 ++block_count_; |
214 } | 232 } |
215 | 233 |
216 /* efidata(n,:) = sqrt(b(n)) * fidata(n,:) */ | 234 /* efidata(n,:) = sqrt(b(n)) * fidata(n,:) */ |
217 gain_applier_.Apply(in_block, out_block); | 235 gain_applier_.Apply(in_block, out_block); |
218 } | 236 } |
219 | 237 |
220 void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) { | 238 void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) { |
221 FilterVariance(clear_variance_.variance(), filtered_clear_var_.get()); | 239 FilterVariance(clear_variance_.variance(), filtered_clear_var_.get()); |
222 FilterVariance(noise_variance_.variance(), filtered_noise_var_.get()); | 240 FilterVariance(noise_variance_.variance(), filtered_noise_var_.get()); |
223 | 241 |
224 /* lambda binary search */ | 242 // Bisection search for optimal |lambda| |
225 | 243 |
226 float lambda_bot = -1.0f, lambda_top = -10e-18f, lambda; | 244 float lambda_bot = -1.0f, lambda_top = -10e-18f, lambda; |
227 float power_bot, power_top, power; | 245 float power_bot, power_top, power; |
228 SolveEquation14(lambda_top, start_freq_, gains_eq_.get()); | 246 SolveForGainsGivenLambda(lambda_top, start_freq_, gains_eq_.get()); |
229 power_top = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), | 247 power_top = |
230 bank_size_); | 248 DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
231 SolveEquation14(lambda_bot, start_freq_, gains_eq_.get()); | 249 SolveForGainsGivenLambda(lambda_bot, start_freq_, gains_eq_.get()); |
232 power_bot = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), | 250 power_bot = |
233 bank_size_); | 251 DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
234 DCHECK(power_target >= power_bot && power_target <= power_top); | 252 DCHECK(power_target >= power_bot && power_target <= power_top); |
235 | 253 |
236 float power_ratio = 2.0f; | 254 float power_ratio = 2.0f; // Ratio of achieved power to target power. |
| 255 const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values |
| 256 const int kMaxIters = 100; // for these, based on experiments. |
237 int iters = 0; | 257 int iters = 0; |
238 while (fabs(power_ratio - 1.0f) > 0.001f && iters <= 100) { | 258 while (fabs(power_ratio - 1.0f) > kConvergeThresh && iters <= kMaxIters) { |
239 lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; | 259 lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; |
240 SolveEquation14(lambda, start_freq_, gains_eq_.get()); | 260 SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); |
241 power = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); | 261 power = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
242 if (power < power_target) { | 262 if (power < power_target) { |
243 lambda_bot = lambda; | 263 lambda_bot = lambda; |
244 } else { | 264 } else { |
245 lambda_top = lambda; | 265 lambda_top = lambda; |
246 } | 266 } |
247 power_ratio = fabs(power / power_target); | 267 power_ratio = fabs(power / power_target); |
248 ++iters; | 268 ++iters; |
249 } | 269 } |
250 | 270 |
251 /* b = filterbank' * b */ | 271 // (ERB gain) = filterbank' * (freq gain) |
252 float* gains = gain_applier_.target(); | 272 float* gains = gain_applier_.target(); |
253 for (int i = 0; i < freqs_; ++i) { | 273 for (int i = 0; i < freqs_; ++i) { |
254 gains[i] = 0.0f; | 274 gains[i] = 0.0f; |
255 for (int j = 0; j < bank_size_; ++j) { | 275 for (int j = 0; j < bank_size_; ++j) { |
256 gains[i] = fmaf(filter_bank_[j][i], gains_eq_[j], gains[i]); | 276 gains[i] = fmaf(filter_bank_[j][i], gains_eq_[j], gains[i]); |
257 } | 277 } |
258 } | 278 } |
259 } | 279 } |
260 | 280 |
261 void IntelligibilityEnhancer::ProcessNoiseBlock(const complex<float>* in_block, | 281 void IntelligibilityEnhancer::ProcessNoiseBlock(const complex<float>* in_block, |
