Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(417)

Side by Side Diff: webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc

Issue 1182323005: Allow intelligibility to compile in apm (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Addressed comments Created 5 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 //
12 // Implements core class for intelligibility enhancer.
13 //
14 // Details of the model and algorithm can be found in the original paper:
15 // http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6882788
16 //
17
11 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc er.h" 18 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc er.h"
12 19
13 #include <cmath> 20 #include <cmath>
14 #include <cstdlib> 21 #include <cstdlib>
15 22
16 #include <algorithm> 23 #include <algorithm>
24 #include <numeric>
17 25
18 #include "webrtc/base/checks.h" 26 #include "webrtc/base/checks.h"
19 #include "webrtc/common_audio/vad/include/webrtc_vad.h" 27 #include "webrtc/common_audio/vad/include/webrtc_vad.h"
20 #include "webrtc/common_audio/window_generator.h" 28 #include "webrtc/common_audio/window_generator.h"
21 29
22 using std::complex; 30 using std::complex;
23 using std::max; 31 using std::max;
24 using std::min; 32 using std::min;
25 33
26 namespace webrtc { 34 namespace webrtc {
27 35
28 const int IntelligibilityEnhancer::kErbResolution = 2; 36 const int IntelligibilityEnhancer::kErbResolution = 2;
29 const int IntelligibilityEnhancer::kWindowSizeMs = 2; 37 const int IntelligibilityEnhancer::kWindowSizeMs = 2;
30 // The size of the chunk provided by APM, in milliseconds. 38 const int IntelligibilityEnhancer::kChunkSizeMs = 10; // Size provided by APM.
31 const int IntelligibilityEnhancer::kChunkSizeMs = 10;
32 const int IntelligibilityEnhancer::kAnalyzeRate = 800; 39 const int IntelligibilityEnhancer::kAnalyzeRate = 800;
33 const int IntelligibilityEnhancer::kVarianceRate = 2; 40 const int IntelligibilityEnhancer::kVarianceRate = 2;
34 const float IntelligibilityEnhancer::kClipFreq = 200.0f; 41 const float IntelligibilityEnhancer::kClipFreq = 200.0f;
35 const float IntelligibilityEnhancer::kConfigRho = 0.02f; 42 const float IntelligibilityEnhancer::kConfigRho = 0.02f;
36 const float IntelligibilityEnhancer::kKbdAlpha = 1.5f; 43 const float IntelligibilityEnhancer::kKbdAlpha = 1.5f;
44
45 // To disable gain update smoothing, set gain limit to be VERY high.
46 // TODO(ekmeyerson): Add option to disable gain smoothing altogether
47 // to avoid the extra computation.
37 const float IntelligibilityEnhancer::kGainChangeLimit = 0.0125f; 48 const float IntelligibilityEnhancer::kGainChangeLimit = 0.0125f;
38 49
39 using VarianceType = intelligibility::VarianceArray::StepType; 50 using VarianceType = intelligibility::VarianceArray::StepType;
40 51
41 IntelligibilityEnhancer::TransformCallback::TransformCallback( 52 IntelligibilityEnhancer::TransformCallback::TransformCallback(
42 IntelligibilityEnhancer* parent, 53 IntelligibilityEnhancer* parent,
43 IntelligibilityEnhancer::AudioSource source) 54 IntelligibilityEnhancer::AudioSource source)
44 : parent_(parent), 55 : parent_(parent), source_(source) {
45 source_(source) {} 56 }
46 57
47 void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock( 58 void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock(
48 const complex<float>* const* in_block, 59 const complex<float>* const* in_block,
49 int in_channels, int frames, int /* out_channels */, 60 int in_channels,
61 int frames,
62 int /* out_channels */,
50 complex<float>* const* out_block) { 63 complex<float>* const* out_block) {
