Index: webrtc/modules/audio_processing/agc/pitch_based_vad.cc |
diff --git a/webrtc/modules/audio_processing/agc/pitch_based_vad.cc b/webrtc/modules/audio_processing/agc/pitch_based_vad.cc |
deleted file mode 100644 |
index 0cfa52a0108afb0b255a4c10d519467dda0085c3..0000000000000000000000000000000000000000 |
--- a/webrtc/modules/audio_processing/agc/pitch_based_vad.cc |
+++ /dev/null |
@@ -1,122 +0,0 @@ |
-/* |
- * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
- * |
- * Use of this source code is governed by a BSD-style license |
- * that can be found in the LICENSE file in the root of the source |
- * tree. An additional intellectual property rights grant can be found |
- * in the file PATENTS. All contributing project authors may |
- * be found in the AUTHORS file in the root of the source tree. |
- */ |
- |
-#include "webrtc/modules/audio_processing/agc/pitch_based_vad.h" |
- |
-#include <assert.h> |
-#include <math.h> |
-#include <string.h> |
- |
-#include "webrtc/modules/audio_processing/agc/circular_buffer.h" |
-#include "webrtc/modules/audio_processing/agc/common.h" |
-#include "webrtc/modules/audio_processing/agc/noise_gmm_tables.h" |
-#include "webrtc/modules/audio_processing/agc/voice_gmm_tables.h" |
-#include "webrtc/modules/interface/module_common_types.h" |
- |
-namespace webrtc { |
- |
-static_assert(kNoiseGmmDim == kVoiceGmmDim, |
- "noise and voice gmm dimension not equal"); |
- |
-// These values should match MATLAB counterparts for unit-tests to pass. |
-static const int kPosteriorHistorySize = 500; // 5 sec of 10 ms frames. |
-static const double kInitialPriorProbability = 0.3; |
-static const int kTransientWidthThreshold = 7; |
-static const double kLowProbabilityThreshold = 0.2; |
- |
-static double LimitProbability(double p) { |
- const double kLimHigh = 0.99; |
- const double kLimLow = 0.01; |
- |
- if (p > kLimHigh) |
- p = kLimHigh; |
- else if (p < kLimLow) |
- p = kLimLow; |
- return p; |
-} |
- |
-PitchBasedVad::PitchBasedVad() |
- : p_prior_(kInitialPriorProbability), |
- circular_buffer_(AgcCircularBuffer::Create(kPosteriorHistorySize)) { |
- // Setup noise GMM. |
- noise_gmm_.dimension = kNoiseGmmDim; |
- noise_gmm_.num_mixtures = kNoiseGmmNumMixtures; |
- noise_gmm_.weight = kNoiseGmmWeights; |
- noise_gmm_.mean = &kNoiseGmmMean[0][0]; |
- noise_gmm_.covar_inverse = &kNoiseGmmCovarInverse[0][0][0]; |
- |
- // Setup voice GMM. |
- voice_gmm_.dimension = kVoiceGmmDim; |
- voice_gmm_.num_mixtures = kVoiceGmmNumMixtures; |
- voice_gmm_.weight = kVoiceGmmWeights; |
- voice_gmm_.mean = &kVoiceGmmMean[0][0]; |
- voice_gmm_.covar_inverse = &kVoiceGmmCovarInverse[0][0][0]; |
-} |
- |
-PitchBasedVad::~PitchBasedVad() {} |
- |
-int PitchBasedVad::VoicingProbability(const AudioFeatures& features, |
- double* p_combined) { |
- double p; |
- double gmm_features[3]; |
- double pdf_features_given_voice; |
- double pdf_features_given_noise; |
- // These limits are the same in matlab implementation 'VoicingProbGMM().' |
- const double kLimLowLogPitchGain = -2.0; |
- const double kLimHighLogPitchGain = -0.9; |
- const double kLimLowSpectralPeak = 200; |
- const double kLimHighSpectralPeak = 2000; |
- const double kEps = 1e-12; |
- for (int n = 0; n < features.num_frames; n++) { |
- gmm_features[0] = features.log_pitch_gain[n]; |
- gmm_features[1] = features.spectral_peak[n]; |
- gmm_features[2] = features.pitch_lag_hz[n]; |
- |
- pdf_features_given_voice = EvaluateGmm(gmm_features, voice_gmm_); |
- pdf_features_given_noise = EvaluateGmm(gmm_features, noise_gmm_); |
- |
- if (features.spectral_peak[n] < kLimLowSpectralPeak || |
- features.spectral_peak[n] > kLimHighSpectralPeak || |
- features.log_pitch_gain[n] < kLimLowLogPitchGain) { |
- pdf_features_given_voice = kEps * pdf_features_given_noise; |
- } else if (features.log_pitch_gain[n] > kLimHighLogPitchGain) { |
- pdf_features_given_noise = kEps * pdf_features_given_voice; |
- } |
- |
- p = p_prior_ * pdf_features_given_voice / (pdf_features_given_voice * |
- p_prior_ + pdf_features_given_noise * (1 - p_prior_)); |
- |
- p = LimitProbability(p); |
- |
- // Combine pitch-based probability with standalone probability, before |
- // updating prior probabilities. |
- double prod_active = p * p_combined[n]; |
- double prod_inactive = (1 - p) * (1 - p_combined[n]); |
- p_combined[n] = prod_active / (prod_active + prod_inactive); |
- |
- if (UpdatePrior(p_combined[n]) < 0) |
- return -1; |
- // Limit prior probability. With a zero prior probability the posterior |
- // probability is always zero. |
- p_prior_ = LimitProbability(p_prior_); |
- } |
- return 0; |
-} |
- |
-int PitchBasedVad::UpdatePrior(double p) { |
- circular_buffer_->Insert(p); |
- if (circular_buffer_->RemoveTransient(kTransientWidthThreshold, |
- kLowProbabilityThreshold) < 0) |
- return -1; |
- p_prior_ = circular_buffer_->Mean(); |
- return 0; |
-} |
- |
-} // namespace webrtc |