262 complex<float>* /*out_block*/) { | 282 complex<float>* /*out_block*/) { |
263 noise_variance_.Step(in_block); | 283 noise_variance_.Step(in_block); |
264 } | 284 } |
265 | 285 |
266 int IntelligibilityEnhancer::GetBankSize(int sample_rate, int erb_resolution) { | 286 int IntelligibilityEnhancer::GetBankSize(int sample_rate, int erb_resolution) { |
267 float freq_limit = sample_rate / 2000.0f; | 287 float freq_limit = sample_rate / 2000.0f; |
268 int erb_scale = ceilf(11.17f * logf((freq_limit + 0.312f) / | 288 int erb_scale = ceilf( |
269 (freq_limit + 14.6575f)) + 43.0f); | 289 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.0f); |
270 return erb_scale * erb_resolution; | 290 return erb_scale * erb_resolution; |
271 } | 291 } |
272 | 292 |
273 void IntelligibilityEnhancer::CreateErbBank() { | 293 void IntelligibilityEnhancer::CreateErbBank() { |
274 int lf = 1, rf = 4; | 294 int lf = 1, rf = 4; |
275 | 295 |
276 for (int i = 0; i < bank_size_; ++i) { | 296 for (int i = 0; i < bank_size_; ++i) { |
277 float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_)); | 297 float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_)); |
278 center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); | 298 center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); |
279 center_freqs_[i] -= 14678.49f; | 299 center_freqs_[i] -= 14678.49f; |
280 } | 300 } |
281 float last_center_freq = center_freqs_[bank_size_ - 1]; | 301 float last_center_freq = center_freqs_[bank_size_ - 1]; |
282 for (int i = 0; i < bank_size_; ++i) { | 302 for (int i = 0; i < bank_size_; ++i) { |
283 center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; | 303 center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; |
284 } | 304 } |
285 | 305 |
286 filter_bank_ = static_cast<float**>(malloc( | 306 filter_bank_ = static_cast<float**>( |
287 sizeof(*filter_bank_) * bank_size_ + | 307 malloc(sizeof(*filter_bank_) * bank_size_ + |
288 sizeof(**filter_bank_) * freqs_ * bank_size_)); | 308 sizeof(**filter_bank_) * freqs_ * bank_size_)); |
289 for (int i = 0; i < bank_size_; ++i) { | 309 for (int i = 0; i < bank_size_; ++i) { |
290 filter_bank_[i] = reinterpret_cast<float*>(filter_bank_ + bank_size_) + | 310 filter_bank_[i] = |
291 freqs_ * i; | 311 reinterpret_cast<float*>(filter_bank_ + bank_size_) + freqs_ * i; |
292 } | 312 } |
293 | 313 |
294 for (int i = 1; i <= bank_size_; ++i) { | 314 for (int i = 1; i <= bank_size_; ++i) { |
295 int lll, ll, rr, rrr; | 315 int lll, ll, rr, rrr; |
296 lll = round(center_freqs_[max(1, i - lf) - 1] * freqs_ / | 316 lll = round(center_freqs_[max(1, i - lf) - 1] * freqs_ / |
297 (0.5f * sample_rate_hz_)); | 317 (0.5f * sample_rate_hz_)); |
298 ll = round(center_freqs_[max(1, i ) - 1] * freqs_ / | 318 ll = |
299 (0.5f * sample_rate_hz_)); | 319 round(center_freqs_[max(1, i) - 1] * freqs_ / (0.5f * sample_rate_hz_)); |
300 lll = min(freqs_, max(lll, 1)) - 1; | 320 lll = min(freqs_, max(lll, 1)) - 1; |
301 ll = min(freqs_, max(ll, 1)) - 1; | 321 ll = min(freqs_, max(ll, 1)) - 1; |
302 | 322 |
303 rrr = round(center_freqs_[min(bank_size_, i + rf) - 1] * freqs_ / | 323 rrr = round(center_freqs_[min(bank_size_, i + rf) - 1] * freqs_ / |
304 (0.5f * sample_rate_hz_)); | 324 (0.5f * sample_rate_hz_)); |
305 rr = round(center_freqs_[min(bank_size_, i + 1) - 1] * freqs_ / | 325 rr = round(center_freqs_[min(bank_size_, i + 1) - 1] * freqs_ / |
306 (0.5f * sample_rate_hz_)); | 326 (0.5f * sample_rate_hz_)); |
307 rrr = min(freqs_, max(rrr, 1)) - 1; | 327 rrr = min(freqs_, max(rrr, 1)) - 1; |
308 rr = min(freqs_, max(rr, 1)) - 1; | 328 rr = min(freqs_, max(rr, 1)) - 1; |
309 | 329 |
310 float step, element; | 330 float step, element; |
311 | 331 |