51 DCHECK_EQ(parent_->freqs_, frames); 64 DCHECK_EQ(parent_->freqs_, frames);
52 for (int i = 0; i < in_channels; ++i) { 65 for (int i = 0; i < in_channels; ++i) {
53 parent_->DispatchAudio(source_, in_block[i], out_block[i]); 66 parent_->DispatchAudio(source_, in_block[i], out_block[i]);
54 } 67 }
55 } 68 }
56 69
57 IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution, 70 IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution,
58 int sample_rate_hz, 71 int sample_rate_hz,
59 int channels, 72 int channels,
60 int cv_type, float cv_alpha, 73 int cv_type,
74 float cv_alpha,
61 int cv_win, 75 int cv_win,
62 int analysis_rate, 76 int analysis_rate,
63 int variance_rate, 77 int variance_rate,
64 float gain_limit) 78 float gain_limit)
65 : freqs_(RealFourier::ComplexLength(RealFourier::FftOrder( 79 : freqs_(RealFourier::ComplexLength(
66 sample_rate_hz * kWindowSizeMs / 1000))), 80 RealFourier::FftOrder(sample_rate_hz * kWindowSizeMs / 1000))),
67 window_size_(1 << RealFourier::FftOrder(freqs_)), 81 window_size_(1 << RealFourier::FftOrder(freqs_)),
68 chunk_length_(sample_rate_hz * kChunkSizeMs / 1000), 82 chunk_length_(sample_rate_hz * kChunkSizeMs / 1000),
69 bank_size_(GetBankSize(sample_rate_hz, erb_resolution)), 83 bank_size_(GetBankSize(sample_rate_hz, erb_resolution)),
70 sample_rate_hz_(sample_rate_hz), 84 sample_rate_hz_(sample_rate_hz),
71 erb_resolution_(erb_resolution), 85 erb_resolution_(erb_resolution),
72 channels_(channels), 86 channels_(channels),
73 analysis_rate_(analysis_rate), 87 analysis_rate_(analysis_rate),
74 variance_rate_(variance_rate), 88 variance_rate_(variance_rate),
75 clear_variance_(freqs_, static_cast<VarianceType>(cv_type), cv_win, 89 clear_variance_(freqs_,
90 static_cast<VarianceType>(cv_type),
91 cv_win,
76 cv_alpha), 92 cv_alpha),
77 noise_variance_(freqs_, VarianceType::kStepInfinite, 475, 0.01f), 93 noise_variance_(freqs_, VarianceType::kStepInfinite, 475, 0.01f),
78 filtered_clear_var_(new float[bank_size_]), 94 filtered_clear_var_(new float[bank_size_]),
79 filtered_noise_var_(new float[bank_size_]), 95 filtered_noise_var_(new float[bank_size_]),
80 filter_bank_(nullptr), 96 filter_bank_(nullptr),
81 center_freqs_(new float[bank_size_]), 97 center_freqs_(new float[bank_size_]),
82 rho_(new float[bank_size_]), 98 rho_(new float[bank_size_]),
83 gains_eq_(new float[bank_size_]), 99 gains_eq_(new float[bank_size_]),
84 gain_applier_(freqs_, gain_limit), 100 gain_applier_(freqs_, gain_limit),
85 temp_out_buffer_(nullptr), 101 temp_out_buffer_(nullptr),
86 input_audio_(new float*[channels]), 102 input_audio_(new float* [channels]),
87 kbd_window_(new float[window_size_]), 103 kbd_window_(new float[window_size_]),
88 render_callback_(this, AudioSource::kRenderStream), 104 render_callback_(this, AudioSource::kRenderStream),
89 capture_callback_(this, AudioSource::kCaptureStream), 105 capture_callback_(this, AudioSource::kCaptureStream),
90 block_count_(0), 106 block_count_(0),
91 analysis_step_(0), 107 analysis_step_(0),
92 vad_high_(nullptr), 108 vad_high_(WebRtcVad_Create()),
93 vad_low_(nullptr), 109 vad_low_(WebRtcVad_Create()),
94 vad_tmp_buffer_(new int16_t[chunk_length_]) { 110 vad_tmp_buffer_(new int16_t[chunk_length_]) {
95 DCHECK_LE(kConfigRho, 1.0f); 111 DCHECK_LE(kConfigRho, 1.0f);
96 112
97 CreateErbBank(); 113 CreateErbBank();
98 114
99 WebRtcVad_Create(&vad_high_);
100 WebRtcVad_Init(vad_high_); 115 WebRtcVad_Init(vad_high_);
101 WebRtcVad_set_mode(vad_high_, 0); // high likelihood of speech 116 WebRtcVad_set_mode(vad_high_, 0); // High likelihood of speech.
102 WebRtcVad_Create(&vad_low_);
103 WebRtcVad_Init(vad_low_); 117 WebRtcVad_Init(vad_low_);
104 WebRtcVad_set_mode(vad_low_, 3); // low likelihood of speech 118 WebRtcVad_set_mode(vad_low_, 3); // Low likelihood of speech.
105 119
106 temp_out_buffer_ = static_cast<float**>(malloc( 120 temp_out_buffer_ = static_cast<float**>(
107 sizeof(*temp_out_buffer_) * channels_ + 121 malloc(sizeof(*temp_out_buffer_) * channels_ +
108 sizeof(**temp_out_buffer_) * chunk_length_ * channels_)); 122 sizeof(**temp_out_buffer_) * chunk_length_ * channels_));
109 for (int i = 0; i < channels_; ++i) { 123 for (int i = 0; i < channels_; ++i) {
110 temp_out_buffer_[i] = reinterpret_cast<float*>(temp_out_buffer_ + channels_) 124 temp_out_buffer_[i] =
111 + chunk_length_ * i; 125 reinterpret_cast<float*>(temp_out_buffer_ + channels_) +
126 chunk_length_ * i;
112 } 127 }
113 128
129 // Assumes all rho equal.
114 for (int i = 0; i < bank_size_; ++i) { 130 for (int i = 0; i < bank_size_; ++i) {
115 rho_[i] = kConfigRho * kConfigRho; 131 rho_[i] = kConfigRho * kConfigRho;
116 } 132 }
117 133
118 float freqs_khz = kClipFreq / 1000.0f; 134 float freqs_khz = kClipFreq / 1000.0f;
119 int erb_index = static_cast<int>(ceilf(11.17f * logf((freqs_khz + 0.312f) / 135 int erb_index = static_cast<int>(ceilf(
120 (freqs_khz + 14.6575f)) 136 11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f));
121 + 43.0f));
122 start_freq_ = max(1, erb_index * kErbResolution); 137 start_freq_ = max(1, erb_index * kErbResolution);
123 138
124 WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_, 139 WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_,
125 kbd_window_.get()); 140 kbd_window_.get());
126 render_mangler_.reset(new LappedTransform(channels_, channels_, 141 render_mangler_.reset(new LappedTransform(
127 chunk_length_, 142 channels_, channels_, chunk_length_, kbd_window_.get(), window_size_,
128 kbd_window_.get(), 143 window_size_ / 2, &render_callback_));
129 window_size_, 144 capture_mangler_.reset(new LappedTransform(
130 window_size_ / 2, 145 channels_, channels_, chunk_length_, kbd_window_.get(), window_size_,
131 &render_callback_)); 146 window_size_ / 2, &capture_callback_));
132 capture_mangler_.reset(new LappedTransform(channels_, channels_,
133 chunk_length_,
134 kbd_window_.get(),
135 window_size_,
136 window_size_ / 2,
137 &capture_callback_));
138 } 147 }
139 148
140 IntelligibilityEnhancer::~IntelligibilityEnhancer() { 149 IntelligibilityEnhancer::~IntelligibilityEnhancer() {
141 WebRtcVad_Free(vad_low_); 150 WebRtcVad_Free(vad_low_);
142 WebRtcVad_Free(vad_high_); 151 WebRtcVad_Free(vad_high_);
143 free(filter_bank_); 152 free(filter_bank_);
144 } 153 }
145 154
146 void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio) { 155 void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio) {
147 for (int i = 0; i < chunk_length_; ++i) { 156 for (int i = 0; i < chunk_length_; ++i) {
148 vad_tmp_buffer_[i] = (int16_t)audio[0][i]; 157 vad_tmp_buffer_[i] = (int16_t)audio[0][i];
149 } 158 }
150 has_voice_low_ = WebRtcVad_Process(vad_low_, sample_rate_hz_, 159 has_voice_low_ = WebRtcVad_Process(vad_low_, sample_rate_hz_,