312 step = 1.0f / (ll - lll); | 332 step = 1.0f / (ll - lll); |
313 element = 0.0f; | 333 element = 0.0f; |
314 for (int j = lll; j <= ll; ++j) { | 334 for (int j = lll; j <= ll; ++j) { |
315 filter_bank_[i - 1][j] = element; | 335 filter_bank_[i - 1][j] = element; |
316 element += step; | 336 element += step; |
317 } | 337 } |
318 step = 1.0f / (rrr - rr); | 338 step = 1.0f / (rrr - rr); |
(...skipping 12 matching lines...) Expand all Loading... |
331 sum = 0.0f; | 351 sum = 0.0f; |
332 for (int j = 0; j < bank_size_; ++j) { | 352 for (int j = 0; j < bank_size_; ++j) { |
333 sum += filter_bank_[j][i]; | 353 sum += filter_bank_[j][i]; |
334 } | 354 } |
335 for (int j = 0; j < bank_size_; ++j) { | 355 for (int j = 0; j < bank_size_; ++j) { |
336 filter_bank_[j][i] /= sum; | 356 filter_bank_[j][i] /= sum; |
337 } | 357 } |
338 } | 358 } |
339 } | 359 } |
340 | 360 |
341 void IntelligibilityEnhancer::SolveEquation14(float lambda, int start_freq, | 361 void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, |
342 float* sols) { | 362 int start_freq, |
| 363 float* sols) { |
343 bool quadratic = (kConfigRho < 1.0f); | 364 bool quadratic = (kConfigRho < 1.0f); |
344 const float* var_x0 = filtered_clear_var_.get(); | 365 const float* var_x0 = filtered_clear_var_.get(); |
345 const float* var_n0 = filtered_noise_var_.get(); | 366 const float* var_n0 = filtered_noise_var_.get(); |
346 | 367 |
347 for (int n = 0; n < start_freq; ++n) { | 368 for (int n = 0; n < start_freq; ++n) { |
348 sols[n] = 1.0f; | 369 sols[n] = 1.0f; |
349 } | 370 } |
| 371 |
| 372 // Analytic solution for optimal gains. See paper for derivation. |
350 for (int n = start_freq - 1; n < bank_size_; ++n) { | 373 for (int n = start_freq - 1; n < bank_size_; ++n) { |
351 float alpha0, beta0, gamma0; | 374 float alpha0, beta0, gamma0; |
352 gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] + | 375 gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] + |
353 lambda * var_x0[n] * var_n0[n] * var_n0[n]; | 376 lambda * var_x0[n] * var_n0[n] * var_n0[n]; |
354 beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n]; | 377 beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n]; |
355 if (quadratic) { | 378 if (quadratic) { |
356 alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n]; | 379 alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n]; |
357 sols[n] = (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) | 380 sols[n] = |
358 / (2 * alpha0); | 381 (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / (2 * alpha0); |
359 } else { | 382 } else { |
360 sols[n] = -gamma0 / beta0; | 383 sols[n] = -gamma0 / beta0; |
361 } | 384 } |
362 sols[n] = fmax(0, sols[n]); | 385 sols[n] = fmax(0, sols[n]); |
363 } | 386 } |
364 } | 387 } |
365 | 388 |
366 void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) { | 389 void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) { |
367 for (int i = 0; i < bank_size_; ++i) { | 390 for (int i = 0; i < bank_size_; ++i) { |
368 result[i] = DotProduct(filter_bank_[i], var, freqs_); | 391 result[i] = DotProduct(filter_bank_[i], var, freqs_); |
369 } | 392 } |
370 } | 393 } |
371 | 394 |
372 float IntelligibilityEnhancer::DotProduct(const float* a, const float* b, | 395 float IntelligibilityEnhancer::DotProduct(const float* a, |
373 int length) { | 396 const float* b, |
| 397 int length) { |
374 float ret = 0.0f; | 398 float ret = 0.0f; |
375 | 399 |
376 for (int i = 0; i < length; ++i) { | 400 for (int i = 0; i < length; ++i) { |
377 ret = fmaf(a[i], b[i], ret); | 401 ret = fmaf(a[i], b[i], ret); |
378 } | 402 } |
379 return ret; | 403 return ret; |
380 } | 404 } |
381 | 405 |
382 } // namespace webrtc | 406 } // namespace webrtc |
383 | |
OLD | NEW |