151 vad_tmp_buffer_.get(), chunk_length_) == 1; 160 vad_tmp_buffer_.get(), chunk_length_) == 1;
152 161
162 // Process and enhance chunk of |audio|
153 render_mangler_->ProcessChunk(audio, temp_out_buffer_); 163 render_mangler_->ProcessChunk(audio, temp_out_buffer_);
164
154 for (int i = 0; i < channels_; ++i) { 165 for (int i = 0; i < channels_; ++i) {
155 memcpy(audio[i], temp_out_buffer_[i], 166 memcpy(audio[i], temp_out_buffer_[i],
156 chunk_length_ * sizeof(**temp_out_buffer_)); 167 chunk_length_ * sizeof(**temp_out_buffer_));
157 } 168 }
158 } 169 }
159 170
160 void IntelligibilityEnhancer::ProcessCaptureAudio(float* const* audio) { 171 void IntelligibilityEnhancer::ProcessCaptureAudio(float* const* audio) {
161 for (int i = 0; i < chunk_length_; ++i) { 172 for (int i = 0; i < chunk_length_; ++i) {
162 vad_tmp_buffer_[i] = (int16_t)audio[0][i]; 173 vad_tmp_buffer_[i] = (int16_t)audio[0][i];
163 } 174 }
164 // TODO(bercic): the VAD was always detecting voice in the noise stream, 175 // TODO(bercic): The VAD was always detecting voice in the noise stream,
165 // no matter what the aggressiveness, so it was temporarily disabled here 176 // no matter what the aggressiveness, so it was temporarily disabled here.
166 177
167 //if (WebRtcVad_Process(vad_high_, sample_rate_hz_, vad_tmp_buffer_.get(), 178 #if 0
168 // chunk_length_) == 1) { 179 if (WebRtcVad_Process(vad_high_, sample_rate_hz_, vad_tmp_buffer_.get(),
169 // printf("capture HAS speech\n"); 180 chunk_length_) == 1) {
170 // return; 181 printf("capture HAS speech\n");
171 //} 182 return;
172 //printf("capture NO speech\n"); 183 }
184 printf("capture NO speech\n");
185 #endif
186
173 capture_mangler_->ProcessChunk(audio, temp_out_buffer_); 187 capture_mangler_->ProcessChunk(audio, temp_out_buffer_);
174 } 188 }
175 189
176 void IntelligibilityEnhancer::DispatchAudio( 190 void IntelligibilityEnhancer::DispatchAudio(
177 IntelligibilityEnhancer::AudioSource source, 191 IntelligibilityEnhancer::AudioSource source,
178 const complex<float>* in_block, complex<float>* out_block) { 192 const complex<float>* in_block,
193 complex<float>* out_block) {
179 switch (source) { 194 switch (source) {
180 case kRenderStream: 195 case kRenderStream:
181 ProcessClearBlock(in_block, out_block); 196 ProcessClearBlock(in_block, out_block);
182 break; 197 break;
183 case kCaptureStream: 198 case kCaptureStream:
184 ProcessNoiseBlock(in_block, out_block); 199 ProcessNoiseBlock(in_block, out_block);
185 break; 200 break;
186 } 201 }
187 } 202 }
188 203
189 void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block, 204 void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block,
190 complex<float>* out_block) { 205 complex<float>* out_block) {
191 float power_target; 206 float power_target;
192 207
193 if (block_count_ < 2) { 208 if (block_count_ < 2) {
194 memset(out_block, 0, freqs_ * sizeof(*out_block)); 209 memset(out_block, 0, freqs_ * sizeof(*out_block));
195 ++block_count_; 210 ++block_count_;
196 return; 211 return;
197 } 212 }
198 213
214 // For now, always assumes enhancement is necessary.
215 // TODO(ekmeyerson): Change to only enhance if necessary,
216 // based on experiments with different cutoffs.
199 if (has_voice_low_ || true) { 217 if (has_voice_low_ || true) {
200 clear_variance_.Step(in_block, false); 218 clear_variance_.Step(in_block, false);
201 power_target = std::accumulate(clear_variance_.variance(), 219 power_target = std::accumulate(clear_variance_.variance(),
202 clear_variance_.variance() + freqs_, 0.0f); 220 clear_variance_.variance() + freqs_, 0.0f);
203 221
204 if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { 222 if (block_count_ % analysis_rate_ == analysis_rate_ - 1) {
205 AnalyzeClearBlock(power_target); 223 AnalyzeClearBlock(power_target);
206 ++analysis_step_; 224 ++analysis_step_;
207 if (analysis_step_ == variance_rate_) { 225 if (analysis_step_ == variance_rate_) {
208 analysis_step_ = 0; 226 analysis_step_ = 0;
209 clear_variance_.Clear(); 227 clear_variance_.Clear();
210 noise_variance_.Clear(); 228 noise_variance_.Clear();
211 } 229 }
212 } 230 }
213 ++block_count_; 231 ++block_count_;
214 } 232 }
215 233
216 /* efidata(n,:) = sqrt(b(n)) * fidata(n,:) */ 234 /* efidata(n,:) = sqrt(b(n)) * fidata(n,:) */
217 gain_applier_.Apply(in_block, out_block); 235 gain_applier_.Apply(in_block, out_block);
218 } 236 }
219 237
220 void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) { 238 void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) {
221 FilterVariance(clear_variance_.variance(), filtered_clear_var_.get()); 239 FilterVariance(clear_variance_.variance(), filtered_clear_var_.get());
222 FilterVariance(noise_variance_.variance(), filtered_noise_var_.get()); 240 FilterVariance(noise_variance_.variance(), filtered_noise_var_.get());
223 241
224 /* lambda binary search */ 242 // Bisection search for optimal |lambda|
225 243
226 float lambda_bot = -1.0f, lambda_top = -10e-18f, lambda; 244 float lambda_bot = -1.0f, lambda_top = -10e-18f, lambda;
227 float power_bot, power_top, power; 245 float power_bot, power_top, power;
228 SolveEquation14(lambda_top, start_freq_, gains_eq_.get()); 246 SolveForGainsGivenLambda(lambda_top, start_freq_, gains_eq_.get());
229 power_top = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), 247 power_top =
230 bank_size_); 248 DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
231 SolveEquation14(lambda_bot, start_freq_, gains_eq_.get()); 249 SolveForGainsGivenLambda(lambda_bot, start_freq_, gains_eq_.get());
232 power_bot = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), 250 power_bot =
233 bank_size_); 251 DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
234 DCHECK(power_target >= power_bot && power_target <= power_top); 252 DCHECK(power_target >= power_bot && power_target <= power_top);
235 253
236 float power_ratio = 2.0f; 254 float power_ratio = 2.0f; // Ratio of achieved power to target power.
255 const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values
256 const int kMaxIters = 100; // for these, based on experiments.
237 int iters = 0; 257 int iters = 0;
238 while (fabs(power_ratio - 1.0f) > 0.001f && iters <= 100) { 258 while (fabs(power_ratio - 1.0f) > kConvergeThresh && iters <= kMaxIters) {
239 lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; 259 lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f;
240 SolveEquation14(lambda, start_freq_, gains_eq_.get()); 260 SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get());
241 power = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); 261 power = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
242 if (power < power_target) { 262 if (power < power_target) {
243 lambda_bot = lambda; 263 lambda_bot = lambda;
244 } else { 264 } else {
245 lambda_top = lambda; 265 lambda_top = lambda;
246 } 266 }
247 power_ratio = fabs(power / power_target); 267 power_ratio = fabs(power / power_target);
248 ++iters; 268 ++iters;
249 } 269 }
250 270
251 /* b = filterbank' * b */ 271 // (ERB gain) = filterbank' * (freq gain)
252 float* gains = gain_applier_.target(); 272 float* gains = gain_applier_.target();
253 for (int i = 0; i < freqs_; ++i) { 273 for (int i = 0; i < freqs_; ++i) {
254 gains[i] = 0.0f; 274 gains[i] = 0.0f;
255 for (int j = 0; j < bank_size_; ++j) { 275 for (int j = 0; j < bank_size_; ++j) {
256 gains[i] = fmaf(filter_bank_[j][i], gains_eq_[j], gains[i]); 276 gains[i] = fmaf(filter_bank_[j][i], gains_eq_[j], gains[i]);
257 } 277 }
258 } 278 }
259 } 279 }
260 280
261 void IntelligibilityEnhancer::ProcessNoiseBlock(const complex<float>* in_block, 281 void IntelligibilityEnhancer::ProcessNoiseBlock(const complex<float>* in_block,
262 complex<float>* /*out_block*/) { 282 complex<float>* /*out_block*/) {
263 noise_variance_.Step(in_block); 283 noise_variance_.Step(in_block);
264 } 284 }
265 285
266 int IntelligibilityEnhancer::GetBankSize(int sample_rate, int erb_resolution) { 286 int IntelligibilityEnhancer::GetBankSize(int sample_rate, int erb_resolution) {
267 float freq_limit = sample_rate / 2000.0f; 287 float freq_limit = sample_rate / 2000.0f;
268 int erb_scale = ceilf(11.17f * logf((freq_limit + 0.312f) / 288 int erb_scale = ceilf(
269 (freq_limit + 14.6575f)) + 43.0f); 289 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.0f);
270 return erb_scale * erb_resolution; 290 return erb_scale * erb_resolution;
271 } 291 }
272 292
273 void IntelligibilityEnhancer::CreateErbBank() { 293 void IntelligibilityEnhancer::CreateErbBank() {
274 int lf = 1, rf = 4; 294 int lf = 1, rf = 4;
275 295
276 for (int i = 0; i < bank_size_; ++i) { 296 for (int i = 0; i < bank_size_; ++i) {
277 float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_)); 297 float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_));
278 center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); 298 center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp));
279 center_freqs_[i] -= 14678.49f; 299 center_freqs_[i] -= 14678.49f;
280 } 300 }
281 float last_center_freq = center_freqs_[bank_size_ - 1]; 301 float last_center_freq = center_freqs_[bank_size_ - 1];
282 for (int i = 0; i < bank_size_; ++i) { 302 for (int i = 0; i < bank_size_; ++i) {
283 center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; 303 center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq;
284 } 304 }
285 305
286 filter_bank_ = static_cast<float**>(malloc( 306 filter_bank_ = static_cast<float**>(
287 sizeof(*filter_bank_) * bank_size_ + 307 malloc(sizeof(*filter_bank_) * bank_size_ +
288 sizeof(**filter_bank_) * freqs_ * bank_size_)); 308 sizeof(**filter_bank_) * freqs_ * bank_size_));
289 for (int i = 0; i < bank_size_; ++i) { 309 for (int i = 0; i < bank_size_; ++i) {
290 filter_bank_[i] = reinterpret_cast<float*>(filter_bank_ + bank_size_) + 310 filter_bank_[i] =
291 freqs_ * i; 311 reinterpret_cast<float*>(filter_bank_ + bank_size_) + freqs_ * i;
292 } 312 }
293 313
294 for (int i = 1; i <= bank_size_; ++i) { 314 for (int i = 1; i <= bank_size_; ++i) {
295 int lll, ll, rr, rrr; 315 int lll, ll, rr, rrr;
296 lll = round(center_freqs_[max(1, i - lf) - 1] * freqs_ / 316 lll = round(center_freqs_[max(1, i - lf) - 1] * freqs_ /
297 (0.5f * sample_rate_hz_)); 317 (0.5f * sample_rate_hz_));
298 ll = round(center_freqs_[max(1, i ) - 1] * freqs_ / 318 ll =
299 (0.5f * sample_rate_hz_)); 319 round(center_freqs_[max(1, i) - 1] * freqs_ / (0.5f * sample_rate_hz_));
300 lll = min(freqs_, max(lll, 1)) - 1; 320 lll = min(freqs_, max(lll, 1)) - 1;
301 ll = min(freqs_, max(ll, 1)) - 1; 321 ll = min(freqs_, max(ll, 1)) - 1;
302 322
303 rrr = round(center_freqs_[min(bank_size_, i + rf) - 1] * freqs_ / 323 rrr = round(center_freqs_[min(bank_size_, i + rf) - 1] * freqs_ /
304 (0.5f * sample_rate_hz_)); 324 (0.5f * sample_rate_hz_));
305 rr = round(center_freqs_[min(bank_size_, i + 1) - 1] * freqs_ / 325 rr = round(center_freqs_[min(bank_size_, i + 1) - 1] * freqs_ /
306 (0.5f * sample_rate_hz_)); 326 (0.5f * sample_rate_hz_));
307 rrr = min(freqs_, max(rrr, 1)) - 1; 327 rrr = min(freqs_, max(rrr, 1)) - 1;
308 rr = min(freqs_, max(rr, 1)) - 1; 328 rr = min(freqs_, max(rr, 1)) - 1;
309 329
310 float step, element; 330 float step, element;
311 331
312 step = 1.0f / (ll - lll); 332 step = 1.0f / (ll - lll);
313 element = 0.0f; 333 element = 0.0f;
314 for (int j = lll; j <= ll; ++j) { 334 for (int j = lll; j <= ll; ++j) {
315 filter_bank_[i - 1][j] = element; 335 filter_bank_[i - 1][j] = element;
316 element += step; 336 element += step;
317 } 337 }
318 step = 1.0f / (rrr - rr); 338 step = 1.0f / (rrr - rr);
(...skipping 12 matching lines...) Expand all
331 sum = 0.0f; 351 sum = 0.0f;
332 for (int j = 0; j < bank_size_; ++j) { 352 for (int j = 0; j < bank_size_; ++j) {
333 sum += filter_bank_[j][i]; 353 sum += filter_bank_[j][i];
334 } 354 }
335 for (int j = 0; j < bank_size_; ++j) { 355 for (int j = 0; j < bank_size_; ++j) {
336 filter_bank_[j][i] /= sum; 356 filter_bank_[j][i] /= sum;
337 } 357 }
338 } 358 }
339 } 359 }
340 360
341 void IntelligibilityEnhancer::SolveEquation14(float lambda, int start_freq, 361 void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda,
342 float* sols) { 362 int start_freq,
363 float* sols) {
343 bool quadratic = (kConfigRho < 1.0f); 364 bool quadratic = (kConfigRho < 1.0f);
344 const float* var_x0 = filtered_clear_var_.get(); 365 const float* var_x0 = filtered_clear_var_.get();
345 const float* var_n0 = filtered_noise_var_.get(); 366 const float* var_n0 = filtered_noise_var_.get();
346 367
347 for (int n = 0; n < start_freq; ++n) { 368 for (int n = 0; n < start_freq; ++n) {
348 sols[n] = 1.0f; 369 sols[n] = 1.0f;
349 } 370 }
371
372 // Analytic solution for optimal gains. See paper for derivation.
350 for (int n = start_freq - 1; n < bank_size_; ++n) { 373 for (int n = start_freq - 1; n < bank_size_; ++n) {
351 float alpha0, beta0, gamma0; 374 float alpha0, beta0, gamma0;
352 gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] + 375 gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] +
353 lambda * var_x0[n] * var_n0[n] * var_n0[n]; 376 lambda * var_x0[n] * var_n0[n] * var_n0[n];
354 beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n]; 377 beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n];
355 if (quadratic) { 378 if (quadratic) {
356 alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n]; 379 alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n];
357 sols[n] = (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) 380 sols[n] =
358 / (2 * alpha0); 381 (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / (2 * alpha0);
359 } else { 382 } else {
360 sols[n] = -gamma0 / beta0; 383 sols[n] = -gamma0 / beta0;
361 } 384 }
362 sols[n] = fmax(0, sols[n]); 385 sols[n] = fmax(0, sols[n]);
363 } 386 }
364 } 387 }
365 388
366 void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) { 389 void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) {
367 for (int i = 0; i < bank_size_; ++i) { 390 for (int i = 0; i < bank_size_; ++i) {
368 result[i] = DotProduct(filter_bank_[i], var, freqs_); 391 result[i] = DotProduct(filter_bank_[i], var, freqs_);
369 } 392 }
370 } 393 }
371 394
372 float IntelligibilityEnhancer::DotProduct(const float* a, const float* b, 395 float IntelligibilityEnhancer::DotProduct(const float* a,
373 int length) { 396 const float* b,
397 int length) {
374 float ret = 0.0f; 398 float ret = 0.0f;
375 399
376 for (int i = 0; i < length; ++i) { 400 for (int i = 0; i < length; ++i) {
377 ret = fmaf(a[i], b[i], ret); 401 ret = fmaf(a[i], b[i], ret);
378 } 402 }
379 return ret; 403 return ret;
380 } 404 }
381 405
382 } // namespace webrtc 406 } // namespace webrtc
383
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698